skip to main content
10.1145/3600160.3605166acmotherconferencesArticle/Chapter ViewAbstractPublication PagesaresConference Proceedingsconference-collections
research-article

Simulated environment for multiparty quantum digital signature across the network

Published: 29 August 2023 Publication History

Abstract

With the quantum computational paradigm rapidly developing across the world, new vulnerabilities on currently deployed cryptography protocols are to be taken in consideration. A possible answer to said vulnerabilities is using quantum technologies on cryptography. For a quantum-assisted cryptography protocol, key pairs can be generated via quantum state measurements. This protocol is known as quantum key distribution, of extended use for providing security against any algorithm-based attack to the keys. Ensured the key protection against eavesdroppers, a QKD-assisted protocol can focus its security analysis on party behaviour. Depending on the protocol rules and steps to follow, users can attempt attacks on it with the purpose of causing disagreement or misunderstanding between parties. In this work, we present a simulation environment for a hybrid, quantum-assisted digital signature (QDS) protocol. The configurations available for the simulated network as well as the digital signature protocol make it possible to design specific communication scenarios, such as attacks on the message integrity, forging and repudiation attempts or noisy communication across the quantum channels.

References

[1]
2021. Efficient quantum digital signatures without symmetrization step.Optics Express 29, 7 (2021), 10162–10171. https://doi.org/10.1364/OE.420667
[2]
Alejandro Aguado, Victor Lopez, Jesus Martinez-Mateo, Momtchil Peev, Diego Lopez, and Vicente Martin. 2018. Virtual network function deployment and service automation to provide end-to-end quantum encryption. Journal of Optical Communications and Networking 10, 4 (2018), 421–430. https://doi.org/10.1364/JOCN.10.000421
[3]
Ryan Amiri, Petros Wallden, Adrian Kent, and Erika Andersson. 2016. Secure quantum signatures using insecure quantum channels. Physical Review A 93, 3 (2016), 032325.
[4]
Charles H. Bennett and Gilles Brassard. 2014. Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science 560 (2014), 7–11. https://doi.org/10.1016/j.tcs.2014.05.025 Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84.
[5]
Davide Castelvecchi. 2018. The quantum internet has arrived (and it hasn’t). Nature 554 (2018), 289–292.
[6]
Yu-Ao Chen, Qiang Zhang, Teng-Yun Chen, Wen-Qi Cai, Sheng-Kai Liao, Jun Zhang, Kai Chen, Juan Yin, Ji-Gang Ren, Zhu Chen, Sheng-Long Han, Qing Yu, Ken Liang, Fei Zhou, Xiao Yuan, and Mei-Sh. 2021. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 7841 (January 2021), 214–219. https://doi.org/10.1038/s41586-020-03093-
[7]
Alex Ciurana, Vicente Martín, Jesús Martínez-Mateo, Bernhard Schrenk, Momtchil Peev, and Andreas Poppe. 2014. Entanglement Distribution in Optical Networks. IEEE Journal of Selected Topics in Quantum Electronics 21 (2014), 37–48.
[8]
Alex Ciurana, Jesús Martínez-Mateo, Momtchil Peev, Andreas Poppe, Nino Walenta, Hugo Zbinden, and Vicente Martín. 2013. Quantum Metropolitan Optical Network based on Wavelength Division Multiplexing. Optics express 22 2 (2013), 1576–93.
[9]
Robert J. Collins, Ross J. Donaldson, Vedran Dunjko, Petros Wallden, Patrick J. Clarke, Erika Andersson, John Jeffers, and Gerald S. Buller. 2014. Realization of Quantum Digital Signatures without the Requirement of Quantum Memory. Phys. Rev. Lett. 113 (Jul 2014), 040502. Issue 4. https://doi.org/10.1103/PhysRevLett.113.040502
[10]
