skip to main content
10.1145/3605573.3605636acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicppConference Proceedingsconference-collections
research-article
Open Access

Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification

Published:13 September 2023Publication History

ABSTRACT

Neural architecture search (NAS), which automates the design of neural network (NN) architectures for scientific datasets, requires significant computational resources and time — often on the order of days or weeks of GPU hours and training time. We design the Analytics for Neural Network (A4NN) workflow, a composable workflow that significantly reduces the time and resources required to design accurate and efficient NN architectures. We introduce a parametric fitness prediction strategy and distribute training across multiple accelerators to decrease the aggregated NN training time. A4NN rigorously record neural architecture histories, model states, and metadata to reproduce the search for near-optimal NNs. We demonstrate A4NN’s ability to reduce training time and resource consumption on a dataset generated by an X-ray Free Electron Laser (XFEL) experiment simulation. When deploying A4NN, we decrease training time by up to 37% and epochs required by up to 38%.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Accelerating Neural Architecture Search Using Performance Prediction. In Proceedings of the NIPS Workshop on Meta-Learning. arxiv:1705.10823 [cs.LG]Google ScholarGoogle Scholar
  2. Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable reinforcement-learning-based neural architecture search for cancer deep learning research. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct Neural Architecture Search on Target Task and Hardware. arXiv preprint arXiv:1812.00332 (2018).Google ScholarGoogle Scholar
  4. Ryan Chard, Zhuozhao Li, Kyle Chard, Logan Ward, Yadu Babuji, Anna Woodard, Steven Tuecke, Ben Blaiszik, Michael Franklin, and Ian Foster. 2019. DLHub: Model and Data Serving for Science. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS). 283–292.Google ScholarGoogle ScholarCross RefCross Ref
  5. Shanyu Chen, Zhipeng He, Xinyin Han, Xiaoyu He, Ruilin Li, Haidong Zhu, Dan Zhao, Chuangchuang Dai, Yu Zhang, Zhonghua Lu, Xuebin Chi, and Beifang Niu. 2019. How Big Data and High-performance Computing Drive Brain Science. Genomics, Proteomics & Bioinformatics 17, 4 (2019), 381–392. Big Data in Brain Science.Google ScholarGoogle ScholarCross RefCross Ref
  6. Anshul Choudhary, John F. Lindner, Elliott G. Holliday, Scott T. Miller, Sudeshna Sinha, and William L. Ditto. 2020. Physics-enhanced Neural Networks Learn Order and Chaos. Phys. Rev. E 101 (Jun 2020), 062207. Issue 6. https://link.aps.org/doi/10.1103/PhysRevE.101.062207Google ScholarGoogle ScholarCross RefCross Ref
  7. Juan-Pablo Correa-Baena, Kedar Hippalgaonkar, Jeroen van Duren, Shaffiq Jaffer, Vijay R. Chandrasekhar, Vladan Stevanovic, Cyrus Wadia, Supratik Guha, and Tonio Buonassisi. 2018. Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule 2, 8 (2018), 1410–1420.Google ScholarGoogle ScholarCross RefCross Ref
  8. Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves. In Proceedings of the 24th International Conference on Artificial Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, 3460–3468.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, and Sylvain Gelly. 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv preprint arXiv:2010.11929 (2020).Google ScholarGoogle Scholar
  10. Francisco Erivaldo Fernandes Junior and Gary G. Yen. 2019. Particle Swarm Optimization of Deep Neural Networks Architectures for Image Classification. Swarm and Evolutionary Computation 49 (2019), 62–74.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Gertych, Z. Swiderska-Chadaj, and Z Ma. 2019. Convolutional Neural Networks Can Accurately Distinguish Four Histologic Growth Patterns of Lung Adenocarcinoma in Digital Slides. Scientific Reports 9, 1483 (2019).Google ScholarGoogle Scholar
  12. Jie Hou, Badri Adhikari, and Cheng Jianlin. 2018. DeepSF: Deep Convolutional Neural Network for Mapping Protein Sequences to Folds. Bioinformatics 34:8 (2018), 1295–1303.Google ScholarGoogle ScholarCross RefCross Ref
