skip to main content
10.1145/3604915.3610656acmconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
demonstration

Introducing LensKit-Auto, an Experimental Automated Recommender System (AutoRecSys) Toolkit

Published: 14 September 2023 Publication History

Abstract

LensKit is one of the first and most popular Recommender System libraries. While LensKit offers a wide variety of features, it does not include any optimization strategies or guidelines on how to select and tune LensKit algorithms. LensKit developers have to manually include third-party libraries into their experimental setup or implement optimization strategies by hand to optimize hyperparameters. We found that 63.6% (21 out of 33) of papers using LensKit algorithms for their experiments did not select algorithms or tune hyperparameters. Non-optimized models represent poor baselines and produce less meaningful research results. This demo introduces LensKit-Auto. LensKit-Auto automates the entire Recommender System pipeline and enables LensKit developers to automatically select, optimize, and ensemble LensKit algorithms.

References

[1]
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/ Software available from tensorflow.org.
[2]
Rohan Anand and Joeran Beel. 2020. Auto-Surprise: An Automated Recommender-System (AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimization. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 585–587. https://doi.org/10.1145/3383313.3411467
[3]
Vito Walter Anelli, Alejandro Bellogin, Antonio Ferrara, Daniele Malitesta, Felice Antonio Merra, Claudio Pomo, Francesco Maria Donini, and Tommaso Di Noia. 2021. Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR ’21). Association for Computing Machinery, New York, NY, USA, 2405–2414. https://doi.org/10.1145/3404835.3463245
[4]
Ashwathy Ashokan and Christian Haas. 2021. Fairness metrics and bias mitigation strategies for rating predictions. Information Processing & Management 58, 5 (Sept. 2021), 102646. https://doi.org/10.1016/j.ipm.2021.102646
[5]
Michał Bałchanowski and Urszula Boryczka. 2022. Collaborative Rank Aggregation in Recommendation Systems. Procedia computer science 207 (Jan. 2022), 2213–2222. https://doi.org/10.1016/j.procs.2022.09.281
[6]
Michał Bałchanowski and Urszula Boryczka. 2023. A Comparative Study of Rank Aggregation Methods in Recommendation Systems. Entropy 25, 1 (Jan. 2023), 132. https://doi.org/10.3390/e25010132
[7]
Christine Bauer, Lennard Chung, Aleksej Cornelissen, Isabelle van Driessel, Diede van der Hoorn, Yme de Jong, Lan Le, Sanaz Najiyan Tabriz, Roderick Spaans, Casper Thijsen, Robert Verbeeten, Vos Wesseling, and Fern Wieland. 2023. FairRecKit: A Web-based Analysis Software for Recommender Evaluations. In Proceedings of the 2023 Conference on Human Information Interaction and Retrieval (Austin, TX, USA) (CHIIR ’23). Association for Computing Machinery, New York, NY, USA, 438–443. https://doi.org/10.1145/3576840.3578274
[8]
James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305. http://jmlr.org/papers/v13/bergstra12a.html
[9]
Parantapa Bhattacharya, Saptarshi Ghosh, Muhammad Bilal Zafar, Soumya K Ghosh, and Niloy Ganguly. 2022. What You Like: Generating Explainable Topical Recommendations for Twitter Using Social Annotations. (Dec. 2022). arxiv:2212.13897 [cs.IR] http://arxiv.org/abs/2212.13897
[10]
Rich Caruana, Art Munson, and Alexandru Niculescu-Mizil. 2006. Getting the Most Out of Ensemble Selection. Proceedings - IEEE International Conference on Data Mining, ICDM, 828–833. https://doi.org/10.1109/ICDM.2006.76
[11]
Sushma Channamsetty and Michael D. Ekstrand. 2017. Recommender Response to Diversity and Popularity Bias in User Profiles. In The Thirtieth International Flairs Conference. https://www.aaai.org/ocs/index.php/FLAIRS/FLAIRS17/paper/view/15524
[12]
Ludovik Coba, Panagiotis Symeonidis, and Markus Zanker. 2018. Replicating and Improving Top-N Recommendations in Open Source Packages. In Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics(WIMS ’18). Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3227609.3227671
[13]
Arthur da Costa, Eduardo Fressato, Fernando Neto, Marcelo Manzato, and Ricardo Campello. 2018. Case Recommender: A Flexible and Extensible Python Framework for Recommender Systems. In Proceedings of the 12th ACM Conference on Recommender Systems (Vancouver, British Columbia, Canada) (RecSys ’18). ACM, New York, NY, USA, 494–495. https://doi.org/10.1145/3240323.3241611
