skip to main content
10.1145/3607822.3614535acmconferencesArticle/Chapter ViewAbstractPublication PagessuiConference Proceedingsconference-collections
research-article

DensingQueen: Exploration Methods for Spatial Dense Dynamic Data

Published:13 October 2023Publication History

ABSTRACT

Research has proposed various interaction techniques to manage the occlusion of 3D data in Virtual Reality (VR), e.g., via gradual refinement. However, tracking dynamically moving data in a dense 3D environment poses the challenge of ever-changing occlusion, especially if motion carries relevant information, which is lost in still images. In this paper, we evaluated two interaction modalities for Spatial Dense Dynamic Data (SDDD), adapted from existing interaction methods for static and spatial data. We evaluated these modalities for exploring SDDD in VR, in an experiment with 18 participants. Furthermore, we investigated the influence of our interaction modalities on different levels of data density on the users’ performance in a no-knowledge task and a prior-knowledge task. Our results indicated significantly degraded performance for higher levels of density. Further, we found that our flashlight-inspired modality successfully improved tracking in SDDD, while a cutting plane-inspired approach was more suitable for highlighting static volumes of interest, particularly in such high-density environments.

Skip Supplemental Material Section

Supplemental Material

SUI23_Video_7479.mov

Appendix figure short video

mov

24 MB

References

  1. Ferran Argelaguet and Carlos Andujar. 2009. Efficient 3D pointing selection in cluttered virtual environments. IEEE Computer Graphics and Applications 29, 6 (2009), 34–43.Google ScholarGoogle ScholarCross RefCross Ref
  2. Benjamin Avery, Christian Sandor, and Bruce H. Thomas. 2009. Improving Spatial Perception for Augmented Reality X-Ray Vision. In 2009 IEEE Virtual Reality Conference. Institute of Electrical and Electronics Engineers (IEEE), 79–82. https://doi.org/10.1109/vr.2009.4811002Google ScholarGoogle ScholarCross RefCross Ref
  3. Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister. 2018. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?IEEE Transactions on Visualization and Computer Graphics 24, 1 (jan 2018), 457–467. https://doi.org/10.1109/TVCG.2017.2745941Google ScholarGoogle ScholarCross RefCross Ref
  4. Ryan Bane and Tobias Höllerer. 2004. Interactive tools for virtual X-ray vision in mobile augmented reality. In ISMAR 2004: Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality. 231–239. https://doi.org/10.1109/ISMAR.2004.36Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Rebecca Bennett, David J. Zielinski, and Regis Kopper. 2014. Comparison of interactive environments for the archaeological exploration of 3D landscape data. In 2014 IEEE VIS International Workshop on 3DVis (3DVis). 67–71. https://doi.org/10.1109/3DVis.2014.7160103Google ScholarGoogle ScholarCross RefCross Ref
  6. Nicholas Brunhart-Lupo, Brian W. Bush, Kenny Gruchalla, and Steve Smith. 2017. Simulation exploration through immersive parallel planes. In 2016 Workshop on Immersive Analytics, IA 2016. Institute of Electrical and Electronics Engineers Inc., 19–24. https://doi.org/10.1109/IMMERSIVE.2016.7932377Google ScholarGoogle ScholarCross RefCross Ref
  7. Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. 1999. Readings in information visualization: using vision to think. Morgan Kaufmann Publishers. 686 pages. https://dl.acm.org/citation.cfm?id=300679Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Robert Carnecky, Raphael Fuchs, Stephanie Mehl, Yun Jang, and Ronald Peikert. 2013. Smart transparency for illustrative visualization of complex flow surfaces. IEEE Transactions on Visualization and Computer Graphics 19, 5 (2013), 838–851. https://doi.org/10.1109/TVCG.2012.159Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Jeffrey Cashion, Chadwick Wingrave, and Joseph J. Laviola. 