skip to main content
10.1145/3603555.3603562acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmundcConference Proceedingsconference-collections
research-article

AI said, She said - How Users Perceive Consumer Scoring in Practice

Published: 03 September 2023 Publication History

Abstract

As digitization continues, consumers are increasingly exposed to AI scoring decisions. However, currently lacking is a thorough understanding of how users’ misjudgments of an AI-supported system lead to it being rejected. Therefore, investigations are needed into the appropriation of such socio-technical systems in practice and how users describe their experience with algorithm-based scoring. To address this issue, we evaluated 1,003 user reviews of an app on car insurance that calculates premiums based on the consumers’ individual driving behavior. We find evidence that users develop their own folk theories to explain the algorithms with the help of situation-related experiences and that insufficient explanations lead to power asymmetries between consumers, the system, and the company. In particular, as a result of the different needs of the stakeholders, we uncover a fundamental conflict between computational risk assessment and the perceived agency to influence the score.

References

[1]
Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y. Lim, and Mohan Kankanhalli. 2018. Trends and Trajectories for Explainable, Accountable and Intelligible Systems. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, Regan Mandryk, Mark Hancock, Mark Perry, and Anna Cox (Eds.). ACM Press, New York, New York, USA, 1–18. https://doi.org/10.1145/3173574.3174156
[2]
Amina Adadi and Mohammed Berrada. 2018. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052
[3]
Fatemeh Alizadeh, Margarita Esau, Gunnar Stevens, and Lena Cassens. 2020. eXplainable AI: Take one Step Back, Move two Steps forward. https://doi.org/10.18420/muc2020-ws111-369
[4]
Oscar Alvarado, Hendrik Heuer, Vero Vanden Abeele, Andreas Breiter, and Katrien Verbert. 2020. Middle-Aged Video Consumers’ Beliefs About Algorithmic Recommendations on YouTube. Proceedings of the ACM on Human-Computer Interaction 4, CSCW2 (2020), 1–24. https://doi.org/10.1145/3415192
[5]
Sule Anjomshoae, Amro Najjar, Davide Calvaresi, and Kary Främling. 2019. Explainable Agents and Robots: Results from a Systematic Literature Review. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems(AAMAS ’19). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 1078–1088.
[6]
Dzmitry Bahdanau, Kyunghyun Cho, and Y. Bengio. 2014. Neural Machine Translation by Jointly Learning to Align and Translate. ArXiv 1409 (09 2014).
[7]
Reuben Binns, Max van Kleek, Michael Veale, Ulrik Lyngs, Jun Zhao, and Nigel Shadbolt. 2018. ’It’s Reducing a Human Being to a Percentage’. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI ’18, Regan Mandryk, Mark Hancock, Mark Perry, and Anna Cox (Eds.). ACM Press, New York, New York, USA, 1–14. https://doi.org/10.1145/3173574.3173951
[8]
Or Biran and Courtenay Cotton. 2017. Explanation and Justification in Machine Learning: A Survey.
[9]
Virginia Braun and Victoria Clarke. 2021. One size fits all? What counts as quality practice in (reflexive) thematic analysis?Qualitative Research in Psychology 18, 3 (2021), 328–352. https://doi.org/10.1080/14780887.2020.1769238 arXiv:https://doi.org/10.1080/14780887.2020.1769238
[10]
Virginia Braun and Victoria Clarke. 2022. Thematic Analysis: A Practical Guide. SAGE Publications, London, UK. https://books.google.de/books?id=25lpzgEACAAJ
[11]
Jenna Burrell. 2016. How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society 3, 1 (2016), 2053951715622512. https://doi.org/10.1177/2053951715622512
[12]
Victoria Clarke, Virginia Braun, and Nikki Hayfield. 2015. Thematic analysis. Vol. 3. SAGE Publications, London, UK, 222–248.
[13]
Henriette Cramer, Vanessa Evers, Satyan Ramlal, Maarten van Someren, Lloyd Rutledge, Natalia Stash, Lora Aroyo, and Bob Wielinga. 2008. The effects of transparency on trust in and acceptance of a content-based art recommender. User Modeling and User-Adapted Interaction 18, 5 (2008), 455–496. https://doi.org/10.1007/s11257-008-9051-3
[14]
Chester Dawson. 2018. Mitsubishi Bets People Will Reveal Their Driving Habits to Insurers—For a Freebie. The Wall Street Journal. Retrieved 11.09.2020 from https://www.wsj.com/articles/mitsubishi-bets-people-will-reveal-their-driving-habits-to-insurersfor-a-freebie-1530853415
[15]
Michael A. DeVito, Darren Gergle, and Jeremy Birnholtz. 2017. "Algorithms ruin everything". In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Gloria Mark, Susan Fussell, Cliff Lampe, m.c. Schraefel, Juan Pablo Hourcade, Caroline Appert, and Daniel Wigdor (Eds.). ACM, New York, NY, USA, 3163–3174. https://doi.org/10.1145/3025453.3025659
