skip to main content
10.1145/3594556.3594611acmconferencesArticle/Chapter ViewAbstractPublication Pagesasia-ccsConference Proceedingsconference-collections
research-article

Digital Twins and Blockchain for IoT Management

Published:12 September 2023Publication History

ABSTRACT

Security and privacy are primary concerns in IoT management. Security breaches in IoT resources, such as smart sensors, can leak sensitive data and compromise the privacy of individuals. Effective IoT management requires a comprehensive approach to prioritize access security and data privacy protection. Digital twins create virtual representations of IoT resources. Blockchain adds decentralization, transparency, and reliability to IoT systems. This research integrates digital twins and blockchain to manage access to IoT data streaming. Digital twins are used to encapsulate data access and view configurations. Access is enabled on digital twins, not on IoT resources directly. Trust structures programmed as smart contracts are the ones that manage access to digital twins. Consequently, IoT resources are not exposed to third parties, and access security breaches can be prevented. Blockchain has been used to validate digital twins and store their configuration. The research presented in this paper enables multitenant access and customization of data streaming views and abstracts the complexity of data access management. This approach provides access and configuration security and data privacy protection.

References

  1. A. El Saddik, “Digital Twins: The Convergence of Multimedia Technologies,” IEEE Multimedia, vol. 25, no. 2, pp. 87–92, Apr. 2018, doi: 10.1109/MMUL.2018.023121167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. F. Tao and Q. Qinglin, “Make more digital twins,” 2019.Google ScholarGoogle ScholarCross RefCross Ref
  3. Y. Lu, C. Liu, K. I. K. Wang, H. Huang, and X. Xu, “Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues,” Robotics and Computer-Integrated Manufacturing, vol. 61. Elsevier Ltd, Feb. 01, 2020. doi: 10.1016/j.rcim.2019.101837.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Canedo, “Industrial IoT lifecycle via digital twins,” in 2016 International Conference on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2016, Institute of Electrical and Electronics Engineers Inc., Nov. 2016. doi: 10.1145/2968456.2974007.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. R. Kaul , “The role of AI for developing digital twins in healthcare: The case of cancer care,” Wiley Interdiscip Rev Data Min Knowl Discov, 2022, doi: 10.1002/widm.1480.Google ScholarGoogle Scholar
  6. G. Ahmadi-Assalemi , “Digital twins for precision healthcare,” in Advanced Sciences and Technologies for Security Applications, Springer, 2020, pp. 133–158. doi: 10.1007/978-3-030-35746-7_8.Google ScholarGoogle Scholar
  7. F. Dembski, U. Wössner, M. Letzgus, M. Ruddat, and C. Yamu, “Urban digital twins for smart cities and citizens: The case study of herrenberg, germany,” Sustainability (Switzerland), vol. 12, no. 6, Mar. 2020, doi: 10.3390/su12062307.Google ScholarGoogle Scholar
  8. L. Deren, Y. Wenbo, and S. Zhenfeng, “Smart city based on digital twins,” Computational Urban Science, vol. 1, no. 1, Dec. 2021, doi: 10.1007/s43762-021-00005-y.Google ScholarGoogle Scholar
  9. C. Verdouw, B. Tekinerdogan, A. Beulens, and S. Wolfert, “Digital twins in smart farming,” Agric Syst, vol. 189, Apr. 2021, doi: 10.1016/j.agsy.2020.103046.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10]C. Pylianidis, S. Osinga, and I. N. Athanasiadis, “Introducing digital twins to agriculture,” Comput Electron Agric, vol. 184, May 2021, doi: 10.1016/j.compag.2020.105942.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. Minerva, G. M. Lee, and N. Crespi, “Digital Twin in the IoT Context: A Survey on Technical Features, Scenarios, and Architectural Models,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, Oct. 2020, doi: 10.1109/JPROC.2020.2998530.Google ScholarGoogle ScholarCross RefCross Ref