Tim Coopmans, Robert Knegjens, Axel Dahlberg, David Maier, Loek Nijsten, Julio de Oliveira Filho, Martijn Papendrecht, Julian Rabbie, Filip Rozpędek, Matthew Skrzypczyk, 2021. Netsquid, a network simulator for quantum information using discrete events. Communications Physics 4, 1 (2021), 164.
[11]
Rachel Courtland. 2016. China’s 2,000-km quantum link is almost complete [News]. IEEE Spectrum 53, 11 (2016), 11–12. https://doi.org/10.1109/MSPEC.2016.7607012
[12]
Vedran Dunjko, Petros Wallden, and Erika Andersson. 2014. Quantum digital signatures without quantum memory. Physical review letters 112, 4 (2014), 040502.
[13]
Artur K. Ekert. 1991. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67 (Aug 1991), 661–663. Issue 6. https://doi.org/10.1103/PhysRevLett.67.661
[14]
ETSI 2020. ETSI GS QKD 004 V2.1.1 (2020-08). Reference: RGS/QKD-004ed2_ApplIn. ETSI, 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANC.
[15]
Tiago M Fernandez-Carames and Paula Fraga-Lamas. 2020. Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE access 8 (2020), 21091–21116.
[16]
Marta Irene García Cid, Laura Ortiz Martín, David Domingo Martín, Rodrigo Martín Sánchez-Ledesma, Juan Pedro Brito Méndez, and Vicente Martín Ayuso. 2023. A Feasible Hybrid Quantum-Assisted Digital Signature for Arbitrary Message Length. arXiv e-prints (2023), arXiv–2303.
[17]
Marta Irene García Cid, Laura Ortiz Martín, and Vicente Martín Ayuso. 2021. Madrid Quantum Network: A First Step to Quantum Internet. In Proceedings of the 16th International Conference on Availability, Reliability and Security (Vienna, Austria) (ARES 21). Association for Computing Machinery, New York, NY, USA, Article 102, 7 pages. https://doi.org/10.1145/3465481.3470056
[18]
Daniel Gottesman and Isaac L. Chuang. 2001. Quantum Digital Signatures.
[19]
Frédéric Grosshans and Philippe Grangier. 2001. Continuous variable quantum cryptography using coherent states.Physical review letters 88 5 (2001), 057902.
[20]
Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866
[21]
Daniel Lancho, Jesús Martínez Mateo, David Elkouss, M. Soto, and Vicente Martin. 2009. QKD in Standard Optical Telecommunications Networks, Vol. 36. 142–149. https://doi.org/10.1007/978-3-642-11731-2_18
[22]
V Martin, A Aguado, P Salas, AL Sanz, JP Brito, Diego R Lopez, Victor López, A Pastor, J Folgueira, HH Brunner, 2019. The Madrid quantum network: a quantum-classical integrated infrastructure. In Photonic Networks and Devices. Optica Publishing Group, QtW3E–5.
[23]
Vasileios Mavroeidis, Kamer Vishi, Mateusz D. Zych, and Audun Jøsang. 2018. The Impact of Quantum Computing on Present Cryptography. ArXiv abs/1804.00200 (2018).
[24]
Sandeep Mishra, Kishore Thapliyal, S Krish Rewanth, Abhishek Parakh, and Anirban Pathak. 2022. Anonymous voting scheme using quantum assisted blockchain. arXiv preprint arXiv:2206.03182 (2022).
[25]
Rafael Trapani Possignolo and Cíntia Borges Margi. 2012. A quantum-classical hybrid architecture for security algorithms acceleration. In 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications. IEEE, 1032–1037.
[26]
Rafael Trapani Possignolo, Cintia Borges Margi, and Paulo SLM Barreto. 2015. Quantum-assisted QD-CFS signatures. J. Comput. System Sci. 81, 2 (2015), 458–467.
[27]
R. L. Rivest, A. Shamir, and L. Adleman. 1978. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 21, 2 (feb 1978), 120–126. https://doi.org/10.1145/359340.359342
[28]
M Sasaki, M Fujiwara, H Ishizuka, W Klaus, K Wakui, M Takeoka, S Miki, T Yamashita, Z Wang, A Tanaka, K Yoshino, Y Nambu, S Takahashi, A Tajima, A Tomita, T Domeki, T Hasegawa, Y Sakai, H Kobayashi, T Asai, K Shimizu, T Tokura, T Tsurumaru, M Matsui, T Honjo, K Tamaki, H Takesue, Y Tokura, JF Dynes, AR Dixon, AW Sharpe, ZL Yuan, AJ Shields, S Uchikoga, M Legré, S Robyr, P Trinkler, L Monat, J-B Page, G Ribordy, A Poppe, A Allacher, O Maurhart, T Länger, M Peev, and A Zeilinger. 2011. Field test of quantum key distribution in the Tokyo QKD Network. Optics express 19, 11 (May 2011), 10387—10409. https://doi.org/10.1364/oe.19.010387
