skip to main content
10.1145/3593013.3593974acmotherconferencesArticle/Chapter ViewAbstractPublication PagesfacctConference Proceedingsconference-collections
research-article

Fairness in machine learning from the perspective of sociology of statistics: How machine learning is becoming scientific by turning its back on metrological realism

Published:12 June 2023Publication History

ABSTRACT

We argue in this article that the integration of fairness into machine learning, or FairML, is a valuable exemplar of the politics of statistics and their ongoing transformations. Classically, statisticians sought to eliminate any trace of politics from their measurement tools. But data scientists who are developing predictive machines for social applications – are inevitably confronted with the problem of fairness. They thus face two difficult and often distinct types of demands: first, for reliable computational techniques, and second, for transparency, given the constructed, politically situated nature of quantification operations. We begin by socially localizing the formation of FairML as a field of research and describing the associated epistemological framework. We then examine how researchers simultaneously think the mathematical and social construction of approaches to machine learning, following controversies around fairness metrics and their status. Thirdly and finally, we show that FairML approaches tend towards a specific form of objectivity, “trained judgement,” which is based on a reasonably partial justification from the designer of the machine – which itself comes to be politically situated as a result.

References

  1. J. Kleinberg, J. Ludwig, S. Mullainathan, and C. R. Sunstein, ‘Discrimination in the Age of Algorithms’, Journal of Legal Analysis, vol. 10, pp. 113–174, Dec. 2018, doi: 10.1093/jla/laz001.Google ScholarGoogle ScholarCross RefCross Ref
  2. V. Eubanks, Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. St. Martin's Publishing Group, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. S. U. Noble, Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  4. C. O'Neil, Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York: Crown, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. F. Pasquale, The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Buolamwini and T. Gebru, ‘Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification’, in Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR, Jan. 2018, pp. 77–91. Accessed: May 12, 2023. [Online]. Available: https://proceedings.mlr.press/v81/buolamwini18a.htmlGoogle ScholarGoogle Scholar
  7. M. K. Scheuerman, M. Pape, and A. Hanna, ‘Auto-essentialization: Gender in automated facial analysis as extended colonial project’, Big Data & Society, vol. 8, no. 2, p. 20539517211053710, Jul. 2021, doi: 10.1177/20539517211053712.Google ScholarGoogle ScholarCross RefCross Ref
  8. K. Crawford, The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press, 2021.Google ScholarGoogle Scholar
  9. B. Laufer, S. Jain, A. F. Cooper, J. Kleinberg, and H. Heidari, ‘Four Years of FAccT: A Reflexive, Mixed-Methods Analysis of Research Contributions, Shortcomings, and Future Prospects’, in 2022 ACM Conference on Fairness, Accountability, and Transparency, in FAccT ’22. New York, NY, USA: Association for Computing Machinery, Jun. 2022, pp. 401–426. doi: 10.1145/3531146.3533107.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Larue and T. M. Mueller, ‘La Normativité en Science Economique. Une perspective pratique, historique et philosophique’, Revue Philosophique de Louvain, vol. 116, p. 147, 2018.Google ScholarGoogle Scholar
  11. T. M. Porter, Trust in Numbers: The Pursuit of Objectivity in Science and Public Life. Princeton University Press, 1996.Google ScholarGoogle ScholarCross RefCross Ref
  12. È. Chiapello and A. Desrosières, ‘18. La quantification de l’économie et la recherche en sciences sociales : paradoxes, contradictions et omissions. Le cas exemplaire de la positive accounting theory’, in L’économie des conventions, méthodes et résultats, in Recherches. Paris: La Découverte, 2006, pp. 297–310. doi: 10.3917/dec.eymar.2006.01.0297.Google ScholarGoogle Scholar
  13. A. Desrosières, Pour une sociologie historique de la quantification: L'Argument statistique I. Presses des Mines via OpenEdition, 2013.Google ScholarGoogle Scholar
  14. O. Martin, L'empire des chiffres: Sociologie de la quantification. Malakoff, 2020.Google ScholarGoogle Scholar
  15. L. Daston and P. Galison, Objectivity. Zone Books, 2010.Google ScholarGoogle Scholar
  16. G. Bachelard, Le Nouvel Esprit Scientifique. Presses Universitaires de France, 1934.Google ScholarGoogle Scholar
  17. B. Friedman and D. G. Hendry, Value Sensitive Design: Shaping Technology with Moral Imagination. MIT Press, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  18. H. Nissenbaum, ‘How computer systems embody values’, Computer, vol. 34, no. 3, pp. 120–119, Mar. 2001, doi: 10.1109/2.910905.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Kearns and A. Roth, The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Oxford University Press, 2019.Google ScholarGoogle Scholar
