skip to main content
research-article

A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications

Published:19 June 2023Publication History
Skip Abstract Section

Abstract

In the Industrial Internet of Things (i.e., IIoT), the standardization of open technologies and protocols has achieved seamless data exchange between machines and other physical systems from different manufacturers. At the MAC sublayer, the industry-standard protocols IEEE 802.15.4 Time Slot Channel Hopping (TSCH) and Deterministic and Synchronous Multi-channel Extension (DSME) show promising properties for high adaptability and dynamically changing traffic. However, performance comparison between these MAC protocols rarely has gone beyond a simulation phase. This work presents the results of such a comparison on physically deployed networks using the facilities of the FIT-IoTLab. The evaluation includes fully implementing an IIoT protocol stack based on MQTT in Contiki-NG. It comprises the integration of DSME as part of Contiki-NG’s software stack through OpenDSME, the only publicly available implementation of DSME. Results show that both protocols suit IIoT applications, particularly for data collection. The comparison between TSCH and DSME also includes an evaluation of distributed schedulers for both MAC modes and one autonomous scheduler for TSCH within a UDP protocol stack.

REFERENCES

  1. [1] Adjih Cédric, Baccelli Emmanuel, Fleury Eric, Harter Gaetan, Mitton Nathalie, Noel Thomas, Pissard-Gibollet Roger, Saint-Marcel Frédéric, Schreiner Guillaume, Vandaele Julien, and Watteyne Thomas. 2015. FIT IoT-LAB: A large scale open experimental IoT testbed. Retrieved from https://hal.inria.fr/hal-01213938.Google ScholarGoogle Scholar
  2. [2] Åkerberg Johan, Gidlund Mikael, and Björkman Mats. 2011. Future research challenges in wireless sensor and actuator networks targeting industrial automation. In 9th IEEE International Conference on Industrial Informatics. IEEE, 410415.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Alderisi Giuliana, Patti Gaetano, Mirabella Orazio, and Bello Lucia Lo. 2015. Simulative assessments of the IEEE 802.15.4e DSME and TSCH in realistic process automation scenarios. In IEEE 13th International Conference on Industrial Informatics (INDIN). 948955.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Alexander Roger, Brandt Anders, Vasseur J. P., Hui Jonathan, Pister Kris, Thubert Pascal, Levis P., Struik Rene, Kelsey Richard, and Winter Tim. 2012. RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks. RFC 6550. (Mar.2012). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Ansari Danish Bilal, Rehman A. Ur, and Ali R.. 2018. Internet of things (IOT) protocols: A brief exploration of MQTT and CoAP. Int. J. Comput. Applic. 179, 27 (2018), 914.Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Malti Bansal and Priya. 2021. Performance Comparison of MQTT and CoAP Protocols in Different Simulation Environments. In Inventive Communication and Computational Technologies, G. Ranganathan, Joy Chen, and Álvaro Rocha (Eds.). Springer Singapore, Singapore, 549–560.Google ScholarGoogle Scholar
  7. [7] Boyes Hugh, Hallaq Bil, Cunningham Joe, and Watson Tim. 2018. The industrial internet of things (IIoT): An analysis framework. Comput. Industr. 101 (2018), 112. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Chang Tengfei, Vucinic Malisa, Vilajosana Xavier, Duquennoy Simon, and Dujovne Diego. 2019. 6TiSCH minimal scheduling function (MSF). Internet Eng. Task Force, Internet-Draft draft-ietf-6tischmsf-02 (2019).Google ScholarGoogle Scholar
  9. [9] Tengfei Chang, Mališa Vučinić, Xavier Vilajosana, Simon Duquennoy, and Diego Roberto Dujovne. 2021. 6TiSCH Minimal Scheduling Function (MSF). RFC 9033. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Chen Deji, Nixon Mark, Han Song, Mok Aloysius K., and Zhu Xiuming. 2014. WirelessHART and IEEE 802.15.4e. In IEEE International Conference on Industrial Technology (ICIT). 760765. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Choudhury Nikumani, Matam Rakesh, Mukherjee Mithun, and Lloret Jaime. 2020. A performance-to-cost analysis of IEEE 802.15.4 MAC with 802.15.4e MAC modes. IEEE Access 8 (2020), 4193641950.Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Guglielmo Domenico De, Brienza Simone, and Anastasi Giuseppe. 2016. IEEE 802.15.4e: A survey. Comput. Commun. 88 (2016), 124. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Elsts Atis, Kim Seohyang, Kim Hyung-Sin, and Kim Chongkwon. 2020. An empirical survey of autonomous scheduling methods for TSCH. IEEE Access 8 (2020), 6714767165. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Fafoutis Xenofon, Elsts Atis, Oikonomou George, Piechocki Robert, and Craddock Ian. 2018. Adaptive static scheduling in IEEE 802.15.4 TSCH networks. In IEEE 4th World Forum on Internet of Things (WF-IoT). IEEE, 263268.Google ScholarGoogle Scholar