[14]
Toon De Pessemier, Ine Coppens, and Luc Martens. 2020. Evaluating facial recognition services as interaction technique for recommender systems. Multimedia Tools and Applications 79, 31 (Aug. 2020), 23547–23570. https://doi.org/10.1007/s11042-020-09061-8
[15]
Mukund Deshpande and George Karypis. 2004. Item-Based Top-N Recommendation Algorithms. ACM Trans. Inf. Syst. 22, 1 (jan 2004), 143–177. https://doi.org/10.1145/963770.963776
[16]
Fernando Diaz, Bhaskar Mitra, Michael D. Ekstrand, Asia J. Biega, and Ben Carterette. 2020. Evaluating Stochastic Rankings with Expected Exposure. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management(CIKM ’20). Association for Computing Machinery, New York, NY, USA, 275–284. https://doi.org/10.1145/3340531.3411962
[17]
Patrik Dokoupil and Ladislav Peska. 2023. The Effect of Similarity Metric and Group Size on Outlier Selection & Satisfaction in Group Recommender Systems. In Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization (Limassol, Cyprus) (UMAP ’23 Adjunct). Association for Computing Machinery, New York, NY, USA, 296–301. https://doi.org/10.1145/3563359.3597386
[18]
Michael D. Ekstrand. 2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management (Virtual Event, Ireland) (CIKM ’20). Association for Computing Machinery, New York, NY, USA, 2999–3006. https://doi.org/10.1145/3340531.3412778
[19]
Michael D. Ekstrand. 2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management(CIKM ’20). Association for Computing Machinery, New York, NY, USA, 2999–3006. https://doi.org/10.1145/3340531.3412778
[20]
Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, and John T. Riedl. 2011. Rethinking the Recommender Research Ecosystem: Reproducibility, Openness, and LensKit. Association for Computing Machinery, New York, NY, USA.
[21]
Michael D. Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D. Ekstrand, Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera. 2018. All The Cool Kids, How Do They Fit In?: Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency. PMLR, 172–186. https://proceedings.mlr.press/v81/ekstrand18b.html ISSN: 2640-3498.
[22]
Michael D. Ekstrand, Mucun Tian, Mohammed R. Imran Kazi, Hoda Mehrpouyan, and Daniel Kluver. 2018. Exploring author gender in book rating and recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems(RecSys ’18). Association for Computing Machinery, New York, NY, USA, 242–250. https://doi.org/10.1145/3240323.3240373
[23]
Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander Smola. 2020. AutoGluon-Tabular Robust and Accurate AutoML for Structured Data. arXiv preprint arXiv2003.06505 (2020).
[24]
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning. In Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (Eds.). Vol. 28. Curran Associates, Inc.https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
[25]
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’15). MIT Press, Cambridge, MA, USA, 2755–2763.
[26]
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel Blum, and Frank Hutter. 2015. Efficient and Robust Automated Machine Learning. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (Eds.). 2962–2970. https://proceedings.neurips.cc/paper/2015/hash/11d0e6287202fced83f79975ec59a3a6-Abstract.html
[27]
Pieter Gijsbers, Marcos L. P. Bueno, Stefan Coors, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl, and Joaquin Vanschoren. 2022. AMLB: an AutoML Benchmark. https://doi.org/10.48550/ARXIV.2207.12560
[28]
Augustin Godinot and Fabien Tarissan. 2023. Measuring the effect of collaborative filtering on the diversity of users’ attention. Applied Network Science 8, 1 (Jan. 2023). https://doi.org/10.1007/s41109-022-00530-7
[29]
Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java Library for Recommender Systems. In UMAP Workshops(CEUR Workshop Proceedings, Vol. 1388), Alexandra I. Cristea, Judith Masthoff, Alan Said, and Nava Tintarev (Eds.). CEUR-WS.org. http://dblp.uni-trier.de/db/conf/um/umap2015w.html#GuoZSY15
[30]
Srijan Gupta and Joeran Beel. 2020. Auto-CaseRec: Automatically Selecting and Optimizing Recommendation-Systems Algorithms. OSF Preprints, (2020). https://doi.org/10.31219/osf.io/4znmd
[31]
Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi. 2021. scikit-optimize/scikit-optimize. https://doi.org/10.5281/zenodo.5565057
[32]
Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In 2008 Eighth IEEE International Conference on Data Mining. 263–272. https://doi.org/10.1109/ICDM.2008.22
[33]
Nicolas Hug. 2020. Surprise A Python library for recommender systems. Journal of Open Source Software 5, 52 (2020), 2174. https://doi.org/10.21105joss.02174
[34]
Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (Eds.). 2019. Automated Machine Learning - Methods, Systems, Challenges. Springer.
[35]
Erin LeDell and Sebastien Poirier. 2020. H2O AutoML Scalable Automatic Machine Learning. 7th ICML Workshop on Automated Machine Learning (AutoML) (2020). httpswww.automl.orgwp-contentuploads202007AutoML_2020_paper_61.pdf
[36]
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. 2021. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. In ArXiv: 2109.09831. https://arxiv.org/abs/2109.09831
[37]
Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. 2022. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research 23, 54 (2022), 1–9. http://jmlr.org/papers/v23/21-0888.html
[38]
Qin Liu. 2022. A New Collaborative Filtering Algorithm Integrating Time and Multisimilarity. Mathematical Problems in Engineering 2022 (Aug. 2022). https://doi.org/10.1155/2022/2340671
[39]
Ramon Lopes, Rodrigo Alves, Antoine Ledent, Rodrygo Santos, and Marius Kloft. 2022. Recommendations with Minimum Exposure Guarantees: A Post-Processing Framework. (Nov. 2022). https://doi.org/10.2139/ssrn.4274780
[40]
Hongyu Lu, Weizhi Ma, Yifan Wang, Min Zhang, Xiang Wang, Yiqun Liu, Tat-Seng Chua, and Shaoping Ma. 2022. User Perception of Recommendation Explanation: Are Your Explanations What Users Need?ACM Transactions on Information and System Security (Nov. 2022). https://doi.org/10.1145/3565480
[41]
Hongyu Lu, Weizhi Ma, Min Zhang, Maarten de Rijke, Yiqun Liu, and Shaoping Ma. 2021. Standing in Your Shoes: External Assessments for Personalized Recommender Systems. In Proc. SIGIR 2021. https://doi.org/10.1145/3404835.3462916
[42]
Eli Lucherini, Matthew Sun, Amy Winecoff, and Arvind Narayanan. 2021. T-RECS: A Simulation Tool to Study the Societal Impact of Recommender Systems. https://doi.org/10.48550/arXiv.2107.08959 arXiv:2107.08959 [cs].
[43]
Yuhao Mao, Serguei A. Mokhov, and Sudhir P. Mudur. 2021. Application of Knowledge Graphs to Provide Side Information for Improved Recommendation Accuracy. https://doi.org/10.48550/arXiv.2101.03054 arXiv:2101.03054 [cs].
[44]
Wes McKinney. 2010. Data Structures for Statistical Computing in Python. Austin, Texas, 56–61. https://doi.org/10.25080/Majora-92bf1922-00a
[45]
Zaiqiao Meng, Richard McCreadie, Craig Macdonald, Iadh Ounis, Siwei Liu, Yaxiong Wu, Xi Wang, Shangsong Liang, Yucheng Liang, Guangtao Zeng, Junhua Liang, and Qiang Zhang. 2020. BETA-Rec: Build, Evaluate and Tune Automated Recommender Systems. Association for Computing Machinery, New York, NY, USA, 588–590. https://doi.org/10.1145/3383313.3411524
[46]
Lien Michiels, Robin Verachtert, Andres Ferraro, Kim Falk, and Bart Goethals. 2023. A Framework and Toolkit for Testing the Correctness of Recommendation Algorithms. ACM Trans. Recomm. Syst. (April 2023). https://doi.org/10.1145/3591109
[47]
Anshuman Narayan. 2019. What is the Value of Rating Obscure Items? An Analysis of the Effect of Less-Popular Items on Recommendation Quality. (June 2019). http://conservancy.umn.edu/handle/11299/206148 Accepted: 2019-08-20T17:23:51Z.
[48]
Yiu-Kai Ng. 2020. CBRec: a book recommendation system for children using the matrix factorisation and content-based filtering approaches. International Journal of Business Intelligence and Data Mining 16, 2 (Jan. 2020), 129–149. https://doi.org/10.1504/IJBIDM.2020.104738 Publisher: Inderscience Publishers.
[49]
Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. 2016. Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016 (Denver, Colorado, USA) (GECCO ’16). ACM, New York, NY, USA, 485–492. https://doi.org/10.1145/2908812.2908918
[50]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. https://doi.org/10.48550/ARXIV.1912.01703
[51]
Toon De Pessemier, Ine Coppens, and Luc Martens. 2019. Using facial recognition services as implicit feedback for recommenders. (2019), 8.
[52]
