skip to main content
research-article

Motion from Shape Change

Published:26 July 2023Publication History
Skip Abstract Section

Abstract

We consider motion effected by shape change. Such motions are ubiquitous in nature and the human made environment, ranging from single cells to platform divers and jellyfish. The shapes may be immersed in various media ranging from the very viscous to air and nearly inviscid fluids. In the absence of external forces these settings are characterized by constant momentum. We exploit this in an algorithm which takes a sequence of changing shapes, say, as modeled by an animator, as input and produces corresponding motion in world coordinates. Our method is based on the geometry of shape change and an appropriate variational principle. The corresponding Euler-Lagrange equations are first order ODEs in the unknown rotations and translations and the resulting time stepping algorithm applies to all these settings without modification as we demonstrate with a broad set of examples.

Skip Supplemental Material Section

Supplemental Material

papers_572_VOD.mp4

presentation

mp4

158.9 MB

References

  1. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2008. Numerical Geometry of Non-rigid Shapes. Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Fang Da, David Hahn, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2016. Surface-only Liquids. ACM Trans. Graph. 35, 4 (2016), 78:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Daniel Daye. 2019. Rigged and Animated Scan of Timber Rattlesnake. https://sketchfab.com/. CC Attribution-NonCommercial.Google ScholarGoogle Scholar
  4. J. Elgeti, R. G. Winkler, and G. Gompper. 2015. Physics of Microswimmers---Single Particle Motion and Collective Behavior: a Review. Rep. Prog. Phys. 78 (2015).Google ScholarGoogle Scholar
  5. Leonhard Euler. 1744. Methodus Inveniendi Lineas Curvas Maximi Minive Proprietate Gaudentes. Bousquet, Lausanne & Geneva. English translation at WikiSource.Google ScholarGoogle Scholar
  6. Cliff Frohlich. 1979. Do Springboard Divers Violate Angular Momentum Conservation? Amer. J. Phys. 47, 7 (1979), 583--592.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cliff Frohlich. 1980. The Physics of Somersaulting and Twisting. Sci. Am. 242, 3 (1980), 154--165.Google ScholarGoogle ScholarCross RefCross Ref
  8. Graphics & Extended Reality Lab. 2022. Large Whip Snake. https://sketchfab.com/. CC Attribution.Google ScholarGoogle Scholar
  9. J. Gray and G. J. Hancock. 1955. The Propulsion of Sea-Urchin Spermatozoa. J. Exp. Biol. 32, 4 (1955), 802--814.Google ScholarGoogle ScholarCross RefCross Ref
  10. Jeffrey S. Guasto, Jonathan B. Estrada, Filippo Menolascina, Lisa J. Burton, Mohak Patel, Christian Franck, A. E. Hosoi, Richard K. Zimmer, and Roman Stocker. 2020. Flagellar Kinematics Reveals the Role of Environment in Shaping Sperm Motility. J. Roy. Soc. Interface 17, 20200525 (2020), 10 pages.Google ScholarGoogle ScholarCross RefCross Ref
  11. Ernst Hairer and Gerhard Wanner. 2015. Euler Methods, Explicit, Implicit, Symplectic. In Encyclopedia of Applied and Computational Mathematics, Björn Engquist (Ed.). Springer, 451--455.Google ScholarGoogle Scholar
  12. David L. Hu, Jasmine Nirody, Terri Scott, and Michael J. Shelley. 2009. The Mechanics of Slithering Locomotion. Proc. Nat. Acad. Sci. 106, 25 (2009), 10081--10085.Google ScholarGoogle ScholarCross RefCross Ref
  13. E. Ju, J. Won, J. Lee, B. Choi, J. Noh, and M. Gyu Choi. 2013. Data-Driven Control of Flapping Flight. ACM Trans. Graph. 32, 5 (2013), 151:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. T. R. Kane and M. P. Scher. 1969. A Dynamical Explanation of the Falling Cat Phenomenon. Int. J. Solids Structures 5 (1969), 663--670.Google ScholarGoogle ScholarCross RefCross Ref
  15. Eva Kanso, Jerrold E. Marsden, Clancy W. Rowley, and J. B. Melli-Huber. 2005. Locomotion of Articulated Bodies in a Perfect Fluid. J. Non-L. Sci. 15 (2005), 255--289.Google ScholarGoogle ScholarCross RefCross Ref
  16. Gustav Kirchhoff. 1870. Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. Reine Angew. Math. 1870, 71 (1870), 237--262.Google ScholarGoogle ScholarCross RefCross Ref
  17. Gustav Kirchhoff. 1876. Vorlesungen über mathematische Physik. Teubner, 233--250.Google ScholarGoogle Scholar
  18. V. V. Kozlov and S. M. Ramodanov. 2001. The Motion of a Variable Body in an Ideal Fluid. J. Appl. Math. Mech. 65, 4 (2001), 579--587.Google ScholarGoogle ScholarCross RefCross Ref
  19. Philip V. Kulwicki and Edward J. Schlei. 1962. Weightless Man: Self-Rotation Techniques. Technical Report AMRL-TDR-62-129. Beh. Sci. Lab., Wright-Patterson AFB.Google ScholarGoogle Scholar
  20. V. M. Kuznetsov, B. A. Lugovtsov, and Y. N. Sher. 1967. On the Motive Mechanism of Snakes and Fish. Arch. Rat. Mech. 25 (1967), 367--387.Google ScholarGoogle ScholarCross RefCross Ref
  21. L. D. Landau and E. M. Lifshitz. 1976. Mechanics (third ed.). Course of Theoretical Physics, Vol. 1. Butterworth Heinemann.Google ScholarGoogle Scholar