  15. [15] Fahmy Hossam Mahmoud Ahmad. 2016. Protocol Stack of WSNs. Springer Singapore, 5568. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Frotzscher Andreas, Wetzker Ulf, Bauer Matthias, Rentschler Markus, Beyer Matthias, Elspass Stefan, and Klessig Henrik. 2014. Requirements and current solutions of wireless communication in industrial automation. In IEEE International Conference on Communications Workshops (ICC). IEEE, 6772.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Grossman Ethan, Gunther Craig, Thubert Pascal, Wetterwald Patrick, Raymond Jean, Korhonen Jouni, Kaneko Yu, Das Subir, Zha Yiyong, Varga Balazs, et al. 2019. Deterministic networking use cases. RFC 8578 (2019).Google ScholarGoogle Scholar
  18. [18] Hazra Abhishek, Adhikari Mainak, Amgoth Tarachand, and Srirama Satish Narayana. 2021. A comprehensive survey on interoperability for IIoT: Taxonomy, standards, and future directions. ACM Comput. Surv. 55, 1 (Nov.2021). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [19] Jonathan Hui and Pascal Thubert. 2011. Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks. RFC 6282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. [20] Jeong Seungbeom, Kim Hyung-Sin, Paek Jeongyeup, and Bahk Saewoong. 2020. OST: On-demand TSCH scheduling with traffic-awareness. In IEEE Conference on Computer Communications. IEEE, 6978.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. [21] Juc Iacob, Alphand Olivier, Guizzetti Roberto, Favre Michel, and Duda Andrzej. 2016. Energy consumption and performance of IEEE 802.15.4e TSCH and DSME. In IEEE Wireless Communications & Networking Conference17.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. [22] Kauer Florian. 2019. Scalable Wireless Multi-Hop Networks for Industrial Applications. Doctoral thesis. Hamburg University of Technology. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Kauer Florian, Köstler Maximilian, Lübkert Tobias, and Turau Volker. 2016. Formal analysis and verification of the IEEE 802.15.4 DSME slot allocation. In 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 140147.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Kauer Florian, Köstler Maximilian, Lübkert Tobias, and Turau Volker. 2017. OpenDSME-A portable framework for reliable wireless sensor and actuator networks. In International Conference on Networked Systems (NetSys). IEEE, 12.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Kauer Florian and Turau Volker. 2018. Constructing customized multi-hop topologies in dense wireless network testbeds. In Ad-hoc, Mobile, and Wireless Networks, Montavont Nicolas and Papadopoulos Georgios Z. (Eds.). Springer International Publishing, Cham, 319331.Google ScholarGoogle Scholar
  26. [26] Kim Seohyang, Kim Hyung-Sin, and Kim Chongkwon. 2019. ALICE: Autonomous link-based cell scheduling for TSCH. In 18th International Conference on Information Processing in Sensor Networks. 121132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Kim Seohyang, Kim Hyung-Sin, and Kim Chongkwon. 2020. ALICE-on-Contiki-NG. Retrieved from https://github.com/skimskimskim/ALICE-on-Contiki-NG.git.Google ScholarGoogle Scholar
  28. [28] Kurniawan Agus. 2018. Practical Contiki-NG: Programming for Wireless Sensor Networks (1st ed.). Apress, USA.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Kurunathan Harrison, Severino Ricardo, Koubaa Anis, and Tovar Eduardo. 2016. Towards worst-case bounds analysis of the IEEE 802.15.4e. In 22nd IEEE Real-time Embedded Technology & Applications Symposium: Work in Progress Session.Google ScholarGoogle Scholar
  30. [30] Kurunathan Harrison, Severino Ricardo, Koubaa Anis, and Tovar Eduardo. 2018. IEEE 802.15.4e in a nutshell: Survey and performance evaluation. IEEE Commun. Surv. Tutor. 20, 3 (2018), 19892010.Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Kurunathan Harrison, Severino Ricardo, Koubâa Anis, and Tovar Eduardo. 2019. DynaMO—dynamic multisuperframe tuning for adaptive IEEE 802.15.4e DSME networks. IEEE Access 7 (2019), 122522122535.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Lasi Heiner, Fettke Peter, Kemper Hans-Georg, Feld Thomas, and Hoffmann Michael. 2014. Industry 4.0. Busin. Inf. Syst. Eng. 6, 4 (2014), 239242.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Lityagin Alexander. 2021. contiki-ng. Retrieved from https://github.com/alexrayne/contiki-ng.git.Google ScholarGoogle Scholar