[29]
Ryosuke Satoh, Michal Hajdušek, Naphan Benchasattabuse, Shota Nagayama, Kentaro Teramoto, Takaaki Matsuo, Sara Ayman Metwalli, Poramet Pathumsoot, Takahiko Satoh, Shigeya Suzuki, and Rodney Van Meter. 2022. QuISP: a Quantum Internet Simulation Package. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE). 353–364. https://doi.org/10.1109/QCE53715.2022.00056
[30]
P.W. Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science. 124–134. https://doi.org/10.1109/SFCS.1994.365700
[31]
Amoldeep Singh, Kapal Dev, Harun Siljak, Hem Dutt Joshi, and Maurizio Magarini. 2021. Quantum Internet—Applications, Functionalities, Enabling Technologies, Challenges, and Research Directions. IEEE Communications Surveys & Tutorials 23 (2021), 2218–2247.
[32]
Petros Wallden, Vedran Dunjko, Adrian Kent, and Erika Andersson. 2015. Quantum digital signatures with quantum-key-distribution components. Physical Review A 91, 4 (2015), 042304.
[33]
Stephanie Wehner, David Elkouss, and Ronald Hanson. 2018. Quantum internet: A vision for the road ahead. Science 362, 6412 (2018), eaam9288. https://doi.org/10.1126/science.aam9288 arXiv:https://www.science.org/doi/pdf/10.1126/science.aam9288
[34]
Xiaoliang Wu, Alexander Kolar, Joaquin Chung, Dong Jin, Tian Zhong, Rajkumar Kettimuthu, and Martin Suchara. 2021. SeQUeNCe: a customizable discrete-event simulator of quantum networks. Quantum Science and Technology 6, 4 (sep 2021), 045027. https://doi.org/10.1088/2058-9565/ac22f6
[35]
Fang Ye, Zitao Zhou, and Yibing Li. 2022. Quantum-assisted blockchain for IoT based on quantum signature. Quantum Information Processing 21 (09 2022). https://doi.org/10.1007/s11128-022-03676-6
[36]
Juan Yin, Yuan Cao, Yuhuai Li, Shengkai Liao, Liang Zhang, Ji-Gang Ren, Wenqi Cai, Weiyue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qiming Lu, Yun-Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing Jiang, Ming Li, Jianjun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang Zhang, Na Wang, Xiang-Ke Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen, Chaoyang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan. 2017. Satellite-based entanglement distribution over 1200 kilometers. Science 356 (2017), 1140 – 1144.
[37]
Yong Zhao. 2019. The integration of QKD and security services. ITU QIT4N Workshop, Shanghai, China, 5–7.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ARES '23: Proceedings of the 18th International Conference on Availability, Reliability and Security
August 2023
1440 pages
ISBN:9798400707728
DOI:10.1145/3600160
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 August 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. digital signature
  2. programming
  3. quantum cryptography
  4. quantum key distribution
  5. quantum network
  6. simulation

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • EU Horizon Europe
  • European Union, NextGenerationEU (PRTR-C17.I1) and Comunidad de Madrid, programa de acciones complementarias
  • EDIDP
  • Foundation for Science and Technology, Agence Nationale de la Recherche, and Spanish Agencia Estatal de Investigación: QuantERA II Programme, EU H2020 research and innovation program

Conference

ARES 2023

Acceptance Rates

Overall Acceptance Rate 228 of 451 submissions, 51%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 60
    Total Downloads
  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)5
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media