2012. Dense and dynamic 3D selection for game-based virtual environments. IEEE Transactions on Visualization and Computer Graphics 18, 4 (apr 2012), 634–642. https://doi.org/10.1109/TVCG.2012.40Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Arpan Chakraborty, Kyung Wha Hong, Ryan Gross, Jae Yeol Lee, Shea McIntee, and Robert St. Amant. 2014. CAPTIVE: A cube with augmented physical tools. In Conference on Human Factors in Computing Systems - Proceedings. 1315–1320. https://doi.org/10.1145/2559206.2581340Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Zhutian Chen, Yifang Wang, Tianchen Sun, Xiang Gao, Wei Chen, Zhigeng Pan, Huamin Qu, and Yingcai Wu. 2017. Exploring the design space of immersive urban analytics. Visual Informatics 1, 2 (jun 2017), 132–142. https://doi.org/10.1016/j.visinf.2017.11.002Google ScholarGoogle ScholarCross RefCross Ref
  12. Zhutian Chen, Wei Zeng, Zhiguang Yang, Lingyun Yu, Chi Wing Fu, and Huamin Qu. 2020. LassoNet: Deep Lasso-Selection of 3D Point Clouds. IEEE Transactions on Visualization and Computer Graphics 26, 1 (2020), 195–204. https://doi.org/10.1109/TVCG.2019.2934332 arxiv:1907.13538Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587Google ScholarGoogle ScholarCross RefCross Ref
  14. Maxime Cordeil, Benjamin Bach, Andrew Cunningham, Bastian Montoya, Ross T. Smith, Bruce H. Thomas, and Tim Dwyer. 2020. Embodied Axes: Tangible, Actuated Interaction for 3D Augmented Reality Data Spaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Vol. 20. 1–12. https://doi.org/10.1145/3313831.3376613Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Maxime Cordeil, Benjamin Bach, Yongchao Li, Elliott Wilson, and Tim Dwyer. 2017. Design space for spatio-data coordination: Tangible interaction devices for immersive information visualisation. In IEEE Pacific Visualization Symposium. IEEE Computer Society, 46–50. https://doi.org/10.1109/PACIFICVIS.2017.8031578Google ScholarGoogle ScholarCross RefCross Ref
  16. Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H Thomas, and Kim Marriott. 2017. ImAxes: Immersive axes as embodied affordances for interactive multivariate data visualisation. In UIST 2017 - Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. 71–83. https://doi.org/10.1145/3126594.3126613Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ciro Donalek, S. G. Djorgovski, Alex Cioc, Anwell Wang, Jerry Zhang, Elizabeth Lawler, Stacy Yeh, Ashish Mahabal, Matthew Graham, Andrew Drake, Scott Davidoff, Jeffrey S. Norris, and Giuseppe Longo. 2015. Immersive and collaborative data visualization using virtual reality platforms. Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014 (jan 2015), 609–614. https://doi.org/10.1109/BIGDATA.2014.7004282Google ScholarGoogle ScholarCross RefCross Ref
  18. Achref Doula, Tobias Güdelhöfer, Andrii Matviienko, Max Mühlhäuser, and Alejandro Sanchez Guinea. 2022. Immersive-Labeler: Immersive Annotation of Large-Scale 3D Point Clouds in Virtual Reality. In ACM SIGGRAPH 2022 Posters. 1–2.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Achref Doula, Tobias Güdelhöfer, Andrii Matviienko, Max Mühlhäuser, and Alejandro Sanchez Guinea. 2023. PointCloudLab: An Environment for 3D Point Cloud Annotation with Adapted Visual Aids and Levels of Immersion. In 2023 IEEE International Conference on Robotics and Automation (ICRA). 11640–11646. https://doi.org/10.1109/ICRA48891.2023.10160225Google ScholarGoogle ScholarCross RefCross Ref
  20. Emmanuel Dubois and Adrien Hamelin. 2017. Worm Selector: Volume Selection in a 3D Point Cloud Through Adaptive Modelling. International Journal of Virtual Reality 17, 1 (jan 2017), 1–20. https://doi.org/10.20870/ijvr.2017.17.1.2884Google ScholarGoogle ScholarCross RefCross Ref
  21. Niklas Elmqvist, Ulf Assarsson, and Philippas Tsigas. 2007. Employing dynamic transparency for 3D occlusion management: Design issues and evaluation. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 4662 LNCS. Springer Verlag, 532–545. https://doi.org/10.1007/978-3-540-74796-3_54Google ScholarGoogle ScholarCross RefCross Ref