  13. Haifeng Jin, Qingquan Song, and Xia Hu. 2019. Auto-keras: An efficient neural architecture search system. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2019).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Travis Johnston, Steven R. Young, David Hughes, Robert M. Patton, and Devin White. 2017. Optimizing Convolutional Neural Networks for Cloud Detection. In Proceedings of the Machine Learning on HPC Environments (MLHPC) (Denver, CO, USA). Article 4, 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Kamilaris and F. Prenafeta-Boldú. 2018. A Review of the Use of Convolutional Neural Networks in Agriculture. Journal of Agricultural Science 156:3 (2018), 312–322.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P. Xing. 2018. Neural Architecture Search with Bayesian Optimisation and Optimal Transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems. NeurIPS, 2020–2029.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M F Kasim, D Watson-Parris, L Deaconu, S Oliver, P Hatfield, D H Froula, G Gregori, M Jarvis, S Khatiwala, J Korenaga, and et al.2021. Building high accuracy emulators for scientific simulations with deep neural architecture search. Machine Learning: Science and Technology 3, 1 (2021), 015013.Google ScholarGoogle ScholarCross RefCross Ref
  18. Ariel Keller Rorabaugh, Silvina Caíno-Lores, Travis Johnston, and Michela Taufer. 2022. Building High-Throughput Neural Architecture Search Workflows via a Decoupled Fitness Prediction Engine. IEEE Transactions on Parallel and Distributed Systems 33, 11 (2022), 2913–2926.Google ScholarGoogle Scholar
  19. Ariel Keller Rorabaugh, Silvina Caíno-Lores, Michael R. Wyatt II, Travis Johnston, and Michela Taufer. 2021. Architecture Descriptions and High Frequency Accuracy and Loss Data of Random Neural Networks Trained on Image Datasets.Google ScholarGoogle Scholar
  20. Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2017. Learning Curve Prediction with Bayesian Neural Networks. In International Conference on Learning Representations. https://openreview.net/forum?id=S11KBYclxGoogle ScholarGoogle Scholar
  21. Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. arxiv:1603.06560 [cs.LG]Google ScholarGoogle Scholar
  22. Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection and Training. arXiv preprint arXiv:1807.05118 (2018).Google ScholarGoogle Scholar
  23. Chaoyue Liu and Mikhail Belkin. 2018. Accelerating SGD with Momentum for Over-parameterized Learning. arXiv preprint arXiv:1810.13395 (2018).Google ScholarGoogle Scholar
  24. Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive Neural Architecture Search. In Proceedings of the European Conference on Computer Vision (ECCV).Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture Search. In Proceedings of the International Conference on Learning Representations.Google ScholarGoogle Scholar
  26. Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolfgang Banzhaf. 2019. NSGA-Net: Neural Architecture Search using Multi-Objective Genetic Algorithm. arxiv:1810.03522 [cs.CV]Google ScholarGoogle Scholar
  27. Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural Architecture Optimization. In Advances in Neural Information Processing Systems 31. NeurIPS.Google ScholarGoogle Scholar
  28. Zhiping Mao, Ameya D. Jagtap, and George Em Karniadakis. 2020. Physics-informed Neural Networks for High-speed Flows. Computer Methods in Applied Mechanics and Engineering 360 (2020), 112789. https://www.sciencedirect.com/science/article/pii/S0045782519306814Google ScholarGoogle ScholarCross RefCross Ref
  29. Paula Olaya, Silvina Caino-Lores, Vanessa Lama, Ria Patel, Ariel Keller Rorabaugh, Osamu Miyashita, Florence Tama, and Michela Taufer. 2022. Identifying structural properties of proteins from X-ray free electron laser diffraction patterns. 2022 IEEE 18th International Conference on e-Science (e-Science) (2022).Google ScholarGoogle ScholarCross RefCross Ref
  30. Gyunam Park and Minseok Song. 2020. Predicting performances in business processes using deep neural networks. Decision Support Systems 129 (2020), 113191.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ria Patel, Ariel Keller Rorabaugh, Paula Olaya, Silvina Caino-Lores, Georgia Channing, Catherine Schuman, Osamu Miyashita, Florence Tama, and Michela Taufer. 2022. A methodology to generate efficient neural networks for classification of scientific datasets. 2022 IEEE 18th International Conference on e-Science (e-Science) (2022).Google ScholarGoogle ScholarCross RefCross Ref
  32. Robert M Patton, J Travis Johnston, Steven R Young, Catherine D Schuman, Don D March, Thomas E Potok, Derek C Rose, Seung-Hwan Lim, Thomas P Karnowski, and Maxim A Ziatdinov. 2018. 167-PFlops Deep Learning for Electron Microscopy: From Learning Physics to Atomic Manipulation. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC). 638–648.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Robert M. Patton, J. Travis Johnston, Steven R. Young, Catherine D. Schuman, Thomas E. Potok, Derek C. Rose, Seung-Hwan Lim, Junghoon Chae, Le Hou, Shahira Abousamra, Dimitris Samaras, and Joel Saltz. 2019. Exascale Deep Learning to Accelerate Cancer Research. In 2019 IEEE International Conference on Big Data (Big Data). 1488–1496.Google ScholarGoogle ScholarCross RefCross Ref
