skip to main content
10.1145/3604078.3604103acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdipConference Proceedingsconference-collections
research-article

Joint Point Clouds Semantic and Instance Segmentation by Local Aggregation and Clustering

Authors Info & Claims
Published:26 October 2023Publication History

ABSTRACT

Existing methods fuse semantic and instance information directly so that they interfere with each other and cannot accurately identify semantic and instance edges. To address the above issues, we propose a novel network of local aggregation and clustering for joint point clouds semantic and instance segmentation task, named LAC-SIS. First, the point cloud features is extracted by edge convolution, and the geometric descriptors are generated in Euclidean and feature space to aggregate local features. The two geometric descriptors are fused to obtain the local information in two spaces. After that, the semantic and instance feature fusion module is used to selectively fuse the semantic and instance information to obtain the final semantic segmentation result and instance embedding. Finally, the points are clustered in the Euclidean and the feature space to get the instance labels of the global points. The segmentation results on the public datasets S3DIS and ScanNet V2 show that our model effectively improves the ability to distinguish point classes. Our model can accurately predict semantic and instance labels and identifies object edges clearly. Compared with other methods, our method has a significant improvement.

References

  1. Li, X.; Yao, X.; Fang, Y. Building-A-Nets: Robust Building Extraction From High Resolution Remote Sensing Images With Adversarial Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2018, 11, 3680–3687.Google ScholarGoogle Scholar
  2. Liu, Y.S.; Fang, Y.; Ramani, K. Using least median of squares for structural superposition of flexible proteins. BMC bioinformatics 2009, 10, 29.Google ScholarGoogle Scholar
  3. Ren, M.; Niu, L.; Fang, Y. 3D-A-Nets: 3D Deep Dense Descriptor for Volumetric Shapes with Adversarial Networks 2017.Google ScholarGoogle Scholar
  4. Heimann, V.; Spruck, A.; Kaup, A. Frequency-Selective Geometry Upsampling of Point Clouds. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP). IEEE, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  5. Kusari, A.; Sun, W. Graph-theoretical approach to robust 3D normal extraction of LiDAR data. ArXiv 2022, abs/2205.11460.Google ScholarGoogle Scholar
  6. Qiu, S.; Anwar, S.; Barnes, N. Geometric Back-Projection Network for Point Cloud Classification. IEEE Transactions on Multimedia 2022, 24, 1943–1955.Google ScholarGoogle Scholar
  7. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 945–953.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and Multi-view CNNs for Object Classification on 3D Data. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5648–5656.Google ScholarGoogle ScholarCross RefCross Ref
  9. Guerry, J.; Boulch, A.; Le Saux, B.; Moras, J.; Plyer, A.; Filliat, D. SnapNet-R: Consistent 3D Multi-view Semantic Labeling for Robotics. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 2017, pp. 669–678.Google ScholarGoogle ScholarCross RefCross Ref
  10. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 77–85.Google ScholarGoogle ScholarCross RefCross Ref
  11. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space; Curran Associates Inc.: Red Hook, NY, USA, 2017; NIPS’17, p. 5105–5114.Google ScholarGoogle Scholar
  12. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 2019, 38.Google ScholarGoogle Scholar
  13. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp. 6410–6419.Google ScholarGoogle Scholar
  14. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. CoRR 2019, abs/1911.11236.Google ScholarGoogle Scholar
  15. Wang, Z.; Rao, Y.; Yu, X.; Zhou, J.; Lu, J. SemAffiNet: Semantic-Affine Transformation for Point Cloud Segmentation. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022.Google ScholarGoogle Scholar
  16. Tang, L.; Zhan, Y.; Chen, Z.; Yu, B.; Tao, D. Contrastive Boundary Learning for Point Cloud Segmentation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 8479–8489.Google ScholarGoogle ScholarCross RefCross Ref
  17. Guo, M.; Cai, J.; Liu, Z.; Mu, T.; Martin, R.R.; Hu, S. PCT: Point Cloud Transformer. CoRR 2020, abs/2012.09688.Google ScholarGoogle Scholar
  18. Zhao, H.; Jiang, L.; Jia, J.; Torr, P.; Koltun, V. Point Transformer. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 16239–16248.Google ScholarGoogle Scholar
  19. Zhang, C.; Wan, H.; Shen, X.; Wu, Z. PatchFormer: An Efficient Point Transformer with Patch Attention. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 11789–11798.Google ScholarGoogle Scholar
  20. Wang, W.; Yu, R.; Huang, Q.; Neumann, U. SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation. CoRR 2017, abs/1711.08588.Google ScholarGoogle Scholar
  21. Jiang, L.; Zhao, H.; Shi, S.; Liu, S.; Fu, C.; Jia, J. PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CoRR 2020, abs/2004.01658.Google ScholarGoogle Scholar