  22. Mustafa Tolga Eren and Selim Balcisoy. 2018. Evaluation of X-ray visualization techniques for vertical depth judgments in underground exploration. Visual Computer 34, 3 (mar 2018), 405–416. https://doi.org/10.1007/s00371-016-1346-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gwendal Fouché, Ferran Argelaguet, Emmanuel Faure, and Charles Kervrann. 2023. Immersive and interactive visualization of 3D spatio-temporal data using a space time hypercube: Application to cell division and morphogenesis analysis. Frontiers in Bioinformatics 3 (2023), 998991.Google ScholarGoogle ScholarCross RefCross Ref
  24. Tovi Grossman and Ravin Balakrishnan. 2005. The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor’s activation area. In Proceedings of the SIGCHI conference on Human factors in computing systems. 281–290.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tovi Grossman and Ravin Balakrishnan. 2008. The design and evaluation of selection techniques for 3D volumetric displays. In UIST 2006: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology. ACM Press, New York, New York, USA, 3–12. https://doi.org/10.1145/1166253.1166257Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (oct 2006), 904–908. https://doi.org/10.1177/154193120605000909Google ScholarGoogle ScholarCross RefCross Ref
  27. Bret Jackson, Brighten Jelke, and Gabriel Brown. 2018. Yea Big, Yea High: A 3D User Interface for Surface Selection by Progressive Refinement in Virtual Environments. In 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018 - Proceedings. 320–326. https://doi.org/10.1109/VR.2018.8447559Google ScholarGoogle ScholarCross RefCross Ref
  28. Denis Kalkofen, Erick Mendez, and Dieter Schmalstieg. 2009. Comprehensible visualization for augmented reality. In IEEE Transactions on Visualization and Computer Graphics, Vol. 15. 193–204. https://doi.org/10.1109/TVCG.2008.96Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. H. Kato, K. Tachibana, M. Tanabe, T. Nakajima, and Y. Fukuda. 2003. MagicCup: A tangible interface for virtual objects manipulation in table-top augmented reality. In ART 2003 - IEEE International Augmented Reality Toolkit Workshop. Institute of Electrical and Electronics Engineers Inc., 75–76. https://doi.org/10.1109/ART.2003.1320434Google ScholarGoogle ScholarCross RefCross Ref
  30. Richard A. Ketcham. 2005. Computational methods for quantitative analysis of three-dimensional features in geological specimens. Geosphere 1, 1 (aug 2005), 32–41. https://doi.org/10.1130/GES00001.1Google ScholarGoogle ScholarCross RefCross Ref
  31. Oh-Hyun Kwon, Chris Muelder, Kyungwon Lee, and Kwan-Liu Ma. 2016. A Study of Layout, Rendering, and Interaction Methods for Immersive Graph Visualization. IEEE Transactions on Visualization and Computer Graphics 22, 7 (jul 2016), 1802–1815. https://doi.org/10.1109/TVCG.2016.2520921Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Andras Lasso, Hannah H. Nam, Patrick V. Dinh, Csaba Pinter, Jean Christophe Fillion-Robin, Steve Pieper, Sankhesh Jhaveri, Jean Baptiste Vimort, Ken Martin, Mark Asselin, Francis X. McGowan, Ron Kikinis, Gabor Fichtinger, and Matthew A. Jolley. 2018. Interaction with Volume-Rendered Three-Dimensional Echocardiographic Images in Virtual Reality. Journal of the American Society of Echocardiography 31, 10 (oct 2018), 1158–1160. https://doi.org/10.1016/J.ECHO.2018.06.011/ATTACHMENT/B318E870-25B8-40CF-BD15-D0FBD762F2DD/MMC1.MP4Google ScholarGoogle ScholarCross RefCross Ref
  33. Benjamin Lee, Dave Brown, Bongshin Lee, Christophe Hurter, Steven Drucker, and Tim Dwyer. 2021. Data Visceralization: Enabling Deeper Understanding of Data Using Virtual Reality. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021), 1095–1105. https://doi.org/10.1109/TVCG.2020.3030435Google ScholarGoogle ScholarCross RefCross Ref
  34. Klemen Lilija, Henning Pohl, Sebastian Boring, and Kasper Hornbæk. 2019. Augmented reality views for occluded interaction. In Conference on Human Factors in Computing Systems - Proceedings. ACM, 12. https://doi.org/10.1145/3290605.3300676Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Daniel Simões Lopes, Daniel Medeiros, Soraia Figueiredo Paulo, Pedro Brasil Borges, Vitor Nunes, Vasco Mascarenhas, Marcos Veiga, and Joaquim Armando Jorge. 2018. Interaction techniques for immersive CT colonography: A Professional assessment. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 11071 LNCS. Springer Verlag, 629–637. https://doi.org/10.1007/978-3-030-00934-2_70Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Ursula Luna, Pilar Rivero, and Naiara Vicent. 2019. Augmented reality in heritage apps: Current trends in Europe. Applied Sciences 9, 13 (2019), 2756.Google ScholarGoogle ScholarCross RefCross Ref