  12. S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System.” Accessed: Jan. 15, 2017. [Online]. Available: www.bitcoin.orgGoogle ScholarGoogle Scholar
  13. T. Alam, “Blockchain and its Role in the Internet of Things (IoT),” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, vol. 5, no. 1, pp. 151–157, 2019, doi: 10.32628/cseit195137.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, “Research on the architecture of Internet of Things,” in Advanced Computer Theory and Engineering (ICACTE), 2010, pp. V5-484-V5-487.Google ScholarGoogle Scholar
  15. L. Tan and N. Wang, “Future internet: The Internet of Things,” 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), pp. V5-376-V5-380, 2010, doi: 10.1109/ICACTE.2010.5579543.Google ScholarGoogle ScholarCross RefCross Ref
  16. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The Internet of Things Architecture , Possible Applications and Key Challenges,” 2012, doi: 10.1109/FIT.2012.53.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010, doi: 10.1016/j.comnet.2010.05.010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. L. Tawalbeh, F. Muheidat, M. Tawalbeh, and M. Quwaider, “IoT privacy and security: Challenges and solutions,” Applied Sciences (Switzerland), vol. 10, no. 12, pp. 1–17, 2020, doi: 10.3390/APP10124102.Google ScholarGoogle Scholar
  19. Microsoft, “Learn about twin models and how to define them in Azure Digital Twins,” Apr. 04, 2023. https://learn.microsoft.com/en-us/azure/digital-twins/concepts-models (accessed May 02, 2023).Google ScholarGoogle Scholar
  20. IBM, “What is a digital twin?” https://www.ibm.com/topics/what-is-a-digital-twin#:∼:text=The%20difference%20between%20digital%20twin,order%20to%20study%20multiple%20processes. (accessed Apr. 25, 2023).Google ScholarGoogle Scholar
  21. S. M. E. Sepasgozar, “Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment,” Buildings, vol. 11, no. 4. MDPI AG, Apr. 01, 2021. doi: 10.3390/buildings11040151.Google ScholarGoogle ScholarCross RefCross Ref
  22. R. Saracco, “Digital Twins: Bridging Physical Space and Cyberspace,” Computer, vol. 52, no. 12. IEEE Computer Society, pp. 58–64, Dec. 01, 2019. doi: 10.1109/MC.2019.2942803.Google ScholarGoogle Scholar
  23. A. Ptak, “Smart city management in the context of electricity consumption savings,” Energies (Basel), vol. 14, no. 19, 2021, doi: 10.3390/en14196170.Google ScholarGoogle Scholar
  24. D. Ferraiolo, R. Kuhn, and R. Chandramouli, Role-Based Access Control, vol. 46. 2003. doi: 10.1007/978-1-4419-5906-5_829.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25]E. Yuan and J. Tong, “Attributed Based Access Control (ABAC) for web services,” Proceedings - 2005 IEEE International Conference on Web Services, ICWS 2005, vol. 2005, pp. 561–569, 2005, doi: 10.1109/ICWS.2005.25.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. R. S. Fabry, “Capability-Based Addressing,” Commun ACM, vol. 17, no. 7, pp. 403–412, 1974, doi: 10.1145/361011.361070.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. V. C. Hu, A. R. Friedman, A. J. Lang, M. M. Cogdell, K. Scarfone, and R. Kuhn, “Guide to Attribute Based Access Control ( ABAC ) Definition and Considerations ( Draft ),” 2013.Google ScholarGoogle Scholar
  28. J. B. Dennis and E. C. van Horn, “Programming Semantics for Multiprogrammed Computations,” Commun ACM, vol. 26, no. 1, pp. 29–35, 1983, doi: 10.1145/357980.357993.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. M. Levy, Capability-Based Computer Systems. 1984.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. D. Rotondi and C. Seccia, “Access Control & IoT: Capability Based Authorization Access Control System,” pp. 1–15, 2011.Google ScholarGoogle Scholar
  31. K. I. Kim, W. G. Choi, E. J. Lee, and U. M. Kim, “RBAC-Based Access Control for privacy protection in pervasive environments,” Proceedings of the 3rd International Conference on Ubiquitous Information Management and Communication, ICUIMC’09, pp. 255–259, 2009, doi: 10.1145/1516241.1516285.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. C. Chen, “A cooperative RBAC-based IoTs server with trust evaluation mechanism,” in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Springer International Publishing, 2018, pp. 36–42. doi: 10.1007/978-3-030-00410-1_5.Google ScholarGoogle Scholar