  34. [34] Meyer Florian, Gonzalez Ivonne Andrea Mantilla, and Turau Volker. 2020. New CAP reduction mechanisms for IEEE 802.15.4 DSME to support fluctuating traffic in IoT systems. In 19th International Conference on Ad Hoc Networks and Wireless (AdHoc-Now’20). Springer, 159179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Meyer Florian, Gonzalez Ivonne Andrea Mantilla, Kauer Florian, and Turau Volker. 2019. Performance analysis of the slot allocation handshake in IEEE 802.15.4 DSME. In Ad-Hoc, Mobile, and Wireless Networks. Springer, 102117.Google ScholarGoogle Scholar
  36. [36] Mohamadi Mohamed, Senouci Mustapha, and Djamaa Badis. 2018. Industrial internet of things over IEEE 802.15.4 TSCH networks: Design and challenges. Int. J. Internet Technol. Secur. Trans. (052018), 120. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Montenegro Gabriel, Kushalnagar Nandakishore, Hui Jonathan, Culler David, et al. 2007. Transmission of IPv6 packets over IEEE 802.15.4 networks. Internet Propos. Stand. RFC 4944 (2007), 130.Google ScholarGoogle Scholar
  38. [38] Municio Esteban, Daneels Glenn, Vučinić Mališa, Latré Steven, Famaey Jeroen, Tanaka Yasuyuki, Brun Keoma, Muraoka Kazushi, Vilajosana Xavier, and Watteyne Thomas. 2019. Simulating 6TiSCH networks. Trans. Emerg. Telecommun. Technol. 30 (032019). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Noura Mahda, Atiquzzaman Mohammed, and Gaedke Martin. 2019. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw. Applic. 24, 3 (2019), 796809.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Osman Mohamed and Nabki Frederic. 2021. OSCAR: An optimized scheduling cell allocation algorithm for convergecast in IEEE 802.15. 4e TSCH networks. Sensors 21, 7 (2021), 2493.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Ovsthus Knut, Kristensen Lars M., et al. 2014. An industrial perspective on wireless sensor networks—A survey of requirements, protocols, and challenges. IEEE Commun. Surv. Tutor. 16, 3 (2014), 13911412.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Palattella Maria Rita, Accettura Nicola, Vilajosana Xavier, Watteyne Thomas, Grieco Luigi Alfredo, Boggia Gennaro, and Dohler Mischa. 2012. Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tutor. 15, 3 (2012), 13891406.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Petersen Stig and Carlsen Simon. 2011. WirelessHART versus ISA100.11a: The format war hits the factory floor. IEEE Industr. Electron. Mag. 5, 4 (2011), 2334.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Roger Pissard-Gibollet, Eric Fleury, Gaëtan Harter, Olivier Fambon, Frédéric Saint-Marce. 2014. FIT IoT-LAB Tutorial: Hands-On Practice with a Very Large Scale Testbed Tool for the Internet of Things. In 10èmes journées francophones Mobilité et Ubiquité (UbiMob’14). https://ubimob2014.sciencesconf.org/42780/FIT_IoT_Lab_Roger_Pissard.pdf.Google ScholarGoogle Scholar
  45. [45] Piyare Rajeev, Oikonomou George, and Elsts Atis. 2020. TSCH for long range low data rate applications. IEEE Access 8 (2020), 228754228766. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Righetti Francesca, Vallati Carlo, Anastasi Giuseppe, and Das Sajal. 2017. Performance evaluation the 6top protocol and analysis of its interplay with routing. In IEEE International Conference on Smart Computing (SMARTCOMP). 16.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Righetti Francesca, Vallati Carlo, Das Sajal K., and Anastasi Giuseppe. 2020. An evaluation of the 6TiSCH distributed resource management mode. ACM Trans. Internet Things 1, 4 (2020), 131.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Salam Humaira Abdus and Khan Bilal Muhammad. 2016. IWSN-standards, challenges and future. IEEE Potent. 35, 2 (2016), 916.Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Seoane Victor, Garcia-Rubio Carlos, Almenares Florina, and Campo Celeste. 2021. Performance evaluation of CoAP and MQTT with security support for IoT environments. Comput. Netw. 197 (2021), 108338.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Shelby Zach and Bormann Carsten. 2011. 6LoWPAN: The Wireless Embedded Internet. Vol. 43. John Wiley & Sons.Google ScholarGoogle Scholar
