skip to main content
10.1145/3608251.3608277acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccmsConference Proceedingsconference-collections
research-article

Computer Simulation of Nonlinear Mixed-Effect Models with Ordinary Differential Equations for Genetic Regulation

Published: 17 August 2023 Publication History

Abstract

Nonlinear mixed-effect model is a powerful tool to analyze complex data that have both within-subject and between-subject variabilities. Although a variety of studies have been conducted to infer parameter distributions under the assumption of parameter independence, it is not clear what are the influence of parameter correlation on the system dynamics. In this work we provide computer simulations of nonlinear mixed-effect model with ordinary differential equations. Using a gene network model as the test problem, we examine the influence of parameter correlation on the system dynamics of nonlinear mixed-effect model with normal or nonnormal random effects. Computer simulations show that the increase of positive correlation will elevate the difference between simulations with and without parameter correlation for both normal and gamma random effects. In addition, the increase of negative correlation will enhance the difference between simulations with and without parameter correlation for gamma random effects. However, the increase of negative correlation will decrease the difference between simulations with and without parameter correlation for the normal random effects. Simulation results will provide insights for the inference of parameter distributions under the assumption of parameter correlation.

References

[1]
Jeffrey A Farrell, Yiqun Wang, Samantha J. Riesenfeld, Karthik Shekhar, Aviv Regev, and Alexander F. Schier. 2018. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360(6392): eaar3131.
[2]
Jun Ding, Nadav Sharon, and Ziv Bar-Joseph. 2022. Temporal modelling using single-cell transcriptomics. Nature Reviews Genetics 23(6): 355-368. https://doi.org/10.1038/s41576-021-00444-7
[3]
Andrew E Teschendorff, and Andrew P. Feinberg. 2021. Statistical mechanics meets single-cell biology. Nature Reviews Genetics 22(7): 459-476.  https://doi.org/10.1038/s41576-021-00341-z
[4]
David Lähnemann, Johannes Köster, Ewa Szczurek, Davis J. McCarthy, Stephanie C. Hicks, Mark D. Robinson, Catalina A. Vallejos 2020. Eleven grand challenges in single-cell data science. Genome biology 21(1): 1-35. https://doi.org/10.1186/s13059-020-1926-6.
[5]
Aimin Chen, Tianshou Zhou, and Tianhai Tian. 2022. Integrated Pipelines for Inferring Gene Regulatory Networks from Single-Cell Data. Current Bioinformatics 17(7): 559-564. https://doi.org/10.2174/1574893617666220511234247
[6]
Mary J. Lindstrom, and Douglas M. Bates. 1990. Nonlinear mixed effects models for repeated measures data. Biometrics 46(3): 673-687. https://doi.org/10.2307/2532087
[7]
Marie Davidian, and David M. Giltinan. 2003. Nonlinear models for repeated measurement data: an overview and update. Journal of agricultural, biological, and environmental statistics. 8: 387-419. https://doi.org/10.1198/1085711032697.
[8]
Se Yoon Lee. 2022. Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications." Mathematics 10(6): 898. https://doi.org/10.3390/math10060898
[9]
John C Boik, Robert A. Newman, and Robert J. Boik. 2008. Quantifying synergism/antagonism using nonlinear mixed‐effects modeling: A simulation study. Statistics in medicine. 27(7): 1040-1061.
[10]
James T. Thorson, and Coilin Minto. 2015. Mixed effects: a unifying framework for statistical modelling in fisheries biology." ICES Journal of Marine Science 72(5): 1245-1256. https://doi.org/10.1093/icesjms/fsu213
[11]
Martin Berglund, Mikael Sunnåker, Martin Adiels, Mats Jirstrand, and Bernt Wennberg. 2012. Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations. Mathematical medicine and biology: a journal of the IMA. 29(4): 361-384. https://doi.org/10.1093/imammb/dqr021
[12]
Reza Drikvandi. 2017. Nonlinear mixed-effects models for pharmacokinetic data analysis: assessment of the random-effects distribution. Journal of pharmacokinetics and pharmacodynamics 44(3): 223-232. https://doi.org/10.1007/s10928-017-9510-8
[13]
Robert J Bauer. 2019. NONMEM tutorial part I: description of commands and options, with simple examples of population analysis. CPT: pharmacometrics & systems pharmacology 8(8): 525-537.
[14]
Markus Karlsson, David LI Janzén, Lucia Durrieu, Alejandro Colman-Lerner, Maria C. Kjellsson, and Gunnar Cedersund. 2015. Nonlinear mixed-effects modelling for single cell estimation: when, why, and how to use it. BMC systems biology 9, no. 1 (2015): 1-15. https://doi.org/10.1186/s12918-015-0203-x