  33. B. Bezawada, K. Haefner, and I. Ray, “Securing home IoT environments with attribute-based access control,” ABAC 2018 - Proceedings of the 3rd ACM Workshop on Attribute-Based Access Control, Co-located with CODASPY 2018, vol. 2018-Janua, pp. 43–53, 2018, doi: 10.1145/3180457.3180464.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. S. Antonio and R. Sandhu, “ABAC-CC: Attribute-Based Access Control and Communication Control for Internet of Things,” pp. 203–212, 2020.Google ScholarGoogle Scholar
  35. A. L. M. Neto, Y. L. Pereira, A. L. F. Souza, I. Cunha, and L. B. Oliveira, “Demo Abstract: Attributed-Based Authentication and Access Control for IoT Home Devices,” Proceedings - 17th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2018, pp. 112–113, 2018, doi: 10.1109/IPSN.2018.00019.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security approach to manage access control in the Internet of Things,” Math Comput Model, vol. 58, no. 5–6, pp. 1189–1205, 2013, doi: 10.1016/j.mcm.2013.02.006.Google ScholarGoogle ScholarCross RefCross Ref
  37. K. Sarwar, S. Yongchareon, and J. Yu, “A brief survey on IoT privacy: Taxonomy, issues and future trends,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2019, pp. 208–219. doi: 10.1007/978-3-030-17642-6_18.Google ScholarGoogle Scholar
  38. Q. Kong, R. Lu, M. Ma, and H. Bao, “A privacy-preserving sensory data sharing scheme in Internet of Vehicles,” Future Generation Computer Systems, vol. 92, pp. 644–655, Mar. 2019, doi: 10.1016/j.future.2017.12.003.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Xiong, R. Bi, Y. Tian, X. Liu, and D. Wu, “Toward Lightweight, Privacy-Preserving Cooperative Object Classification for Connected Autonomous Vehicles,” IEEE Internet Things J, vol. 9, no. 4, pp. 2787–2801, Feb. 2022, doi: 10.1109/JIOT.2021.3093573.Google ScholarGoogle ScholarCross RefCross Ref
  40. M. Chanson, A. Bogner, D. Bilgeri, E. Fleisch, and F. Wortmann, “Blockchain for the IoT: Privacy-preserving protection of sensor data,” J Assoc Inf Syst, vol. 20, no. 9, pp. 1271–1307, 2019, doi: 10.17705/1jais.00567.Google ScholarGoogle Scholar
  41. Q. Kong, L. Su, and M. Ma, “Achieving Privacy-Preserving and Verifiable Data Sharing in Vehicular Fog with Blockchain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, pp. 4889–4898, Aug. 2021, doi: 10.1109/TITS.2020.2983466.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. P. Mahalle, S. Babar, N. R. Prasad, and R. Prasad, “Identity management framework towards Internet of Things (IoT): Roadmap and key challenges,” Communications in Computer and Information Science, vol. 89 CCIS, pp. 430–439, 2010, doi: 10.1007/978-3-642-14478-3_43.Google ScholarGoogle ScholarCross RefCross Ref
  43. S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Information Systems Frontiers, vol. 17, no. 2, pp. 243–259, 2015, doi: 10.1007/s10796-014-9492-7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013, doi: 10.1016/j.future.2013.01.010.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. E. Borgia, “The internet of things vision: Key features, applications and open issues,” Comput Commun, vol. 54, pp. 1–31, 2014, doi: 10.1016/j.comcom.2014.09.008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols and Applications,” IEEE Communications Surveys & Tutorials, vol. PP, no. 99, pp. 1–1, 2015, doi: 10.1109/COMST.2015.2444095.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. L. Farhan, S. T. Shukur, A. E. Alissa, M. Alrweg, U. Raza, and R. Kharel, “A survey on the challenges and opportunities of the Internet of Things (IoT),” Proceedings of the International Conference on Sensing Technology, ICST, vol. 2017-Decem, pp. 1–5, 2017, doi: 10.1109/ICSensT.2017.8304465.Google ScholarGoogle ScholarCross RefCross Ref
  48. M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open challenges,” Future Generation Computer Systems, vol. 82, pp. 395–411, 2018, doi: 10.1016/j.future.2017.11.022.Google ScholarGoogle ScholarCross RefCross Ref
