skip to main content
10.1145/3608164.3608214acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbbtConference Proceedingsconference-collections
research-article

A Bayesian-based Approach for Identification of Potential Protein Biomarkers in Hepatocellular Carcinoma

Published: 07 November 2023 Publication History
First page of PDF

References

[1]
Siegel, R.L., Miller, K.D. and Jemal, A. (2020) ‘Cancer statistics, 2020’, CA: a cancer journal for clinicians, 70(1), pp. 7–30.
[2]
Sartorius, K. et al. (2015) ‘Global and country underestimation of hepatocellular carcinoma (HCC) in 2012 and its implications’, Cancer Epidemiology, 39(3), pp. 284–290.
[3]
Galle, P.R. et al. (2018) ‘EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma’, Journal of Hepatology, 69(1), pp. 182–236.
[4]
Gentile, I.( 1 ) et al. (2017) ‘Diagnostic accuracy of PIVKA-II, alpha-fetoprotein and a combination of both in diagnosis of hepatocellular carcinoma in patients affected by chronic HCV infection’, In Vivo, 31(4), pp. 695-700–700.
[5]
Carr, B.I. et al. (2018) ‘HCC with low- and normal-serum alpha-fetoprotein levels’, Clinical practice (London, England), 15(1), pp. 453–464.
[6]
Wei, W. et al. (2020) ‘Diagnostic value of plasma HSP90α levels for detection of hepatocellular carcinoma’, BMC Cancer, 20(1).
[7]
Kim, E. and Viatour, P. (2020) ‘Hepatocellular carcinoma: old friends and new tricks’, Experimental & molecular medicine, 52(12), pp. 1898–1907.
[8]
Montagnana, M., Danese, E. and Lippi, G. (2015) ‘Squamous cell carcinoma antigen in hepatocellular carcinoma: Ready for the prime time?’, Clinica Chimica Acta, 445, pp. 161–166.
[9]
Guo, L.Y., Zhu, P. and Jin, X.P. (2016) ‘Association between the expression of HIF-1α and VEGF and prognostic implications in primary liver cancer’, Genetics and Molecular Research, 15(2).
[10]
Piñero, F., Dirchwolf, M. and Pessôa, M.G. (2020) ‘Biomarkers in Hepatocellular Carcinoma: Diagnosis, Prognosis and Treatment Response Assessment’, Cells, 9(6).
[11]
Ye, Q.-H. and Qin, L.-X. (2003) ‘Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning’, Nature Medicine, 9(4), p. 416.
[12]
Shen, J.( 1 ) et al. (2020) ‘Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases’, Scientific Reports, 10(1).
[13]
Xu W, He H, Guo Z, Li W. (2022) 'Evaluation of machine learning models on protein level inference from prioritized RNA features.' Brief Bioinform, 23(3):bbac091.
[14]
Han, L.( 1 ) et al. (2018) ‘A probabilistic pathway score (PROPS) for classification with applications to inflammatory bowel disease’, Bioinformatics, 34(6), pp. 985-993–993.
[15]
Scutari, M. (2009) ‘Learning Bayesian Networks with the bnlearn R Package’. Available at: https://search-ebscohost-com.ez.xjtlu.edu.cn/login.aspx?direct=true&db=edsarx&AN=edsarx.0908.3817&site=eds-live&scope=site (Accessed: 22 December 2022).
[16]
Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, Fan J, (2019) 'Integrated Proteogenomic Characterization of HBV-Related Hepatocellular Carcinoma.' Cell, 179(2):561-577.e22. https://doi.org/10.1016/j.cell.2019.08.052.
[17]
Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, Li Z, (2019) 'Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.' Nature, 567(7747):257–261. https://doi.org/10.1038/s41586-019-0987-8.
[18]
Bijlsma, S.( 1 ) et al. (2006) ‘Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation’, Analytical Chemistry, 78(2), pp. 567-574–574.
[19]
Scutari, M. (2009) ‘Learning Bayesian Networks with the bnlearn R Package’. Available at: https://search-ebscohost-com.ez.xjtlu.edu.cn/login.aspx?direct=true&db=edsarx&AN=edsarx.0908.3817&site=eds-live&scope=site (Accessed: 22 December 2022).
[20]
Wu, Y., Huang, T., Li, X. et al. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nat Commun 14, 1181 (2023). https://doi.org/10.1038/s41467-023-36837-x
[21]
Chen, H. et al. (2014) ‘Expression of P450 and nuclear receptors in normal and end-stage Chinese livers’, WORLD JOURNAL OF GASTROENTEROLOGY, 20(26), pp. 8681–8690.
[22]
Kurzawski, M. et al. (2012) ‘Expression of genes involved in xenobiotic metabolism and transport in end-stage liver disease: up-regulation of ABCC4 and CYP1B1’, Pharmacological Reports, 64(4), pp. 927–939.
[23]
Ghayee, H.K., Auchus, R.J. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord 8, 289–300 (2007). https://doi.org/10.1007/s11154-007-9052-2
[24]
Wen Y, Shang Y, Wang Q. Exploration of the Mechanism of Linoleic Acid Metabolism Dysregulation in Metabolic Syndrome. Genom Proteom Bioinform. 2022;2022:6793346.
[25]
Guo J, Villalta P, Weight C, Bonala R, Johnson F, Rosenquist T, Targeted and Untargeted Detection of DNA Adducts of Aromatic Amine Carcinogens in Human Bladder by Ultra-Performance Liquid Chromatography-High-Resolution Mass Spectrometry. Chem Res Toxicol. 2018;31(11):1264-1274.