[15]
Sebastian Persson, Niek Welkenhuysen, Sviatlana Shashkova, Samuel Wiqvist, Patrick Reith, Gregor W. Schmidt, Umberto Picchini, and Marija Cvijovic. 2022. Scalable and flexible inference framework for stochastic dynamic single-cell models. PLoS Computational Biology 18(5): e1010082. https://doi.org/10.1371/journal.pcbi.1010082
[16]
Estelle Kuhn, and Marc Lavielle. 2005. Maximum likelihood estimation in nonlinear mixed effects models. Computational statistics & data analysis 49(4): 1020-1038. https://doi.org/10.1016/j.csda.2004.07.002.
[17]
José Clelto Barros Gomes, Reiko Aoki, Victor Hugo Lachos, Gilberto Alvarenga Paula, and Cibele Maria Russo. 2022. Fast inference for robust nonlinear mixed-effects models." Journal of Applied Statistics. 1-24. https://doi.org/10.1080/02664763.2022.2034141.
[18]
Victor H Lachos, Luis M. Castro, and Dipak K. Dey. 2013. Bayesian inference in nonlinear mixed-effects models using normal independent distributions." Computational Statistics & Data Analysis 64: 237-252. https://doi.org/10.1016/j.csda.2013.02.011.
[19]
Dipak K Dey, Ming-Hui Chen, and Hong Chang. 1997. Bayesian approach for nonlinear random effects models." Biometrics: .  53(4): 1239-1252. https://doi.org/10.2307/2533493
[20]
Umberto Picchini. 2014. Inference for SDE models via approximate Bayesian computation. Journal of Computational and Graphical Statistics. 23(4): 1080-1100. https://doi.org/10.1080/10618600.2013.866048
[21]
Thomas Krumpolc, D. W. Trahan, D. A. Hickman, and L. T. Biegler. 2022. Kinetic parameter estimation with nonlinear mixed-effects models." Chemical Engineering Journal. 444: 136319. https://doi.org/10.1016/j.cej.2022.136319
[22]
Kerrie P Nelson, Stuart R. Lipsitz, Garrett M. Fitzmaurice, Joseph Ibrahim, Michael Parzen, and Robert Strawderman. 2006. Use of the probability integral transformation to fit nonlinear mixed-effects models with nonnormal random effects." Journal of Computational and Graphical Statistics. 15(1): 39-57. https://doi.org/10.1198/106186006X96854
[23]
Hao Chen, Lanshan Han, and Alvin Lim. 2022. Estimating linear mixed effects models with truncated normally distributed random effects." Communications in Statistics-Simulation and Computation. 1-21. https://doi.org/10.1080/03610918.2022.2066696
[24]
Fernanda L Schumacher, Dipak K. Dey, and Victor H. Lachos. 2021. Approximate inferences for nonlinear mixed effects models with scale mixtures of skew-normal distributions." Journal of Statistical Theory and Practice 15(3): 60. https://doi.org/10.1007/s42519-021-00172-5
[25]
Weng, Lee, Hongyue Dai, Yihui Zhan, Yudong He, Sergey B. Stepaniants, and Douglas E. Bassett. "Rosetta error model for gene expression analysis." Bioinformatics 22, no. 9 (2006): 1111-1121. https://doi.org/10.1093/bioinformatics/btl045
[26]
Richard R Stein, Debora S. Marks, and Chris Sander. 2015. Inferring pairwise interactions from biological data using maximum-entropy probability models." PLoS computational biology. 11(7): e1004182. https://doi.org/10.1371/journal.pcbi.1004182
[27]
Zhimin Deng, Xinan Zhang, and Tianhai Tian. 2018. Inference of model parameters using particle filter algorithm and Copula distributions. IEEE/ACM transactions on computational biology and bioinformatics 17(4): 1231-1240. https://doi.org/10.1109/TCBB.2018.2880974

Cited By

View all
  • (2023)Simulations of the insulin-like growth factor receptor signaling pathway with randomly sampled parameters2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM58861.2023.10386003(3848-3854)Online publication date: 5-Dec-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICCMS '23: Proceedings of the 2023 15th International Conference on Computer Modeling and Simulation
June 2023
293 pages
ISBN:9798400707919
DOI:10.1145/3608251
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 August 2023

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Nonlinear mixed-effect model
  2. gamma distribution
  3. normal distribution
  4. random variable correlation

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICCMS 2023

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)1
Reflects downloads up to 03 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Simulations of the insulin-like growth factor receptor signaling pathway with randomly sampled parameters2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM58861.2023.10386003(3848-3854)Online publication date: 5-Dec-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media