[16]
Pam Dixon, Robert Gellman, and World Privacy Forum. 2014. The Scoring of America: Secret Consumer Scores Threaten Your Privacy and Your Future.
[17]
Jonathan Dodge, Q. Vera Liao, Yunfeng Zhang, Rachel K. E. Bellamy, and Casey Dugan. 2019. Explaining models. In Proceedings of the 24th International Conference on Intelligent User Interfaces, Wai-Tat Fu, Shimei Pan, Oliver Brdiczka, Polo Chau, and Gaelle Calvary (Eds.). ACM, New York, NY, USA, 275–285. https://doi.org/10.1145/3301275.3302310
[18]
Chris Dolman and Dimitri Semenovich. 2018. Algorithmic Fairness: Contemporary Ideas in the Insurance Context.
[19]
David Durand. 1941. Risk Elements in Consumer Instalment Financing.
[20]
Malin Eiband, Sarah Theres Völkel, Daniel Buschek, Sophia Cook, and Heinrich Hussmann. 2019. When People and Algorithms Meet: User-Reported Problems in Intelligent Everyday Applications. In Proceedings of the 24th International Conference on Intelligent User Interfaces (Marina del Ray, California) (IUI ’19). Association for Computing Machinery, New York, NY, USA, 96–106. https://doi.org/10.1145/3301275.3302262
[21]
Motahhare Eslami. 2017. Understanding and Designing around Users’ Interaction with Hidden Algorithms in Sociotechnical Systems. In CSCW’17, Charlotte P. Lee, Steve Poltrock, Louise Barkhuus, Marcos Borges, and Wendy Kellogg (Eds.). ACM Association for Computing Machinery, New York, NY, 57–60. https://doi.org/10.1145/3022198.3024947
[22]
Motahhare Eslami, Karrie Karahalios, Christian Sandvig, Kristen Vaccaro, Aimee Rickman, Kevin Hamilton, and Alex Kirlik. 2016. First I "like" it, then I hide it. In #chi4good, Jofish Kaye, Allison Druin, Cliff Lampe, Dan Morris, and Juan Pablo Hourcade (Eds.). The Association for Computing Machinery, New York, New York, 2371–2382. https://doi.org/10.1145/2858036.2858494
[23]
Motahhare Eslami, Aimee Rickman, Kristen Vaccaro, Amirhossein Aleyasen, Andy Vuong, Karrie Karahalios, Kevin Hamilton, and Christian Sandvig. 2015. "I always assumed that I wasn’t really that close to [her]". In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM, New York, NY, USA, 153–162. https://doi.org/10.1145/2702123.2702556
[24]
Motahhare Eslami, Kristen Vaccaro, Min Kyung Lee, Amit Elazari Bar On, Eric Gilbert, and Karrie Karahalios. 2019. User Attitudes towards Algorithmic Opacity and Transparency in Online Reviewing Platforms. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, Stephen Brewster, Geraldine Fitzpatrick, Anna Cox, and Vassilis Kostakos (Eds.). ACM Press, New York, New York, USA, 1–14. https://doi.org/10.1145/3290605.3300724
[25]
Heike Felzmann, Eduard Fosch Villaronga, Christoph Lutz, and Aurelia Tamò-Larrieux. 2019. Transparency you can trust: Transparency requirements for artificial intelligence between legal norms and contextual concerns. Big Data & Society 6, 1 (2019), 205395171986054. https://doi.org/10.1177/2053951719860542
[26]
Bent Flyvbjerg. 2006. Five Misunderstandings About Case-Study Research. Qualitative Inquiry 12, 2 (2006), 219–245. https://doi.org/10.1177/1077800405284363
[27]
Robert P Gauthier, Mary Jean Costello, and James R Wallace. 2022. “I Will Not Drink With You Today”: A Topic-Guided Thematic Analysis of Addiction Recovery on Reddit. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 20, 17 pages. https://doi.org/10.1145/3491102.3502076
[28]
Anna Gentrup. 2020. Telematik-Versicherungen – "Der Autofahrer will sich überwachen lassen" | Auto & Mobil. Süddeutsche Zeitung Digitale Medien GmbH / Süddeutsche Zeitung GmbH. Retrieved 18.08.2020 from www.sz.de/1.4480973
[29]
Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. 2018. Explaining Explanations: An Overview of Interpretability of Machine Learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, Turin, Italy, 80–89. https://doi.org/10.1109/DSAA.2018.00018
[30]
Marie Goetz, Kathrin Wolter, and Michael Prilla. 2022. The Influence of Unequal Chatbot Treatment on Users in Group Chat. In Proceedings of Mensch Und Computer 2022 (Darmstadt, Germany) (MuC ’22). Association for Computing Machinery, New York, NY, USA, 297–307. https://doi.org/10.1145/3543758.3543774
[31]
Nina Grgic-Hlaca, Elissa M. Redmiles, Krishna P. Gummadi, and Adrian Weller. 2018. Human Perceptions of Fairness in Algorithmic Decision Making. In Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18, Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM Press, New York, New York, USA, 903–912. https://doi.org/10.1145/3178876.3186138
[32]
Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. 2019. A Survey of Methods for Explaining Black Box Models. Comput. Surveys 51, 5 (2019), 1–42. https://doi.org/10.1145/3236009
[33]
Emitza Guzman and Walid Maalej. 2014. How Do Users Like This Feature? A Fine Grained Sentiment Analysis of App Reviews. In 2014 IEEE 22nd International Requirements Engineering Conference (RE). IEEE, Karlskrona, Sweden, 153–162. https://doi.org/10.1109/RE.2014.6912257
[34]
Peter Handel, Isaac Skog, Johan Wahlstrom, Farid Bonawiede, Richard Welch, Jens Ohlsson, and Martin Ohlsson. 2014. Insurance Telematics: Opportunities and Challenges with the Smartphone Solution. IEEE Intelligent Transportation Systems Magazine 6, 4 (2014), 57–70. https://doi.org/10.1109/MITS.2014.2343262
[35]
Antonio J. Heras, Pierre-Charles Pradier, and David Teira. 2020. What was fair in actuarial fairness?History of the Human Sciences 33, 2 (2020), 91–114. https://doi.org/10.1177/0952695119856292
[36]
Jin-Hyuk Hong, Ben Margines, and Anind K. Dey. 2014. A smartphone-based sensing platform to model aggressive driving behaviors. In Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI ’14, Matt Jones, Philippe Palanque, Albrecht Schmidt, and Tovi Grossman (Eds.). ACM Press, New York, New York, USA, 4047–4056. https://doi.org/10.1145/2556288.2557321
[37]
Tatjana Hornle. 2004. Justice as Fairness - Ein Modell auch fur das Strafverfahren.
[38]
HUK-COBURG. 2020. Telematik Plus – Damit können Sie noch günstiger fahren, HUK-COBURG Haftpflicht-Unterstützungs-Kasse kraftfahrender Beamter Deutschlands a. G. in Coburg. HUK-COBURG Datenservice- und Dienstleistungen GmbH. Retrieved 15.09.2020 from https://www.huk.de/fahrzeuge/kfz-versicherung/telematik-plus.html
[39]
infas Institut für angewandte Sozialwissenschaft GmbH. 2018. Verbraucher-Scoring: Repräsentativbefragung zur Akzeptanz und Kenntnis über (neuartige) Scoring-Methoden.
[40]
Saurabh Jha. 2012. Punishing the Lemon: The Ethics of Actuarial Fairness. Journal of the American College of Radiology 9, 12 (2012), 887–893. https://doi.org/10.1016/j.jacr.2012.09.012 Health Insurance and the Affordable Care Act.
[41]
Amir E. Khandani, Adlar J. Kim, and Andrew W. Lo. 2010. Consumer credit-risk models via machine-learning algorithms. Journal of Banking & Finance 34, 11 (2010), 2767–2787. https://doi.org/10.1016/j.jbankfin.2010.06.001
[42]
Vinodh A. Kumar, Abhiram Prasad, and S. Rajashekara Murthy. 2019. Application of blockchain in Usage Based Insurance. International Journal of Advance Research, Ideas and Innovations in Technology 5 (2019), 1574–1577.
[43]
Xavier Landes. 2015. How Fair Is Actuarial Fairness?Journal of Business Ethics 128 (5 2015), 519–533. Issue 3. https://doi.org/10.1007/s10551-014-2120-0
[44]
Min Kyung Lee. 2018. Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society 5, 1 (2018), 205395171875668. https://doi.org/10.1177/2053951718756684
[45]
Min Kyung Lee, Anuraag Jain, Hea Jin Cha, Shashank Ojha, and Daniel Kusbit. 2019. Procedural Justice in Algorithmic Fairness. Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–26. https://doi.org/10.1145/3359284
[46]
Min Kyung Lee, Daniel Kusbit, Evan Metsky, and Laura Dabbish. 2015. Working with Machines. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM Press, New York, New York, USA, 1603–1612. https://doi.org/10.1145/2702123.2702548
[47]
Stefan Lessmann, Bart Baesens, Hsin-Vonn Seow, and Lyn C. Thomas. 2015. Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research 247, 1 (2015), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030
[48]
Hannah Limerick, David Coyle, and James W. Moore. 2014. The experience of agency in human-computer interactions: a review. Frontiers in human neuroscience 8 (2014), 643. https://doi.org/10.3389/fnhum.2014.00643
[49]
Duri Long and Brian Magerko. 2020. What is AI Literacy? Competencies and Design Considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Regina Bernhaupt, Florian ’Floyd’ Mueller, David Verweij, Josh Andres, Joanna McGrenere, Andy Cockburn, Ignacio Avellino, Alix Goguey, Pernille Bjørn, Shengdong Zhao, Briane Paul Samson, and Rafal Kocielnik (Eds.). Association for Computing Machinery, [S.l.], 1–16. https://doi.org/10.1145/3313831.3376727
[50]
Deborah Lupton. 2016. The Quantified Self: A Sociology of Self-Tracking (first ed.). Polity Press, Cambridge, UK.
[51]
David M. Messick. 1995. Equality, fairness, and social conflict. Social Justice Research 8, 2 (1995), 153–173. https://doi.org/10.1007/BF02334689
[52]
Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence 267 (2019), 1–38. https://doi.org/10.1016/j.artint.2018.07.007
[53]