[26]
Guengerich F. Drug Metabolism: A Half-Century Plus of Progress, Continued Needs, and New Opportunities. Drug Metab Dispos. 2022;50(7):1070-1077.
[27]
Zhou Y, Khan H, Xiao J, Cheang W. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci. 2021;22(21):12029.
[28]
Guo Z, Ma Y, Wang Y, Xiang H, Yang S-Y, Guo Z, The Role of IL-6 and TMEM100 in Lumbar Discogenic Pain and the Mechanism of the Glycine-Serine-Threonine Metabolic Axis: A Metabolomic and Molecular Biology Study. J Pain Res. 2023;16:1–14.
[29]
Rattanawong K, Koiso N, Toda E, Kinoshita A, Tanaka M, Tsuji H, Regulatory functions of ROS dynamics via glutathione metabolism and glutathione peroxidase activity in developing rice zygote. Plant J. 2021;108(1):206-220.
[30]
Zhou Y, Li X, Long G, Tao Y, Zhou L, Tang J. Identification and validation of a tyrosine metabolism-related prognostic prediction model and characterization of the tumor microenvironment infiltration in hepatocellular carcinoma. Front Immunol. 2022;13:994259.
[31]
Zhang Y, Li Q, Liu Y, The Role of Extracellular Matrix and Its Receptors in the Development and Progression of Gastric Cancer: A Literature Review. Front Immunol. 2022;13:916933.
[32]
Yu, J.( 1 ) et al. (2021) ‘CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling’, Theranostics, 11(5), pp. 2123-2136–2136.
[33]
Ashida, R.( 1,2 ) et al. (2017) ‘CYP3A4 gene is a novel biomarker for predicting a poor prognosis in hepatocellular carcinoma’, Cancer Genomics and Proteomics, 14(6), pp. 445-453–453.
[34]
Yu, D.( 1,2 ) et al. (2015) ‘Suppression of CYP2C9 by MicroRNA hsa-miR-128-3p in human liver cells and association with hepatocellular carcinoma’, Scientific Reports, 5.
[35]
Zhu, Y. et al. (2020) ‘Clinical significance and function of RDH16 as a tumor‐suppressing gene in hepatocellular carcinoma’, Hepatology Research, 50(1), pp. 110–120.
[36]
Hyuk Soo Eun et al. (2019) ‘Cytochrome P450 4A11 Expression in Hepatocellular Carcinoma’, Gut & Liver, 13(6(suppl. 1)), p. 113. Available at: https://search-ebscohost-com.ez.xjtlu.edu.cn/login.aspx?direct=true&db=asn&AN=141506449&site=eds-live&scope=site (Accessed: 24 December 2022).
[37]
Yu‐Yan Pang et al. (2020) ‘The clinical value and potential molecular mechanism of the downregulation of MAOA in hepatocellular carcinoma tissues’, Cancer Medicine, 9(21), pp. 8004–8019.
[38]
Dai, W. et al. (2020) ‘OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism’, Journal of Hepatology, 72(5), pp. 909–923.
[39]
Chen, S.-L.( 1,3 ) et al. (2019) ‘A GYS2/p53 negative feedback loop restricts tumor growth in HBV-related hepatocellular carcinoma’, Cancer Research, 79(3), pp. 534-545–545.
[40]
Dazhi Tian et al. (2021) ‘A Five-Gene-Based Prognostic Signature for Hepatocellular Carcinoma’, Frontiers in Medicine, 8.
[41]
Xuejun Ai et al. (2018) ‘Overexpression of PIK3R1 promotes hepatocellular carcinoma progression’, Biological Research, 51(1), pp. 1–10.
[42]
Yufu Tang et al. (2018) ‘Overexpression of PCK1 Gene Antagonizes Hepatocellular Carcinoma Through the Activation of Gluconeogenesis and Suppression of Glycolysis Pathways’, Cellular Physiology and Biochemistry, 47(1), pp. 344–355.
[43]
Cui, H.( 1,2,3 ) et al. (2021) ‘ENO3 Inhibits Growth and Metastasis of Hepatocellular Carcinoma via Wnt/β-Catenin Signaling Pathway’, Frontiers in Cell and Developmental Biology, 9.
[44]
Kacevska, M. et al. (2012) ‘DNA methylation dynamics in the hepatic CYP3A4 gene promoter’, Biochimie, 94(11), pp. 2338–2344.
[45]
Sciarra, A. et al. (2017) ‘CYP1A2 is a predictor of HCC recurrence in HCV-related chronic liver disease: A retrospective multicentric validation study’, Digestive & Liver Disease, 49(4), pp. 434–439.

Index Terms

  1. A Bayesian-based Approach for Identification of Potential Protein Biomarkers in Hepatocellular Carcinoma

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICBBT '23: Proceedings of the 2023 15th International Conference on Bioinformatics and Biomedical Technology
    May 2023
    313 pages
    ISBN:9798400700385
    DOI:10.1145/3608164
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 07 November 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Bayesian-based approach
    2. Hepatocellular carcinoma
    3. Machine learning
    4. Potential biomarkers
    5. Proteomic data

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    ICBBT 2023

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 34
      Total Downloads
    • Downloads (Last 12 months)23
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 02 Mar 2025

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media