  37. Tom Meyer and Al Globus. 1993. Direct manipulation of isosurfaces and cutting planes in virtual environments. Department of Computer Science, Brown University (1993).Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Patrick Millais, Simon L. Jones, and Ryan Kelly. 2018. Exploring data in virtual reality: Comparisons with 2d data visualizations. Conference on Human Factors in Computing Systems - Proceedings 2018-April (apr 2018). https://doi.org/10.1145/3170427.3188537Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jules Moloney, Branka Spehar, Anastasia Globa, and Rui Wang. 2018. The affordance of virtual reality to enable the sensory representation of multi-dimensional data for immersive analytics: from experience to insight. Journal of Big Data 5, 1 (dec 2018). https://doi.org/10.1186/s40537-018-0158-zGoogle ScholarGoogle ScholarCross RefCross Ref
  40. Roberto A. Montano-Murillo, Cuong Nguyen, Rubaiat Habib Kazi, Sriram Subramanian, Stephen DiVerdi, and Diego Martinez-Plasencia. 2020. Slicing-Volume: Hybrid 3D/2D Multi-target Selection Technique for Dense Virtual Environments. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Institute of Electrical and Electronics Engineers (IEEE), 53–62. https://doi.org/10.1109/vr46266.2020.00023Google ScholarGoogle ScholarCross RefCross Ref
  41. Andrew Moran, Vijay Gadepally, Matthew Hubbell, and Jeremy Kepner. 2015. Improving Big Data visual analytics with interactive virtual reality. In 2015 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–6. https://doi.org/10.1109/HPEC.2015.7322473Google ScholarGoogle ScholarCross RefCross Ref
  42. Annette Mossel and Christian Koessler. 2016. Large Scale Cut Plane: An Occlusion Management Technique for Immersive Dense 3D Reconstructions. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Vol. 02-04-Nove. Association for Computing Machinery, 201–210. https://doi.org/10.1145/2993369.2993384Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Annette Mossel and Christian Koessler. 2016. Large scale cut plane: An occlusion management technique for immersive dense 3D reconstructions. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, Vol. 02-04-Nove. Association for Computing Machinery, 201–210. https://doi.org/10.1145/2993369.2993384Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Florian Müller, Niloofar Dezfuli, Max Mühlhäuser, Martin Schmitz, and Mohammadreza Khalilbeigi. 2015. Palm-Based Interaction with Head-mounted Displays. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct(MobileHCI ’15). ACM, Copenhagen Denmark, 963–965. https://doi.org/10.1145/2786567.2794314Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Kaya Okada, Mitsuo Yoshida, Takayuki Itoh, Tobias Czauderna, and Kingsley Stephens. 2019. VR system for spatio-temporal visualization of tweet data and support of map exploration. Multimedia Tools and Applications (aug 2019). https://doi.org/10.1007/s11042-019-08016-yGoogle ScholarGoogle ScholarCross RefCross Ref
  46. Krzysztof Pietroszek, James R. Wallace, and Edward Lank. 2015. Tiltcasting: 3D interaction on large displays using a mobile device. In UIST 2015 - Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology. Association for Computing Machinery, Inc, 57–62. https://doi.org/10.1145/2807442.2807471Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Arnaud Prouzeau, Maxime Cordeil, Clement Robin, Barrett Ens, Bruce H Thomas, and Tim Dwyer. 2019. Scaptics and Highlight-Planes: Immersive Interaction Techniques for Finding Occluded Features in 3D Scatterplots. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, 12. https://doi.org/10.1145/3290605.3300555Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Hannah K Ricketts, Alexa M Salsbury, David R Bevan, and Anne M Brown. [n.d.]. Using Immersive Visualization Environments to Engage Students in Hands-On Learning. ([n. d.]). https://doi.org/10.1145/3219104.3229274Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Brett Ridel, Patrick Reuter, Jeremy Laviole, Nicolas Mellado, Nadine Couture, and Xavier Granier. 2014. The Revealing Flashlight: Interactive Spatial Augmented Reality for Detail Exploration of Cultural Heritage Artifacts. J. Comput. Cult. Herit. 7, 2, Article 6 (jun 2014), 18 pages. https://doi.org/10.1145/2611376Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Daniel Alejandro Winkler Rosa and Hubert Hoffmann Nagel. 2010. Selection techniques for dense and occluded virtual 3D environments, supported by depth feedback. Double, bound and depth bubble cursors. In Proceedings - International Conference of the Chilean Computer Science Society, SCCC. IEEE Computer Society, 218–225. https://doi.org/10.1109/SCCC.2010.51Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Gerhard Schall, Erick Mendez, Ernst Kruijff, Eduardo Veas, Sebastian Junghanns, Bernhard Reitinger, and Dieter Schmalstieg. 2009. Handheld Augmented Reality for underground infrastructure visualization. Personal and Ubiquitous Computing 13, 4 (jun 2009), 281–291. https://doi.org/10.1007/s00779-008-0204-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Ramiro Serrano-Vergel, Pedro Morillo, Sergio Casas-Yrurzum, and Carolina Cruz-Neira. 2023. Exploring the Suitability of Using Virtual Reality and Augmented Reality for Anatomy Training. IEEE Transactions on Human-Machine Systems (2023).Google ScholarGoogle ScholarCross RefCross Ref
  53. Guihua Shan, Maojin Xie, An Li, Yang Gao, and Xuebin Chi. 2014. Interactive visual exploration of halos in large-scale cosmology simulation. Journal of Visualization (2014). https://doi.org/10.1007/s12650-014-0206-5Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Shashi Shekhar, Zhe Jiang, Reem Y Ali, Emre Eftelioglu, Xun Tang, Venkata MV Gunturi, and Xun Zhou. 2015. Spatiotemporal data mining: A computational perspective. ISPRS International Journal of Geo-Information 4, 4 (2015), 2306–2338.Google ScholarGoogle ScholarCross RefCross Ref
  55. Rongkai Shi, Jialin Zhang, Yong Yue, Lingyun Yu, and Hai-Ning Liang. 2023. Exploration of Bare-Hand Mid-Air Pointing Selection Techniques for Dense Virtual Reality Environments. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems. 1–7.Google ScholarGoogle Scholar
  56. Alireza Sahami Shirazi, Christian Winkler, and Albrecht Schmidt. 2009. Flashlight Interaction: A Study on Mobile Phone Interaction Techniques with Large Displays. In Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services (Bonn, Germany) (MobileHCI ’09). Association for Computing Machinery, New York, NY, USA, Article 93, 2 pages. https://doi.org/10.1145/1613858.1613965Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jonathan C. Silverstein and Fred Dech. 2005. Precisely Exploring Medical Models and Volumes in Collaborative Virtual Reality. Presence: Teleoperators and Virtual Environments 14, 1 (Feb. 2005), 47–59. https://doi.org/10.1162/1054746053890233Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Maurício Sousa, Daniel Mendes, Soraia Paulo, Nuno Matela, Joaquim Jorge, and Daniel Simões Lopes. 2017. Vrrrroom: Virtual reality for radiologists in the reading room. In Proceedings of the 2017 CHI conference on human factors in computing systems. 4057–4062.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Margot van Deursen, Laura Reuvers, Jacobus Dylan Duits, Guido de Jong, Marianne van den Hurk, and Dylan Henssen. 2021. Virtual reality and annotated radiological data as effective and motivating tools to help Social Sciences students learn neuroanatomy. Scientific Reports 2021 11:1 11, 1 (jun 2021), 1–10. https://doi.org/10.1038/s41598-021-92109-yGoogle ScholarGoogle ScholarCross RefCross Ref
  60. Lode Vanacken, Tovi Grossman, and Karin Coninx. 2007. Exploring the effects of environment density and target visibility on object selection in 3D virtual environments. In IEEE Symposium on 3D User Interfaces 2007 - Proceedings, 3DUI 2007. 115–122. https://doi.org/10.1109/3DUI.2007.340783Google ScholarGoogle ScholarCross RefCross Ref