Brent Mittelstadt, Chris Russell, and Sandra Wachter. 2019. Explaining Explanations in AI. In Proceedings of the Conference on Fairness, Accountability, and Transparency (Atlanta, GA, USA) (FAT* ’19). Association for Computing Machinery, New York, NY, USA, 279–288. https://doi.org/10.1145/3287560.3287574
[54]
Christophe Mues, Johan Huysmans, Jan Vanthienen, and Bart Baesens. 2004. Comprehensible Credit-Scoring Knowledge Visualization Using Decision Tables and Diagrams. In ICEIS 2004 - Proceedings of the Sixth International Conference on Enterprise Information Systems. Springer Netherlands, Dodrecht, 226–232. https://doi.org/10.1007/1-4020-3675-2_13
[55]
Ehsan Noei, Feng Zhang, and Ying Zou. 2021. Too Many User-Reviews! What Should App Developers Look at First?IEEE Trans. Softw. Eng. 47, 2 (feb 2021), 367–378. https://doi.org/10.1109/TSE.2019.2893171
[56]
Sebastiano. Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Visaggio, Gerado Canfora, and Harald C. Gall. 2015. How can i improve my app? Classifying user reviews for software maintenance and evolution. In 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, Bremen, Germany, 281–290. https://doi.org/10.1109/ICSM.2015.7332474
[57]
Juan Quintero and Zinaida Benenson. 2019. Understanding Usability and User Acceptance of Usage-Based Insurance from Users’ View. In Proceedings of the 2019 2nd International Conference on Machine Learning and Machine Intelligence - MLMI 2019. ACM Press, New York, New York, USA, 52–57. https://doi.org/10.1145/3366750.3366759
[58]
Emilee Rader and Rebecca Gray. 2015. Understanding User Beliefs About Algorithmic Curation in the Facebook News Feed. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Bo Begole, Jinwoo Kim, Kori Inkpen, and Woontack Woo (Eds.). ACM, New York, NY, USA, 173–182. https://doi.org/10.1145/2702123.2702174
[59]
Tobias Schwartz, Gunnar Stevens, Timo Jakobi, Sebastian Denef, Leonardo Ramirez, Volker Wulf, and Dave Randall. 2015. What People Do with Consumption Feedback: A Long-Term Living Lab Study of a Home Energy Management System. Interacting with Computers 27, 6 (2015), 551–576. https://doi.org/10.1093/iwc/iwu009
[60]
Andrew D. Selbst. 2017. Disparate impact in big data policing. Georgia Law Review 52 (2017), 109. https://doi.org/10.2139/ssrn.2819182
[61]
Ignacio Siles, Andrés Segura-Castillo, Ricardo Solís, and Mónica Sancho. 2020. Folk theories of algorithmic recommendations on Spotify: Enacting data assemblages in the global South. Big Data & Society 7, 1 (2020), 205395172092337. https://doi.org/10.1177/2053951720923377
[62]
Rashmi Sinha and Kirsten Swearingen. 2002. The role of transparency in recommender systems. In Changing the world, changing ourselves, Loren Terveen (Ed.). ACM Press, New York, NY, 830. https://doi.org/10.1145/506443.506619
[63]
Miremad Soleymanian, Charles B. Weinberg, and Ting Zhu. 2019. Sensor Data and Behavioral Tracking: Does Usage-Based Auto Insurance Benefit Drivers?Marketing Science 38, 1 (2019), 21–43. https://doi.org/10.1287/mksc.2018.1126 arXiv:https://doi.org/10.1287/mksc.2018.1126
[64]
SVRV. 2018. Consumer-friendly scoring: Gutachten des Sachverständigenrats für Verbraucherfragen. http://hdl.handle.net/21.11116/0000-0005-BB64-8
[65]
Dimitrios I. Tselentis, George Yannis, and Eleni I. Vlahogianni. 2016. Innovative Insurance Schemes: Pay as/how You Drive. Transportation Research Procedia 14 (2016), 362–371. https://doi.org/10.1016/j.trpro.2016.05.088
[66]
HUK-COBURG Datenservice und Dienstleistungen GmbH. 2020. HUK Mein Auto. HUK-COBURG Datenservice- und Dienstleistungen GmbH. Retrieved 15.09.2020 from https://play.google.com/store/apps/details?id=de.hdd.telematik&hl=de
[67]
Kees van den Bos, E. Allan Lind, Riël Vermunt, and Henk A. M. Wilke. 1997. How do I judge my outcome when I do not know the outcome of others? The psychology of the fair process effect. Journal of Personality and Social Psychology 72, 5 (1997), 1034–1046. https://doi.org/10.1037/0022-3514.72.5.1034
[68]
Wiltrud Weidner, Fabian W.G. Transchel, and Robert Weidner. 2017. Telematic driving profile classification in car insurance pricing. Annals of Actuarial Science 11, 2 (2017), 213–236. https://doi.org/10.1017/S1748499516000130
[69]
Fei L. Weisstein, Kent B. Monroe, and Monika Kukar-Kinney. 2013. Effects of price framing on consumers’ perceptions of online dynamic pricing practices. Journal of the Academy of Marketing Science 41, 5 (2013), 501–514. https://doi.org/10.1007/s11747-013-0330-0
[70]
Baobao Zhang and Allan Dafoe. 2019. Artificial Intelligence: American Attitudes and Trends. https://doi.org/10.2139/ssrn.3312874
[71]
Shoshana Zuboff. 2019. The Age of Surveillance Capitalism: The Fight for the Future at the New Frontier of Power. Public Affairs, New York, USA.