  49. M. Samaniego and R. Deters, “Blockchain as a Service for IoT,” in 2016 IEEE International Conference on Internet of Things; IEEE Green Computing and Communications; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, 2017, pp. 433–436. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.102.Google ScholarGoogle Scholar
  50. M. Samaniego and R. Deters, “Using Blockchain to push Software-Defined IoT Components onto Edge Hosts,” in Proceedings of the International Conference on Big Data and Advanced Wireless Technologies, 2016, p. 58. doi: 10.1145/3010089.3016027.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. M. Samaniego, “Virtual Resources & Internet of Things,” University of Saskatchewan, 2016.Google ScholarGoogle Scholar
  52. G. Ayoade, V. Karande, L. Khan, and K. Hamlen, “Decentralized IoT data management using blockchain and trusted execution environment,” Proceedings - 2018 IEEE 19th International Conference on Information Reuse and Integration for Data Science, IRI 2018, pp. 15–22, 2018, doi: 10.1109/IRI.2018.00011.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. L. Fan, G. B. Burke, J. R. Gil-Garcia, X. Hong, and D. Werthmuller, “Investigating Blockchain as a data management tool for IoT devices in smart city initiatives,” ACM International Conference Proceeding Series, pp. 5–6, 2018, doi: 10.1145/3209281.3209391.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. J. Thakker, I. Chang, and Y. Park, “Secure data management in internet-of-things based on blockchain,” Digest of Technical Papers - IEEE International Conference on Consumer Electronics, vol. 2020-Janua, 2020, doi: 10.1109/ICCE46568.2020.9042998.Google ScholarGoogle Scholar
  55. Y. Hasegawa and H. Yamamoto, “Highly reliable IoT data management platform using blockchain and transaction data analysis,” Digest of Technical Papers - IEEE International Conference on Consumer Electronics, vol. 2020-Janua, 2020, doi: 10.1109/ICCE46568.2020.9042994.Google ScholarGoogle Scholar
  56. V. K. C. Ramesh, Y. Kim, and J. Y. Jo, “Secure IoT Data Management in a Private Ethereum Blockchain,” Proceedings - 2020 IEEE 44th Annual Computers, Software, and Applications Conference, COMPSAC 2020, pp. 369–375, 2020, doi: 10.1109/COMPSAC48688.2020.0-219.Google ScholarGoogle ScholarCross RefCross Ref
  57. H. Cui, Z. Chen, Y. Xi, H. Chen, and J. Hao, “IoT data management and lineage traceability: A blockchain-based solution,” 2019 IEEE/CIC International Conference on Communications Workshops in China, ICCC Workshops 2019, pp. 239–244, 2019, doi: 10.1109/ICCChinaW.2019.8849969.Google ScholarGoogle ScholarCross RefCross Ref
  58. Y. Jiang, C. Wang, Y. Wang, and L. Gao, “A cross-chain solution to integrating multiple blockchains for IoT data management,” Sensors (Switzerland), vol. 19, no. 9, pp. 1–18, 2019, doi: 10.3390/s19092042.Google ScholarGoogle ScholarCross RefCross Ref
  59. M. Zhaofeng, W. Xiaochang, D. K. Jain, H. Khan, G. Hongmin, and W. Zhen, “A Blockchain-Based Trusted Data Management Scheme in Edge Computing,” IEEE Trans Industr Inform, vol. 16, no. 3, pp. 2013–2021, 2020, doi: 10.1109/TII.2019.2933482.Google ScholarGoogle ScholarCross RefCross Ref
  60. H. T. T. Truong, M. Almeida, G. Karame, and C. Soriente, “Towards secure and decentralized sharing of IoT data,” Proceedings - 2019 2nd IEEE International Conference on Blockchain, Blockchain 2019, pp. 176–183, 2019, doi: 10.1109/Blockchain.2019.00031.Google ScholarGoogle ScholarCross RefCross Ref
  61. M. Laurent, N. Kaaniche, C. Le, and M. vander Plaetse, “A blockchain based access control scheme,” ICETE 2018 - Proceedings of the 15th International Joint Conference on e-Business and Telecommunications, vol. 2, no. July, pp. 168–176, 2018, doi: 10.5220/0006855601680176.Google ScholarGoogle Scholar
  62. Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and Federated Learning for Privacy-Preserved Data Sharing in Industrial IoT,” IEEE Trans Industr Inform, vol. 16, no. 6, pp. 4177–4186, 2020, doi: 10.1109/TII.2019.2942190.Google ScholarGoogle ScholarCross RefCross Ref