  22. Eric Lauga and Thomas R. Powers. 2009. The Hydrodynamics of Swimming Microorganisms. Rep. Prog. Phys. 72, 096601 (2009), 36pp.Google ScholarGoogle Scholar
  23. Michael Lentine, Jon Tomas Gretarsson, Craig Schroeder, Avi Robinson-Mosher, and Ronald Fedkiw. 2011. Creature Control in a Fluid Environment. IEEE Trans. Vis. Comp. Graph. 17, 5 (2011), 682--693.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. P. Liljebäck, Ky. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl. 2012. A Review on Modeling, Implementation, and Control of Snake Robots. Rob. Aut. Syst. 60, 1 (2012), 29--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Marey. 1894. Photographs of a Tumbling Cat. Nature 51 (1894), 80--81.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jerrold E. Marsden and Matthew West. 2001. Discrete Mechanics and Variational Integrators. Act. Num. 10 (May 2001), 357--514.Google ScholarGoogle Scholar
  27. Gavin S. Miller. 1988. The Motion Dynamics of Snakes and Worms. In Proc. ACM/SIGGRAPH Conf. ACM, 169--173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee Lee. 2019. SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators. ACM Trans. Graph. 38, 6 (2019), 208:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Montgomery. 1993. Dynamics and Control of Mechanical Systems; The Falling Cat and Related Problems. Number 1 in Fields Inst. Commun. Fields Institute, Chapter Gauge Theory of the Falling Cat, 193--218.Google ScholarGoogle Scholar
  30. Emmy Noether. 1918. Invariante Variationsprobleme. Nachr. König. Ges. Wiss. Math. Phys. Klasse (1918), 235--257. Engl. translation https://arxiv.org/abs/physics/0503066..Google ScholarGoogle Scholar
  31. Jim Ostrowski and Joel Burdick. 1998. The Geometric Mechanics of Undulatory Robotic Locomotion. I. J. Rob. Res. 17, 7 (1998), 683--701.Google ScholarGoogle ScholarCross RefCross Ref
  32. Marcel Padilla, Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. 2019. On Bubble Rings and Ink Chandeliers. ACM Trans. Graph. 38, 4 (2019), 129:1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Louis Poinsot. 1851. Théorie Nouvelle de la Rotation des Corps. Bachelier.Google ScholarGoogle Scholar
  34. E. M. Purcell. 1977. Life at Low Reynolds Number. Amer. J. Phys. 45, 3 (1977), 3--11.Google ScholarGoogle ScholarCross RefCross Ref
  35. Michel Rieutord. 2015. Fluid Dynamics: An Introduction. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  36. Perrin E. Schiebel, Jennnifer M. Reiser, Alex M. Hubbard, Lillian Chen, D. Zeb Rocklin, and Daniel I. Goldman. 2019. Mechanical Diffraction Reveals the Role of Passive Dynamics in a Slithering Snake. Proc. Nat. Acad. Sci. 116, 11 (2019), 4798--4803.Google ScholarGoogle ScholarCross RefCross Ref
  37. Alfred Shapere and Frank Wilczek. 1989a. Geometry of Self-Propulsion at Low Reynolds Number. J. Fluid Mech. 198 (1989), 557--585.Google ScholarGoogle ScholarCross RefCross Ref
  38. Alfred Shapere and Frank Wilczek. 1989b. Gauge Kinematics of Deformable Bodies. Amer. J. Phys. 57, 6 (1989), 514--518.Google ScholarGoogle ScholarCross RefCross Ref
  39. Hon. J. W. Strutt, M. A. (Lord Rayleigh). 1871. Some General Theorems Relating to Vibrations. Proc. Lond. Math. Soc. s1-4, 1 (1871), 357--368.Google ScholarGoogle ScholarCross RefCross Ref
  40. Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated Swimming Creatures. ACM Trans. Graph. 30, 4 (2011), 58:1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Xiaoyuan Tu and Demetri Terzopoulos. 1994. Artificial Fishes: Physics, Locomotion, Perception, Behavior. In Proc. ACM/SIGGRAPH Conf. 43--50.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Steven Vogel. 1983. Life in Moving Fluids (2nd ed.). Princeton University Press.Google ScholarGoogle Scholar
  43. Hermann von Helmholtz. 1882. Zur Theorie der stationären Ströme in reibenden Flüssigkeiten. In Wissenschaftliche Abhandlungen. Vol. I. J. A. Barth, 223--230.Google ScholarGoogle Scholar
  44. Barlomiej Waszak. 2018. Limbless Movement Simulation with a Particle-Based System. Comp. Anim. Virt. Worlds 29, 2 (2018), 1--21.Google ScholarGoogle Scholar
  45. Steffen Weißmann and Ulrich Pinkall. 2012. Underwater Rigid Body Dynamics. ACM Trans. Graph. 31, 4 (2012), 104:1--7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wayne L. Wooten and Jessica K. Hodgins. 1996. Animation of Human Diving. Comp. Graph. Forum 15, 1 (1996), 3--13.Google ScholarGoogle ScholarCross RefCross Ref
  47. Jia-Chi Wu and Zoran Popović. 2003. Realistic Modeling of Bird Flight Animations. ACM Trans. Graph. 22, 3 (2003), 888--895.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Motion from Shape Change

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 42, Issue 4
            August 2023
            1912 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/3609020
            Issue’s Table of Contents

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 July 2023
            Published in tog Volume 42, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
          • Article Metrics

            • Downloads (Last 12 months)269
            • Downloads (Last 6 weeks)13

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader