skip to main content
10.1145/3607947.3607997acmotherconferencesArticle/Chapter ViewAbstractPublication Pagesic3Conference Proceedingsconference-collections
research-article

AB-DeepLabv3+: An Encoder-Decoder Method with Attention Mechanism for Polyp Segmentation

Published: 28 September 2023 Publication History

Abstract

A polyp is an abnormal growth that can occur in the colon and can be a precursor to colorectal cancer. Colorectal cancer can be diagnosed and treated earlier when polyps are detected and segmented accurately in medical images. The use of deep learning models for medical image segmentation has shown promising results in recent years. This paper presents a polyp segmentation using the modified version of Deeplabv3+ with an attention mechanism called AB-DeepLabv3+. An attention mechanism enhances the discriminatory power of the network by highlighting informative regions of the input image. In the evaluation of the AB-DeepLabv3+ on the publicly available Kvasir-SEG dataset, it achieved state-of-the-art performance with an overall Dice coefficient of 0.98 and an intersection over union of 0.96. The results demonstrated that the AB-DeepLabv3+ provides accurate and efficient polyp segmentation in colonoscopy images.

References

[1]
Qasem Abu Al-Haija and Adeola Adebanjo. 2020. Breast cancer diagnosis in histopathological images using ResNet-50 convolutional neural network. In IEMTRONICS 2020 - International IOT, Electronics and Mechatronics Conference, Proceedings. https://doi.org/10.1109/IEMTRONICS51293.2020.9216455
[2]
Saruar Alam, Nikhil Kumar Tomar, Aarati Thakur, Debesh Jha, and Ashish Rauniyar. 2020. Automatic polyp segmentation using U-Net-ResNet50. In CEUR Workshop Proceedings, Vol. 2882. arxiv:2012.15247https://arxiv.org/abs/2012.15247
[3]
Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M. Taha, and Vijayan K. Asari. 2018. Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation. (feb 2018). https://doi.org/10.48550/arxiv.1802.06955 arxiv:1802.06955
[4]
Dmitrii Bychkov, Nina Linder, Riku Turkki, Stig Nordling, Panu E. Kovanen, Clare Verrill, Margarita Walliander, Mikael Lundin, Caj Haglund, and Johan Lundin. 2018. Deep learning based tissue analysis predicts outcome in colorectal cancer. Scientific Reports 2018 8:1 8, 1 (feb 2018), 1–11. https://doi.org/10.1038/s41598-018-21758-3
[5]
Yuming Cai, Haotian Li, Junyi Xin, and Guanqun Sun. 2023. MLDA-Unet:Multi Level Dual Attention Unet for Polyp Segmentation. In ieeexplore.ieee.org. 372–376. https://doi.org/10.1109/cme55444.2022.10063321
[6]
Liang Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille. 2017. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 4 (apr 2017), 834–848. https://doi.org/10.1109/tpami.2017.2699184 arxiv:1606.00915
[7]
Yung Chien Chou and Chao Chun Chen. 2022. Improving deep learning-based polyp detection using feature extraction and data augmentation. Multimedia Tools and Applications (2022). https://doi.org/10.1007/S11042-022-13995-6
[8]
Luis A. de Souza, Robert Mendel, Sophia Strasser, Alanna Ebigbo, Andreas Probst, Helmut Messmann, João P. Papa, and Christoph Palm. 2021. Convolutional Neural Networks for the evaluation of cancer in Barrett’s esophagus: Explainable AI to lighten up the black-box. Computers in Biology and Medicine 135 (aug 2021), 104578. https://doi.org/10.1016/J.COMPBIOMED.2021.104578
[9]
Foivos I. Diakogiannis, François Waldner, Peter Caccetta, and Chen Wu. 2020. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing 162 (apr 2020), 94–114. https://doi.org/10.1016/j.isprsjprs.2020.01.013 arxiv:1904.00592
[10]
Junhu Fu, Shengli Lin, Pinghong Zhou, Yi Guo, and Yuanyuan Wang. 2022. M3ResU-Net: a deep residual network for multi-center colorectal polyp segmentation based on multi-scale learning and attention mechanism. Physics in Medicine and Biology 67, 20 (oct 2022), 205005. https://doi.org/10.1088/1361-6560/ac92bb
[11]
Satvik Garg and Somya Garg. 2020. Prediction of lung and colon cancer through analysis of histopathological images by utilizing Pre-trained CNN models with visualization of class activation and saliency maps. In ACM International Conference Proceeding Series. Association for Computing Machinery, 38–45. https://doi.org/10.1145/3442536.3442543
[12]