  63. A. Manzoor, M. Liyanage, A. Braeken, S. S. Kanhere, and M. Ylianttila, “Blockchain based proxy re-encryption scheme for secure IoT data sharing,” ArXiv, pp. 99–103, 2018.Google ScholarGoogle Scholar
  64. H. Si, C. Sun, Y. Li, H. Qiao, and L. Shi, “IoT information sharing security mechanism based on blockchain technology,” Future Generation Computer Systems, vol. 101, pp. 1028–1040, 2019, doi: 10.1016/j.future.2019.07.036.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. T. Sultana, A. Almogren, M. Akbar, M. Zuair, I. Ullah, and N. Javaid, “Data sharing system integrating access control mechanism using blockchain-based smart contracts for IoT devices,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020, doi: 10.3390/app10020488.Google ScholarGoogle Scholar
  66. C. H. Liu, Q. Lin, and S. Wen, “Blockchain-enabled data collection and sharing for industrial iot with deep reinforcement learning,” IEEE Trans Industr Inform, vol. 15, no. 6, pp. 3516–3526, 2019, doi: 10.1109/TII.2018.2890203.Google ScholarGoogle ScholarCross RefCross Ref
  67. M. A. Rahman, M. M. Rashid, M. Shamim Hossain, E. Hassanain, M. F. Alhamid, and M. Guizani, “Blockchain and IoT-Based Cognitive Edge Framework for Sharing Economy Services in a Smart City,” IEEE Access, vol. 7, pp. 18611–18621, 2019, doi: 10.1109/ACCESS.2019.2896065.Google ScholarGoogle ScholarCross RefCross Ref
  68. K. O. B. O. Agyekum , “A secured proxy-based data sharing module in IoT environments using blockchain,” Sensors (Switzerland), vol. 19, no. 5, pp. 1–20, 2019, doi: 10.3390/s19051235.Google ScholarGoogle Scholar
  69. I. Yaqoob, K. Salah, R. Jayaraman, and Y. Al-Hammadi, “Blockchain for healthcare data management: opportunities, challenges, and future recommendations,” Neural Comput Appl, vol. 0123456789, 2021, doi: 10.1007/s00521-020-05519-w.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. H. Wang, “IoT based Clinical Sensor Data Management and Transfer using Blockchain Technology,” Journal of ISMAC, vol. 2, no. 3, pp. 154–159, 2020, doi: 10.36548/jismac.2020.3.003.Google ScholarGoogle ScholarCross RefCross Ref
  71. X. Zheng, J. Lu, S. Sun, and D. Kiritsis, Decentralized Industrial IoT Data Management Based on Blockchain and IPFS, vol. 592 IFIP. Springer International Publishing, 2020. doi: 10.1007/978-3-030-57997-5_26.Google ScholarGoogle ScholarCross RefCross Ref
  72. M. Singh, Blockchain Technology for Data Management in Industry 4.0. Springer Singapore, 2020. doi: 10.1007/978-981-15-1137-0_3.Google ScholarGoogle ScholarCross RefCross Ref
  73. M. Samaniego and R. Deters, “Internet of Smart Things - IoST: Using Blockchain and CLIPS to Make Things Autonomous,” Proceedings - 2017 IEEE 1st International Conference on Cognitive Computing, ICCC 2017, pp. 9–16, 2017, doi: 10.1109/IEEE.ICCC.2017.9.Google ScholarGoogle ScholarCross RefCross Ref
  74. M. Samaniego and R. Deters, “Zero-trust hierarchical management in IoT,” in Proceedings - 2018 IEEE International Congress on Internet of Things, ICIOT 2018 - Part of the 2018 IEEE World Congress on Services, Institute of Electrical and Electronics Engineers Inc., Sep. 2018, pp. 88–95. doi: 10.1109/ICIOT.2018.00019.Google ScholarGoogle ScholarCross RefCross Ref
  75. M. Samaniego and R. Deters, “Virtual Resources & Blockchain for Configuration Management in IoT,” Journal of Ubiquitous Systems & Pervasive Networks, vol. 9, no. 2, pp. 1–13, 2017, doi: 10.5383/JUSPN.09.02.001.Google ScholarGoogle ScholarCross RefCross Ref
  76. M. Samaniego and R. Deters, “Management and Internet of Things,” Procedia Comput Sci, vol. 94, no. MobiSPC, pp. 137–143, 2016, doi: 10.1016/j.procs.2016.08.022.Google ScholarGoogle ScholarCross RefCross Ref
  77. M. Samaniego and R. Deters, “Supporting IoT Multi-Tenancy on Edge-Devices,” in The 9th IEEE International Conference on Internet of Things (iThings-2016), 2016, pp. 1–8.Google ScholarGoogle ScholarCross RefCross Ref