  20. L. Introna and H. Nissenbaum, ‘Defining the Web: the politics of search engines’, Computer, vol. 33, no. 1, pp. 54–62, Jan. 2000, doi: 10.1109/2.816269.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. B. Friedman and H. Nissenbaum, ‘Bias in computer systems’, ACM Trans. Inf. Syst., vol. 14, no. 3, pp. 330–347, Jul. 1996, doi: 10.1145/230538.230561.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. C. Dwork, F. McSherry, K. Nissim, and A. Smith, ‘Calibrating Noise to Sensitivity in Private Data Analysis’, in Theory of Cryptography, S. Halevi and T. Rabin, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2006, pp. 265–284. doi: 10.1007/11681878_14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Dwork and D. K. Mulligan, ‘It's Not Privacy, and It's Not Fair’, Stan. L. Rev. Online, vol. 66, p. 35, 2014 2013.Google ScholarGoogle Scholar
  24. L. Sweeney, ‘Discrimination in Online Ad Delivery’. arXiv, Jan. 28, 2013. doi: 10.48550/arXiv.1301.6822.Google ScholarGoogle Scholar
  25. L. Code, Epistemic Responsibility. State University of New York Press, 2020.Google ScholarGoogle Scholar
  26. J.-M. John-Mathews and D. Cardon, ‘The Crisis of Social Categories in the Age of AI’, Sociologica, vol. 16, no. 3, Art. no. 3, 2022, doi: 10.6092/issn.1971-8853/15931.Google ScholarGoogle Scholar
  27. L. Breiman, ‘Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)’, Statist. Sci., vol. 16, no. 3, pp. 199–231, Aug. 2001, doi: 10.1214/ss/1009213726.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. K. Scheuerman, A. Hanna, and E. Denton, ‘Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development’, Proc. ACM Hum.-Comput. Interact., vol. 5, no. CSCW2, p. 317:1-317:37, Oct. 2021, doi: 10.1145/3476058.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. G. Bachelard, Le rationalisme appliqué. Presses Universitaires de France, 1949.Google ScholarGoogle Scholar
  30. A. Birhane , ‘The Forgotten Margins of AI Ethics’, in 2022 ACM Conference on Fairness, Accountability, and Transparency, in FAccT ’22. New York, NY, USA: Association for Computing Machinery, Jun. 2022, pp. 948–958. doi: 10.1145/3531146.3533157.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. B. Hutchinson and M. Mitchell, ‘50 Years of Test (Un)fairness: Lessons for Machine Learning’, in Proceedings of the Conference on Fairness, Accountability, and Transparency, in FAT* ’19. New York, NY, USA: Association for Computing Machinery, Jan. 2019, pp. 49–58. doi: 10.1145/3287560.3287600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. J. Goldenfein, ‘The Profiling Potential of Computer Vision and the Challenge of Computational Empiricism’, in Proceedings of the Conference on Fairness, Accountability, and Transparency, in FAT* ’19. New York, NY, USA: Association for Computing Machinery, Jan. 2019, pp. 110–119. doi: 10.1145/3287560.3287568.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. D. Haraway, ‘Situated Knowledges: The Science Question in Feminism and the Privilege of Partial Perspective’, Feminist Studies, vol. 14, no. 3, pp. 575–599, 1988, doi: 10.2307/3178066.Google ScholarGoogle ScholarCross RefCross Ref
  34. F. Jaton, ‘Assessing biases, relaxing moralism: On ground-truthing practices in machine learning design and application’, Big Data & Society, vol. 8, no. 1, p. 20539517211013570, Jan. 2021, doi: 10.1177/20539517211013569.Google ScholarGoogle ScholarCross RefCross Ref
  35. A. Desrosières, The Politics of Large Numbers: A History of Statistical Reasoning. Harvard University Press, 2002.Google ScholarGoogle Scholar
  36. P. J. Brantingham, ‘The Logic of Data Bias and its Impact on Place-Based Predictive Policing’, Ohio St. J. Crim. L., vol. 15, p. 473, 2018 2017.Google ScholarGoogle Scholar
  37. N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, ‘A Survey on Bias and Fairness in Machine Learning’, ACM Comput. Surv., vol. 54, no. 6, p. 115:1-115:35, Jul. 2021, doi: 10.1145/3457607.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. J. Kleinberg, J. Ludwig, and S. Mullainathan, ‘A Guide to Solving Social Problems with Machine Learning’, Harvard Business Review, Dec. 08, 2016. https://hbr.org/2016/12/a-guide-to-solving-social-problems-with-machine-learning (accessed Sep. 09, 2018).Google ScholarGoogle Scholar
  39. R. Abebe, S. Barocas, J. Kleinberg, K. Levy, M. Raghavan, and D. G. Robinson, ‘Roles for computing in social change’, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, in FAT* ’20. New York, NY, USA: Association for Computing Machinery, Jan. 2020, pp. 252–260. doi: 10.1145/3351095.3372871.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. A. Desrosières, Prouver et gouverner: Une analyse politique des statistiques publiques. La Découverte, 2014.Google ScholarGoogle ScholarCross RefCross Ref