Marco Polignano, Pierpaolo Basile, Marco de Gemmis, and Giovanni Semeraro. 2019. Social Tags and Emotions as main Features for the Next Song To Play in Automatic Playlist Continuation. In Adjunct Publication of the 27th Conference on User Modeling, Adaptation and Personalization(UMAP’19 Adjunct). Association for Computing Machinery, New York, NY, USA, 235–239. https://doi.org/10.1145/3314183.3323455
[53]
Lennart Oswald Purucker and Joeran Beel. 2022. Assembled-OpenML: Creating Efficient Benchmarks for Ensembles with OpenML. In First Conference on Automated Machine Learning (Late-Breaking Workshop). https://openreview.net/forum?id=3UMmIzHVS3y
[54]
Amifa Raj and Michael D. Ekstrand. 2022. Comparing Fair Ranking Metrics. https://doi.org/10.48550/arXiv.2009.01311 arXiv:2009.01311 [cs].
[55]
Amifa Raj and Michael D Ekstrand. 2022. Measuring Fairness in Ranked Results: An Analytical and Empirical Comparison. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM Press. https://doi.org/10.1145/3477495.3532018
[56]
Sebastian Raschka. 2018. Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning. CoRR abs/1811.12808 (2018). arXiv:1811.12808http://arxiv.org/abs/1811.12808
[57]
Teresa Scheidt and Joeran Beel. 2021. Time-dependent evaluation of recommender systems: 2021 Perspectives on the Evaluation of Recommender Systems Workshop, Perspectives 2021. Perspectives 2021 2955 (2021). http://www.scopus.com/inward/record.url?scp=85116263192&partnerID=8YFLogxK
[58]
Manel Slokom, Alan Hanjalic, and Martha Larson. 2021. Towards user-oriented privacy for recommender system data: A personalization-based approach to gender obfuscation for user profiles. Information Processing & Management 58, 6 (Nov. 2021), 102722. https://doi.org/10.1016/j.ipm.2021.102722
[59]
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in Neural Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.). Vol. 25. Curran Associates, Inc.https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
[60]
Nasim Sonboli, Masoud Mansoury, Ziyue Guo, Shreyas Kadekodi, Weiwen Liu, Zijun Liu, Andrew Schwartz, and Robin Burke. 2021. librec-auto: A Tool for Recommender Systems Experimentation. In CIKM ’21: The 30th ACM International Conference on Information and Knowledge Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, Gianluca Demartini, Guido Zuccon, J. Shane Culpepper, Zi Huang, and Hanghang Tong (Eds.). ACM, 4584–4593. https://doi.org/10.1145/3459637.3482006
[61]
Gábor Takács, István Pilászy, and Domonkos Tikk. 2011. Applications of the Conjugate Gradient Method for Implicit Feedback Collaborative Filtering. In Proceedings of the Fifth ACM Conference on Recommender Systems (Chicago, Illinois, USA) (RecSys ’11). Association for Computing Machinery, New York, NY, USA, 297–300. https://doi.org/10.1145/2043932.2043987
[62]
Mucun Tian and Michael D. Ekstrand. 2020. Estimating Error and Bias in Offline Evaluation Results. In Proceedings of the 2020 Conference on Human Information Interaction and Retrieval(CHIIR ’20). Association for Computing Machinery, New York, NY, USA, 392–396. https://doi.org/10.1145/3343413.3378004
[63]
Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. 2021. FLAML A Fast and Lightweight AutoML Library. In MLSys.
[64]
Ting-Hsiang Wang, Xia Hu, Haifeng Jin, Qingquan Song, Xiaotian Han, and Zirui Liu. 2020. AutoRec: An Automated Recommender System. Association for Computing Machinery, New York, NY, USA, 582–584. https://doi.org/10.1145/3383313.3411529
[65]
Lukas Wegmeth. 2022. The Impact of Feature Quantity on Recommendation Algorithm Performance: A Movielens-100K Case Study. https://doi.org/10.48550/arXiv.2207.08713 arXiv:2207.08713 [cs].
[66]
Lukas Wegmeth and Joeran Beel. 2022. CaMeLS: Cooperative meta-learning service for recommender systems. In Proceedings of the Perspectives on the Evaluation of Recommender Systems Workshop 2022. CEUR-WS. https://ceur-ws.org/Vol-3228/paper2.pdf
[67]
Sanjay Yadav and Sanyam Shukla. 2016. Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification. In 2016 IEEE 6th International Conference on Advanced Computing (IACC). 78–83. https://doi.org/10.1109/IACC.2016.25
[68]
Lucas Zimmer, Marius Lindauer, and Frank Hutter. 2021. Auto-PyTorch Tabular Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), 3079 – 3090. also available under httpsarxiv.orgabs2006.13799.