Xudong Guo, Na Zhang, Jiefang Guo, Huihe Zhang, Youguo Hao, and Jingqing Hang. 2019. Automated polyp segmentation for colonoscopy images: A method based on convolutional neural networks and ensemble learning. Medical Physics 46, 12 (dec 2019), 5666–5676. https://doi.org/10.1002/MP.13865
[13]
Yunbo Guo, Jorge Bernal, and Bogdan J. Matuszewski. 2020. Polyp Segmentation with Fully Convolutional Deep Neural Networks—Extended Evaluation Study. Journal of Imaging 6, 7 (jul 2020), 69. https://doi.org/10.3390/jimaging6070069
[14]
Yun Guo and Bogdan Matuszewski. 2019. GIANA Polyp Segmentation with Fully Convolutional Dilation Neural Networks. In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Vol. 4. SCITEPRESS - Science and Technology Publications, 632–641. https://doi.org/10.5220/0007698806320641
[15]
Mayuri Gupta, Yash Kumar Singhal, and Adwitiya Sinha. 2022. Assessing Spatiotemporal Transmission Dynamics of COVID-19 Outbreak Using AI Analytics. 829–838. https://doi.org/10.1007/978-981-16-3346-1_67
[16]
Mayuri Gupta and Adwitiya Sinha. 2022. Multi-class autoencoder-ensembled prediction model for detection of COVID-19 severity. Evolutionary Intelligence (2022). https://doi.org/10.1007/s12065-022-00744-9
[17]
Nabil Ibtehaz and M. Sohel Rahman. 2020. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks 121 (2020), 74–87. https://doi.org/10.1016/j.neunet.2019.08.025 arxiv:1902.04049
[18]
Debesh Jha, Michael A. Riegler, Dag Johansen, Pal Halvorsen, and Havard D. Johansen. 2020. DoubleU-Net: A deep convolutional neural network for medical image segmentation. In Proceedings - IEEE Symposium on Computer-Based Medical Systems, Vol. 2020-July. 558–564. https://doi.org/10.1109/CBMS49503.2020.00111 arxiv:2006.04868
[19]
Debesh Jha, Pia H. Smedsrud, Dag Johansen, Thomas De Lange, Havard D. Johansen, Pal Halvorsen, and Michael A. Riegler. 2021. A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE Journal of Biomedical and Health Informatics 25, 6 (2021), 2029–2040. https://doi.org/10.1109/JBHI.2021.3049304 arxiv:2107.12435
[20]
Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Pål Halvorsen, Thomas de Lange, Dag Johansen, and Håvard D. Johansen. 2020. Kvasir-SEG: A Segmented Polyp Dataset. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11962 LNCS (2020), 451–462. https://doi.org/10.1007/978-3-030-37734-2_37 arxiv:1911.07069
[21]
Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Dag Johansen, Thomas De Lange, Pal Halvorsen, and Havard D. Johansen. 2019. ResUNet++: An Advanced Architecture for Medical Image Segmentation. Proceedings - 2019 IEEE International Symposium on Multimedia, ISM 2019 (2019), 225–230. https://doi.org/10.1109/ISM46123.2019.00049 arxiv:1911.07067
[22]
Bagesh Kumar, Amritansh Mishra, Subham Raj, Aditya Kumar, Om Suhas Vibhandik, Aayush Talesara, Shubham Kumar, and O. P. Vyas. 2022. An approach for classifying benign and malignant skin lesions using Optimized Deep Learning and SVM. In ACM International Conference Proceeding Series. 429–439. https://doi.org/10.1145/3549206.3549281
[23]
Nazim Bhimani MBiostat, Geoffrey Ym Wong, Charles Molloy, Mbathio Dieng, Patrick J. Kelly, and Thomas J. Hugh. 2022. Lifetime direct healthcare costs of treating colorectal cancer: a systematic review. European Journal of Health Economics (2022). https://doi.org/10.1007/S10198-022-01497-Z
[24]
Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. 2022. Image Segmentation Using Deep Learning: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 7 (2022), 3523–3542. https://doi.org/10.1109/TPAMI.2021.3059968 arxiv:2001.05566
[25]
Nita Mulliqi, Sule Yildirim, Ahmed Mohammed, Lule Ahmedi, Hao Wang, Ogerta Elezaj, and Oistein Hovde. 2020. The Importance Of Skip Connections In Encoder-Decoder Architectures For Colorectal Polyp Detection. In 2020 IEEE International Conference on Image Processing (ICIP), Vol. 2020-Octob. IEEE, 380–384. https://doi.org/10.1109/ICIP40778.2020.9191310
[26]
Dunlu Peng, Xi Yu, Wenjia Peng, and Jianping Lu. 2021. DGFAU-Net: Global feature attention upsampling network for medical image segmentation. Neural Computing and Applications 33, 18 (sep 2021), 12023–12037. https://doi.org/10.1007/s00521-021-05908-9
[27]
Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Baerum Hospital, Norway Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt Karolinska Institutet, Sweden Karolinska Hospital, Sweden Michael Riegler, Pål Halvorsen, Sigrun Losada Eskeland, Thomas de Lange, Peter Thelin Schmidt, and Michael Riegler. 2017. Kvasir: A Multi-Class Image Dataset for Com-puter Aided Gastrointestinal Disease Detection. ACM Reference format 6 (2017). https://doi.org/10.1145/3083187.3083212
[28]
Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood Dehghan, Osmar R Zaiane, and Martin Jagersand. [n. d.]. U2-Net: Going deeper with nested U-structure for salient object detection. Elsevier ([n. d.]). arxiv:2005.09007v3https://www.sciencedirect.com/science/article/pii/S0031320320302077
[29]
Tariq Rahim, Syed Ali Hassan, and Soo Young Shin. 2021. A deep convolutional neural network for the detection of polyps in colonoscopy images. Biomedical Signal Processing and Control 68 (jul 2021), 102654. https://doi.org/10.1016/j.bspc.2021.102654 arxiv:2008.06721
[30]
Dustin Ruda, Stefan Turek, Dirk Ribbrock, and Peter Zajac. 2022. Very fast finite element Poisson solvers on lower precision accelerator hardware: A proof of concept study for Nvidia Tesla V100. International Journal of High Performance Computing Applications 36, 4 (jul 2022), 459–474. https://doi.org/10.1177/10943420221084657
[31]
Pengfei Song, Jinjiang Li, and Hui Fan. 2022. Attention based multi-scale parallel network for polyp segmentation. Computers in Biology and Medicine 146 (jul 2022), 105476. https://doi.org/10.1016/j.compbiomed.2022.105476
[32]
P Verma, V Aggrawal, J Maggu Proceedings of the 2022 Fourteenth, and undefined 2022. 2022. FExR. A-DCNN: Facial Emotion Recognition with Attention mechanism using Deep Convolution Neural Network. dl.acm.org (aug 2022), 196–203. https://doi.org/10.1145/3549206.3549243
[33]
Shuai Wang, Yingying Zhu, Sungwon Lee, Daniel C. Elton, Thomas C. Shen, Youbao Tang, Yifan Peng, Zhiyong Lu, and Ronald M. Summers. 2022. Global-Local attention network with multi-task uncertainty loss for abnormal lymph node detection in MR images. Medical Image Analysis 77 (apr 2022), 102345. https://doi.org/10.1016/J.MEDIA.2021.102345
[34]
Zhaobin Wang, E. Wang, and Ying Zhu. 2020. Image segmentation evaluation: a survey of methods. Artificial Intelligence Review 53, 8 (dec 2020), 5637–5674. https://doi.org/10.1007/S10462-020-09830-9/TABLES/6
[35]
Dan Yoon, Hyoun Joong Kong, Byeong Soo Kim, Woo Sang Cho, Jung Chan Lee, Minwoo Cho, Min Hyuk Lim, Sun Young Yang, Seon Hee Lim, Jooyoung Lee, Ji Hyun Song, Goh Eun Chung, Ji Min Choi, Hae Yeon Kang, Jung Ho Bae, and Sungwan Kim. 2022. Colonoscopic image synthesis with generative adversarial network for enhanced detection of sessile serrated lesions using convolutional neural network. Scientific Reports 2022 12:1 12, 1 (jan 2022), 1–12. https://doi.org/10.1038/s41598-021-04247-y
[36]
Zongwei Zhou, Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. [n. d.]. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. ([n. d.]). arxiv:1807.10165v1
[37]
Jianbo Zhu, Mingfeng Ge, Zhimin Chang, and Wenfei Dong. 2023. CRCNet: Global-local context and multi-modality cross attention for polyp segmentation. Biomedical Signal Processing and Control 83 (may 2023), 104593. https://doi.org/10.1016/j.bspc.2023.104593

Cited By

View all
  • (2024)2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentationSignal, Image and Video Processing10.1007/s11760-024-03240-y18:6-7(5377-5386)Online publication date: 10-May-2024

Index Terms

  1. AB-DeepLabv3+: An Encoder-Decoder Method with Attention Mechanism for Polyp Segmentation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    IC3-2023: Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing
    August 2023
    783 pages
    ISBN:9798400700224
    DOI:10.1145/3607947
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 September 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Atrous Spatial Pyramid Pooling
    2. Attention mechanism
    3. Deeplabv3+
    4. Dice coefficient
    5. Image Segmentation
    6. Kvasir-SEG
    7. Polyp Segmentation

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    IC3 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)33
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)2MGAS-Net: multi-level multi-scale gated attentional squeezed network for polyp segmentationSignal, Image and Video Processing10.1007/s11760-024-03240-y18:6-7(5377-5386)Online publication date: 10-May-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media