  78. M. Samaniego and R. Deters, “Detecting Suspicious Transactions in IoT Blockchains for Smart Living Spaces,” Springer International Publishing, 2019, pp. 364–377. doi: 10.1007/978-3-030-19945-6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar, and M. Imran, “Blockchain for Digital Twins: Recent Advances and Future Research Challenges,” IEEE Netw, vol. 34, no. 5, pp. 290–298, Sep. 2020, doi: 10.1109/MNET.001.1900661.Google ScholarGoogle ScholarCross RefCross Ref
  80. P. Raj, “Empowering digital twins with blockchain,” in Advances in Computers, Academic Press Inc., 2021, pp. 267–283. doi: 10.1016/bs.adcom.2020.08.013.Google ScholarGoogle Scholar
  81. S. Suhail , “Blockchain-Based Digital Twins: Research Trends, Issues, and Future Challenges,” ACM Comput Surv, vol. 54, no. 11s, pp. 1–34, Jan. 2022, doi: 10.1145/3517189.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. T. Fredrich, “What is REST?” http://www.restapitutorial.com/lessons/whatisrest.html (accessed Oct. 26, 2016).Google ScholarGoogle Scholar
  83. L. Edwards, “The Problem with Privacy: a modest proposal,” International Review of Law, Computers & Technology, vol. 18, no. 3, pp. 313–344, 2004, doi: 10.1080/1360086042000276762.Google ScholarGoogle ScholarCross RefCross Ref
  84. Golang.org, “The Go Programming Language,” 2016. https://golang.org/pkg/crypto/rsa/#example_EncryptOAEP (accessed Aug. 12, 2017).Google ScholarGoogle Scholar
  85. Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” Jun. 2014. doi: 10.17487/rfc7252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. R. Fielding and J. Reschke, Eds., “Hypertext Transfer Protocol: Message Syntax and Routing,” Jun. 2014. doi: 10.17487/rfc7230.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. “The Solidity Contract-Oriented Programming Language.” https://github.com/ethereum/solidity (accessed Mar. 17, 2023).Google ScholarGoogle Scholar
  88. L. Hollander, “Understanding event logs on the Ethereum blockchain,” 2020. https://medium.com/mycrypto/understanding-event-logs-on-the-ethereum-blockchain-f4ae7ba50378 (accessed Dec. 11, 2022).Google ScholarGoogle Scholar
  89. “web3.js.” https://web3js.readthedocs.io/en/1.0/ (accessed Jun. 19, 2019).Google ScholarGoogle Scholar
  90. “About Node.js.” https://nodejs.org/en/about (accessed Jul. 30, 2022).Google ScholarGoogle Scholar
  91. M. Samaniego and R. Deters, “Hosting Virtual IoT Resources on Edge-Hosts with Blockchain,” in Computer and Information Technology (CIT), 2016 IEEE International Conference on, 2016, pp. 116–119. doi: 10.1109/CIT.2016.71.Google ScholarGoogle ScholarCross RefCross Ref
  92. M. Samaniego and R. Deters, “Pushing Software-Defined Blockchain Components onto Edge Hosts,” Proceedings of the 52nd Hawaii International Conference on System Sciences, pp. 7079–7086, 2019, doi: 10.24251/hicss.2019.849.Google ScholarGoogle ScholarCross RefCross Ref
  93. L. De Camargo Silva, M. Samaniego, and R. Deters, “IoT and Blockchain for Smart Locks,” in 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), IEEE, 2019, pp. 262–269.Google ScholarGoogle Scholar
  94. “Proof-of-Work (POW).” https://ethereum.org/en/developers/docs/consensus-mechanisms/pow/ (accessed Jul. 30, 2022).Google ScholarGoogle Scholar
  95. “Proof-of-Stake (POS).” https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/ (accessed Jul. 30, 2022).Google ScholarGoogle Scholar
  96. “Proof of Authority.” https://medium.com/coinmonks/proof-of-authority-ac34f1b3a2c2 (accessed Jul. 30, 2022).Google ScholarGoogle Scholar
  97. “An Introduction to PBFT Consensus Algorithm.” https://medium.com/tronnetwork/an-introduction-to-pbft-consensus-algorithm-11cbd90aaec (accessed Jul. 30, 2022).Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    BSCI '23: Proceedings of the 5th ACM International Symposium on Blockchain and Secure Critical Infrastructure
    July 2023
    159 pages
    ISBN:9798400701986
    DOI:10.1145/3594556

    Copyright © 2023 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 September 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate44of12submissions,367%
  • Article Metrics

    • Downloads (Last 12 months)126
    • Downloads (Last 6 weeks)14

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format