Cited By

View all
  • (2025)Understanding the influence of data characteristics on the performance of point-of-interest recommendation algorithmsInformation Technology & Tourism10.1007/s40558-024-00304-0Online publication date: 3-Jan-2025
  • (2024)Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback DatasetsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691718(1163-1167)Online publication date: 8-Oct-2024
  • (2024)From Clicks to Carbon: The Environmental Toll of Recommender SystemsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688074(580-590)Online publication date: 8-Oct-2024
  • Show More Cited By

Index Terms

  1. Introducing LensKit-Auto, an Experimental Automated Recommender System (AutoRecSys) Toolkit

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    RecSys '23: Proceedings of the 17th ACM Conference on Recommender Systems
    September 2023
    1406 pages
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 September 2023

    Check for updates

    Author Tags

    1. Algorithm Selection
    2. AutoRecSys
    3. Automated Recommender Systems
    4. CASH
    5. Hyperparameter Optimization
    6. Recommender Systems

    Qualifiers

    • Demonstration
    • Research
    • Refereed limited

    Conference

    RecSys '23: Seventeenth ACM Conference on Recommender Systems
    September 18 - 22, 2023
    Singapore, Singapore

    Acceptance Rates

    Overall Acceptance Rate 254 of 1,295 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)90
    • Downloads (Last 6 weeks)14
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Understanding the influence of data characteristics on the performance of point-of-interest recommendation algorithmsInformation Technology & Tourism10.1007/s40558-024-00304-0Online publication date: 3-Jan-2025
    • (2024)Recommender Systems Algorithm Selection for Ranking Prediction on Implicit Feedback DatasetsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691718(1163-1167)Online publication date: 8-Oct-2024
    • (2024)From Clicks to Carbon: The Environmental Toll of Recommender SystemsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688074(580-590)Online publication date: 8-Oct-2024
    • (2024)Revealing the Hidden Impact of Top-N Metrics on Optimization in Recommender SystemsAdvances in Information Retrieval10.1007/978-3-031-56027-9_9(140-156)Online publication date: 24-Mar-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media