  51. [51] Shelby Zach, Chakrabarti Samita, Nordmark E., and Bormann C.. 2012. Neighbor discovery optimization for IPv6 over low-power wireless personal area networks (6LoWPANs). In RFC 6775 (2012).Google ScholarGoogle Scholar
  52. [52] Sisinni Emiliano, Saifullah Abusayeed, Han Song, Jennehag Ulf, and Gidlund Mikael. 2018. Industrial internet of things: Challenges, opportunities, and directions. IEEE Trans. Industr. Inform. 14, 11 (2018), 47244734.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Song Jianping, Han Song, Mok Al, Chen Deji, Lucas Mike, Nixon Mark, and Pratt Wally. 2008. WirelessHART: Applying wireless technology in real-time industrial process control. In IEEE Real-time and Embedded Technology and Applications Symposium. IEEE, 377386.Google ScholarGoogle Scholar
  54. [54] Standard IEEE. 2012. IEEE approved draft standard for local and metropolitan area networks part 15.4: Low rate wireless personal area networks (LR-WPANs) amendment: Physical layer (PHY) specifications for low data rate wireless smart metering utility networks. P802.15.4g/D7, November 2011 (2012), 1258.Google ScholarGoogle Scholar
  55. [55] Standard IEEE. 2020. IEEE standard for low-rate wireless networks. IEEE Std 802.15.4-2020 (Revision of IEEE Std 802.15.4-2015) (2020), 1800. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Standard OASIS. 2014. MQTT version 3.1.1, 1 (2014). Retrieved from http://docs.oasis-open.org/mqtt/mqtt/v3.Google ScholarGoogle Scholar
  57. [57] Jonathan Tournier, François Lesueur, Frédéric Le Mouël, Laurent Guyon, and Hicham Ben-Hassine. 2021. A Survey of IoT Protocols and their Security Issues through the Lens of a Generic IoT Stack. Internet of Things 16 (2021), 100264. Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Tsvetkov Tsvetko and Klein Alexander. 2011. RPL: IPv6 routing protocol for low power and lossy networks. Network 59 (2011), 5966.Google ScholarGoogle Scholar
  59. [59] Urke Andreas Ramstad, Kure Øivind, and Øvsthus Knut. 2022. A survey of 802.15.4 TSCH schedulers for a standardized industrial internet of things. Sensors 22, 1 (2022), 15.Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Varga Andras. 2010. OMNeT++. In Modeling and Tools for Network Simulation. Springer, 3559.Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Varga Liviu-Octavian, Romaniello Gabriele, Vučinić Mališa, Favre Michel, Banciu Andrei, Guizzetti Roberto, Planat Christophe, Urard Pascal, Heusse Martin, Rousseau Franck, et al. 2015. GreenNet: An energy-harvesting IP-enabled wireless sensor network. IEEE Internet Things J. 2, 5 (2015), 412426.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Vilajosana Xavier, Pister Kris, and Watteyne Thomas. 2017. Minimal IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) configuration. Internet Eng. Task Force RFC seriesRFC8180 (2017).Google ScholarGoogle Scholar
  63. [63] Vilajosana Xavier, Wang Qin, Chraim Fabien, Watteyne Thomas, Chang Tengfei, and Pister Kristofer S. J.. 2013. A realistic energy consumption model for TSCH networks. IEEE Sensors J. 14, 2 (2013), 482489.Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Vilajosana Xavier, Watteyne Thomas, Chang Tengfei, Vučinić Mališa, Duquennoy Simon, and Thubert Pascal. 2019. IETF 6TiSCH: A tutorial. IEEE Commun. Surv. Tutor. 22, 1 (2019), 595615.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Vilajosana Xavier, Watteyne Thomas, Chang Tengfei, Vučinić Mališa, Duquennoy Simon, and Thubert Pascal. 2020. IETF 6TiSCH: A tutorial. IEEE Commun. Surv. Tutor. 22, 1 (2020), 595615. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Qin Wang, Xavier Vilajosana, and Thomas Watteyne. 2018. 6TiSCH Operation Sublayer (6top) Protocol (6P). RFC 8480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [67] Thomas Watteyne, Maria Rita Palattella, and Luigi Alfredo Grieco. 2015. Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement. RFC 7554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [68] Yu Zihao, Na Xin, Boano Carlo Alberto, He Yuan, Guo Xiuzhen, Li Pengyu, and Jin Meng. 2022. SmarTiSCH: An interference-aware engine for IEEE 802.15. 4e-based networks. In 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 350362.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Comprehensive Performance Comparison of IEEE 802.15.4 DSME and TSCH in a Realistic IoT Scenario for Industrial Applications

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Article Metrics

          • Downloads (Last 12 months)499
          • Downloads (Last 6 weeks)28

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text