  61. Ramiro Serrano Vergel, Pedro Morillo Tena, Sergio Casas Yrurzum, and Carolina Cruz-Neira. 2020. A comparative evaluation of a virtual reality table and a HoloLens-based augmented reality system for anatomy training. IEEE Transactions on Human-Machine Systems 50, 4 (2020), 337–348.Google ScholarGoogle ScholarCross RefCross Ref
  62. Julius Von Willich, Andrii Matviienko, Sebastian Günther, and Max Mühlhäuser. 2022. Comparing VR Exploration Support for Ground-Based Rescue Robots. In Adjunct Publication of the 24th International Conference on Human-Computer Interaction with Mobile Devices and Services (Vancouver, BC, Canada) (MobileHCI ’22). Association for Computing Machinery, New York, NY, USA, Article 26, 6 pages. https://doi.org/10.1145/3528575.3551440Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Senzhang Wang, Jiannong Cao, and S Yu Philip. 2020. Deep learning for spatio-temporal data mining: A survey. IEEE transactions on knowledge and data engineering 34, 8 (2020), 3681–3700.Google ScholarGoogle ScholarCross RefCross Ref
  64. Yang Wang, Mohit Gupta, Song Zhang, Sen Wang, Xianfeng Gu, Dimitris Samaras, and Peisen Huang. 2008. High resolution tracking of non-rigid motion of densely sampled 3D data using harmonic maps. International Journal of Computer Vision 76, 3 (2008), 283–300.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Ivo Wolf, Marcus Vetter, Ingmar Wegner, Thomas Böttger, Marco Nolden, Max Schöbinger, Mark Hastenteufel, Tobias Kunert, and Hans Peter Meinzer. 2005. The medical imaging interaction toolkit. Medical Image Analysis 9, 6 (dec 2005), 594–604. https://doi.org/10.1016/j.media.2005.04.005Google ScholarGoogle ScholarCross RefCross Ref
  66. Huiyue Wu, Xiaoxuan Sun, Huawei Tu, and Xiaolong Zhang. 2023. ClockRay: A Wrist-Rotation based Technique for Occluded-Target Selection in Virtual Reality. IEEE Transactions on Visualization and Computer Graphics (2023).Google ScholarGoogle Scholar
  67. Difeng Yu, Qiushi Zhou, Joshua Newn, Tilman Dingler, Eduardo Velloso, and Jorge Goncalves. 2020. Fully-occluded target selection in virtual reality. IEEE transactions on visualization and computer graphics 26, 12 (2020), 3402–3413.Google ScholarGoogle ScholarCross RefCross Ref
  68. Lingyun Yu, Konstantinos Efstathiou, Petra Isenberg, and Tobias Isenberg. 2012. Efficient structure-aware selection techniques for 3D point cloud visualizations with 2DOF input. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2245–2254. https://doi.org/10.1109/TVCG.2012.217Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Lingyun Yu, Konstantinos Efstathiou, Petra Isenberg, and Tobias Isenberg. 2016. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds. IEEE Transactions on Visualization and Computer Graphics 22, 1 (jan 2016), 886–895. https://doi.org/10.1109/TVCG.2015.2467202Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Stefanie Zollmann, Raphael Grasset, Gerhard Reitmayr, and Tobias Langlotz. 2014. Image-based X-ray visualization techniques for spatial understanding in outdoor augmented reality. In Proceedings of the 26th Australian Computer-Human Interaction Conference, OzCHI 2014. 194–203. https://doi.org/10.1145/2686612.2686642Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. DensingQueen: Exploration Methods for Spatial Dense Dynamic Data

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SUI '23: Proceedings of the 2023 ACM Symposium on Spatial User Interaction
            October 2023
            505 pages
            ISBN:9798400702815
            DOI:10.1145/3607822

            Copyright © 2023 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 13 October 2023

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate86of279submissions,31%

            Upcoming Conference

            SUI '24
            ACM Symposium on Spatial User Interaction
            October 7 - 8, 2024
            Trier , Germany
          • Article Metrics

            • Downloads (Last 12 months)111
            • Downloads (Last 6 weeks)9

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format