  22. Han, L.; Zheng, T.; Xu, L.; Fang, L. OccuSeg: Occupancy-Aware 3D Instance Segmentation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 2937–2946.Google ScholarGoogle ScholarCross RefCross Ref
  23. He, T.; Shen, C.; van den Hengel, A. DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CoRR 2020, abs/2011.13328.Google ScholarGoogle Scholar
  24. Schult, J.; Engelmann, F.; Hermans, A.; Litany, O.; Tang, S.; Leibe, B. Mask3D for 3D Semantic Instance Segmentation 2023.Google ScholarGoogle Scholar
  25. Vu, T.; Kim, K.; Luu, T.M.; Nguyen, X.T.; Yoo, C.D. SoftGroup for 3D Instance Segmentation on 3D Point Clouds. In Proceedings of the CVPR, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  26. Zhong, M.; Chen, X.; Chen, X.; Zeng, G.; Wang, Y. MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. In Proceedings of the 2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  27. Yi, L.; Zhao, W.; Wang, H.; Sung, M.; Guibas, L.J. GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in Point Cloud. CoRR 2018, abs/1812.03320.Google ScholarGoogle Scholar
  28. Hou, J.; Dai, A.; Nießner, M. 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CoRR 2018, abs/1812.07003.Google ScholarGoogle Scholar
  29. Yang, B.; Wang, J.; Clark, R.; Hu, Q.; Wang, S.; Markham, A.; Trigoni, N., Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. In Proceedings of the 33rd International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red Hook, NY, USA, 2019.Google ScholarGoogle Scholar
  30. Liu, S.; Yu, S.; Wu, S.; Chen, H.; Liu, T. Learning Gaussian Instance Segmentation in Point Clouds. CoRR 2020, abs/2007.09860.Google ScholarGoogle Scholar
  31. Pham, Q.H.; Nguyen, T.; Hua, B.S.; Roig, G.; Yeung, S.K. JSIS3D: Joint Semantic-Instance Segmentation of 3D Point Clouds With Multi-Task Pointwise Networks and Multi-Value Conditional Random Fields. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 8819–8828.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wang, X.; Liu, S.; Shen, X.; Shen, C.; Jia, J. Associatively Segmenting Instances and Semantics in Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4091–4100.Google ScholarGoogle ScholarCross RefCross Ref
  33. Tan, J.; Chen, L.; Wang, K.; Peng, J.; Li, J.; Zhang, X. SASO: Joint 3D Semantic-Instance Segmentation via Multi-scale Semantic Association and Salient Point Clustering Optimization. CoRR 2020, abs/2006.15015.Google ScholarGoogle Scholar
  34. Wen, X.; Han, Z.; Youk, G.; Liu, Y.S. CF-SIS: Semantic-Instance Segmentation of 3D Point Clouds by Context Fusion with Self-Attention. In Proceedings of the Proceedings of the 28th ACM International Conference on Multimedia; Association for Computing Machinery: New York, NY, USA, 2020; MM ’20, p. 1661–1669.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In Proceedings of the Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  36. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 1534–1543.Google ScholarGoogle Scholar
  37. Qiu, S.; Anwar, S.; Barnes, N. Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion. CoRR 2021, abs/2103.07074.Google ScholarGoogle Scholar
  38. Wu, Y.; Shi, M.; Du, S.; Lu, H.; Cao, Z.; Zhong, W. 3D Instances as 1D Kernels. In Proceedings of the Proceedings of European Conference on Computer Vision (ECCV), 2022.Google ScholarGoogle Scholar
  39. Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. arXiv preprint arXiv:1811.07246 2018.Google ScholarGoogle Scholar
  40. Yan, X.; Zheng, C.; Li, Z.; Wang, S.; Cui, S. Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling. In Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 5589–5598.Google ScholarGoogle ScholarCross RefCross Ref
  41. Graham, B.; van der Maaten, L. Submanifold Sparse Convolutional Networks. arXiv preprint arXiv:1706.01307 2017.Google ScholarGoogle Scholar
  42. Gong, J.; Xu, J.; Tan, X.; Song, H.; Qu, Y.; Xie, Y.; Ma, L. Omni-supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CoRR 2021, abs/2105.10203.Google ScholarGoogle Scholar
  43. Liu, C.; Furukawa, Y. MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation. CoRR 2019, abs/1902.04478.Google ScholarGoogle Scholar
  44. Lahoud, J.; Ghanem, B.; Pollefeys, M.; Oswald, M.R. 3D Instance Segmentation via Multi-task Metric Learning. CoRR 2019, abs/1906.08650.Google ScholarGoogle Scholar
  45. Liu, H.; Liu, R.; Yang, K.; Zhang, J.; Peng, K.; Stiefelhagen, R. HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. 2021, pp. 1780–1790.Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6 (June 1981), 381–395. https://doi.org/10.1145/358669.358692Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Joint Point Clouds Semantic and Instance Segmentation by Local Aggregation and Clustering

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICDIP '23: Proceedings of the 15th International Conference on Digital Image Processing
      May 2023
      711 pages
      ISBN:9798400708237
      DOI:10.1145/3604078

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 26 October 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)17
      • Downloads (Last 6 weeks)5

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format