skip to main content
10.1145/3594739.3610797acmconferencesArticle/Chapter ViewAbstractPublication PagesubicompConference Proceedingsconference-collections
abstract

Unsupervised Diffusion Model for Sensor-based Human Activity Recognition

Published:08 October 2023Publication History

ABSTRACT

Recognizing human activities from sensor data is a vital task in various domains, but obtaining diverse and labeled sensor data remains challenging and costly. In this paper, we propose an unsupervised statistical feature-guided diffusion model for sensor-based human activity recognition. The proposed method aims to generate synthetic time-series sensor data without relying on labeled data, addressing the scarcity and annotation difficulties associated with real-world sensor data. By conditioning the diffusion model on statistical information such as mean, standard deviation, Z-score, and skewness, we generate diverse and representative synthetic sensor data. We conducted experiments on public human activity recognition datasets and compared the proposed method to conventional oversampling methods and state-of-the-art generative adversarial network methods. The experimental results demonstrate that the proposed method can improve the performance of human activity recognition and outperform existing techniques.

Index Terms

  1. Unsupervised Diffusion Model for Sensor-based Human Activity Recognition

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        UbiComp/ISWC '23 Adjunct: Adjunct Proceedings of the 2023 ACM International Joint Conference on Pervasive and Ubiquitous Computing & the 2023 ACM International Symposium on Wearable Computing
        October 2023
        822 pages
        ISBN:9798400702006
        DOI:10.1145/3594739

        Copyright © 2023 Owner/Author

        Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 8 October 2023

        Check for updates

        Qualifiers

        • abstract
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate764of2,912submissions,26%

        Upcoming Conference

      • Article Metrics

        • Downloads (Last 12 months)188
        • Downloads (Last 6 weeks)23

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format