  41. A. Castelnovo, R. Crupi, G. Greco, D. Regoli, I. G. Penco, and A. C. Cosentini, ‘A clarification of the nuances in the fairness metrics landscape’, Sci Rep, vol. 12, no. 1, Art. no. 1, Mar. 2022, doi: 10.1038/s41598-022-07939-1.Google ScholarGoogle Scholar
  42. B. Latour, Cogitamus: six lettres sur les humanités scientifiques. La Découverte, 2014.Google ScholarGoogle Scholar
  43. J. Kleinberg, S. Mullainathan, and M. Raghavan, ‘Inherent Trade-Offs in the Fair Determination of Risk Scores’, in 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), C. H. Papadimitriou, Ed., in Leibniz International Proceedings in Informatics (LIPIcs), vol. 67. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, p. 43:1-43:23. doi: 10.4230/LIPIcs.ITCS.2017.43.Google ScholarGoogle Scholar
  44. M. Hardt, E. Price, E. Price, and N. Srebro, ‘Equality of Opportunity in Supervised Learning’, in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2016. Accessed: Dec. 14, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.htmlGoogle ScholarGoogle Scholar
  45. L. Daston, ‘The Moral Economy of Science’, Osiris, vol. 10, pp. 2–24, Jan. 1995.Google ScholarGoogle ScholarCross RefCross Ref
  46. T. Kirat, O. Tambou, V. Do, and A. Tsoukiàs, ‘Fairness and Explainability in Automatic Decision-Making Systems. A challenge for computer science and law’. arXiv, May 13, 2022. doi: 10.48550/arXiv.2206.03226.Google ScholarGoogle Scholar
  47. S. Wachter, B. Mittelstadt, and C. Russell, ‘Why fairness cannot be automated: Bridging the gap between EU non-discrimination law and AI’, Computer Law & Security Review, vol. 41, p. 105567, Jul. 2021, doi: 10.1016/j.clsr.2021.105567.Google ScholarGoogle ScholarCross RefCross Ref
  48. M. Kearns, S. Neel, A. Roth, and Z. S. Wu, ‘Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness’. arXiv, Dec. 03, 2018. doi: 10.48550/arXiv.1711.05144.Google ScholarGoogle Scholar
  49. C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, ‘Fairness through awareness’, in Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, in ITCS ’12. New York, NY, USA: Association for Computing Machinery, Jan. 2012, pp. 214–226. doi: 10.1145/2090236.2090255.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. M. Fourcade, ‘Ordinalization: Lewis A. Coser memorial award for theoretical agenda setting 2014’, Sociological Theory, vol. 34, no. 3, pp. 175–195, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  51. J.-M. John-Mathews, ‘L’Éthique de l'Intelligence Artificielle en Pratique. Enjeux et Limites’, These de doctorat, université Paris-Saclay, 2021. Accessed: May 11, 2023. [Online]. Available: https://www.theses.fr/2021UPASI015Google ScholarGoogle Scholar
  52. M. J. Kusner, C. Russell, J. R. Loftus, and R. Silva, ‘Causal Interventions for Fairness’, arXiv:1806.02380 [cs, stat], Jun. 2018, Accessed: Jan. 13, 2021. [Online]. Available: http://arxiv.org/abs/1806.02380Google ScholarGoogle Scholar
  53. V. Tremblay, ‘Algorithmic fairness: interdisciplinary perspective and recommendations for statisticians and other data scientists’. May 10, 2022. Accessed: Jan. 11, 2023. [Online]. Available: https://hal.science/hal-03663226Google ScholarGoogle Scholar
  54. K. Makhlouf, S. Zhioua, and C. Palamidessi, ‘Survey on Causal-based Machine Learning Fairness Notions’, arXiv:2010.09553 [cs], Jan. 2021, Accessed: Feb. 07, 2021. [Online]. Available: http://arxiv.org/abs/2010.09553Google ScholarGoogle Scholar
  55. C. Tiercelin, Le ciment des choses, 1er édition. Paris: Editions Ithaque, 2011.Google ScholarGoogle Scholar
  56. L. Hu and I. Kohler-Hausmann, ‘What's Sex Got To Do With Fair Machine Learning?’, in Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Jan. 2020, pp. 513–513. doi: 10.1145/3351095.3375674.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. L. Boltanski and L. Thévenot, De la justification: les économies de la grandeur. Gallimard, 1991.Google ScholarGoogle Scholar
  58. F. Nef and S. Berlioz, La nature du social: de quoi le social est-il fait? Le Bord de l'eau, 2021.Google ScholarGoogle Scholar
  59. J.-M. John-Mathews, D. Cardon, and C. Balagué, ‘From Reality to World. A Critical Perspective on AI Fairness’, J Bus Ethics, vol. 178, no. 4, pp. 945–959, Jul. 2022, doi: 10.1007/s10551-022-05055-8.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Fairness in machine learning from the perspective of sociology of statistics: How machine learning is becoming scientific by turning its back on metrological realism

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      FAccT '23: Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency
      June 2023
      1929 pages
      ISBN:9798400701924
      DOI:10.1145/3593013

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 12 June 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)399
      • Downloads (Last 6 weeks)20

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format