  34. Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. 2018. Efficient neural architecture search via parameter sharing. arXiv preprint arXiv:1802.03268 (2018).Google ScholarGoogle Scholar
  35. Rahul Ramesh and Pratik Chaudhari. 2022. Model Zoo: A Growing "Brain" That Learns Continually. arxiv:2106.03027 [cs.LG]Google ScholarGoogle Scholar
  36. Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. 2017. Large-scale Evolution of Image Classifiers. In Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML, 2902–2911.Google ScholarGoogle Scholar
  37. Binxin Ru, Clare Lyle, Lisa Schut, Miroslav Fil, Mark van der Wilk, and Yarin Gal. 2021. Speedy Performance Estimation for Neural Architecture Search. https://arxiv.org/abs/2006.04492. arxiv:2006.04492 [stat.ML]Google ScholarGoogle Scholar
  38. Max Schwarzer, Bryce Rogan, Yadong Ruan, Zhengming Song, Diana Y. Lee, Allon G. Percus, Viet T. Chau, Bryan A. Moore, Esteban Rougier, Hari S. Viswanathan, and Gowri Srinivasan. 2019. Learning to Fail: Predicting Fracture Evolution in Brittle material models using recurrent graph convolutional neural networks. Computational Materials Science 162 (2019), 322–332. https://www.sciencedirect.com/science/article/pii/S0927025619301223Google ScholarGoogle ScholarCross RefCross Ref
  39. Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. 2021. Graph Neural Networks in Particle Physics. Machine Learning: Science and Technology 2, 2 (Jan 2021), 021001. https://doi.org/10.1088/2632-2153/abbf9aGoogle ScholarGoogle ScholarCross RefCross Ref
  40. Tiberiu Stan, Zachary T. Thompson, and Peter W. Voorhees. 2020. Optimizing Convolutional Neural Networks to Perform Semantic Segmentation on Large Materials Imaging Datasets: X-ray Tomography and Serial Sectioning. Materials Characterization 160 (2020), 110119. https://www.sciencedirect.com/science/article/pii/S1044580319304930Google ScholarGoogle ScholarCross RefCross Ref
  41. Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. 2020. Evolving deep convolutional neural networks for Image Classification. IEEE Transactions on Evolutionary Computation 24, 2 (2020), 394–407.Google ScholarGoogle ScholarCross RefCross Ref
  42. Tom Viering and Marco Loog. 2021. The Shape of Learning Curves: a Review. arXiv preprint arXiv:2103.10948 (2021).Google ScholarGoogle Scholar
  43. Guangyu Robert Yang and Xiao-Jing Wang. 2020. Artificial Neural Networks for Neuroscientists: A Primer. Neuron 107, 6 (2020), 1048–1070.Google ScholarGoogle ScholarCross RefCross Ref
  44. Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2019. Large Batch Optimization for Deep Learning: Training BERT in 76 Minutes. arXiv preprint arXiv:1904.00962 (2019).Google ScholarGoogle Scholar
  45. Steven R. Young, Derek C. Rose, Travis Johnston, William T. Heller, Thomas P. Karnowski, Thomas E. Potok, Robert M. Patton, Gabriel Perdue, and Jonathan Miller. 2017. Evolving Deep Networks using HPC. Proceedings of the Machine Learning on HPC Environments (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Xiaolong Zheng, Peng Zheng, Liang Zheng, Yang Zhang, and Rui-Zhi Zhang. 2020. Multi-channel Convolutional Neural Networks for Materials Properties Prediction. Computational Materials Science 173 (2020), 109436. https://www.sciencedirect.com/science/article/pii/S0927025619307359Google ScholarGoogle ScholarCross RefCross Ref
  47. Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. 2018. Learning transferable architectures for Scalable Image Recognition. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018).Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Composable Workflow for Accelerating Neural Architecture Search Using In Situ Analytics for Protein Classification

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              ICPP '23: Proceedings of the 52nd International Conference on Parallel Processing
              August 2023
              858 pages
              ISBN:9798400708435
              DOI:10.1145/3605573

              Copyright © 2023 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 13 September 2023

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed limited

              Acceptance Rates

              Overall Acceptance Rate91of313submissions,29%

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format