Cited By

View all
  • (2024)Exploring Consumer Perceptions and Ethical Considerations in AI-Powered E-CommerceData Visualization Tools for Business Applications10.4018/979-8-3693-6537-3.ch015(347-368)Online publication date: 13-Sep-2024
  • (2024)Digitaler VerbraucherschutzVerbraucherinformatik10.1007/978-3-662-68706-2_4(135-201)Online publication date: 25-Mar-2024

Index Terms

  1. AI said, She said - How Users Perceive Consumer Scoring in Practice

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    MuC '23: Proceedings of Mensch und Computer 2023
    September 2023
    593 pages
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 September 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Algorithmic Decision Making
    2. Empirical study
    3. Explainable AI
    4. Fairness
    5. Perception

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    MuC '23
    MuC '23: Mensch und Computer 2023
    September 3 - 6, 2023
    Rapperswil, Switzerland

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)56
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Exploring Consumer Perceptions and Ethical Considerations in AI-Powered E-CommerceData Visualization Tools for Business Applications10.4018/979-8-3693-6537-3.ch015(347-368)Online publication date: 13-Sep-2024
    • (2024)Digitaler VerbraucherschutzVerbraucherinformatik10.1007/978-3-662-68706-2_4(135-201)Online publication date: 25-Mar-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media