skip to main content
10.1145/3610538.3614620acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
course

Discrete Laplacians for General Polygonal and Polyhedral Meshes

Published:06 December 2023Publication History

ABSTRACT

The Laplace-Beltrami operator is one of the essential tools in geometric processing. It allows us to solve numerous partial differential equations on discrete surface and volume meshes, which is a fundamental building block in many computer graphics applications. Discrete Laplacians are typically limited to standard elements like triangles or quadrilaterals, which severely constrains the tessellation of the mesh. But in recent years, several approaches were able to generalize the Laplace Beltrami and its closely related gradient and divergence operators to more general meshes. This allows artists and engineers to work with a wider range of elements which are sometimes required and beneficial in their field. This course, which extends the state-of-the-art report by Bunge and Botsch [2023], discusses the different constructions of these three ubiquitous differential operators on arbitrary polygons and polyhedra and analyzes their individual advantages and properties in common computer graphics applications.

References

  1. Marc Alexa, Philipp Herholz, Maximilian Kohlbrenner, and Olga Sorkine-Hornung. 2020. Properties of Laplace Operators for Tetrahedral Meshes. Computer Graphics Forum 39, 5 (2020).Google ScholarGoogle Scholar
  2. Marc Alexa and Max Wardetzky. 2011. Discrete Laplacians on General Polygonal Meshes. ACM Transactions on Graphics 30, 4 (2011), 102:1--102:10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Boris Andreianov, Mostafa Bendahmane, and Florence Hubert. 2013. On 3D DDFV discretization of gradient and divergence operators. II. Discrete functional analysis tools and applications to degenerate parabolic problems. Computational Methods in Applied Mathematics 13, 4 (2013), pp. 369--410. Google ScholarGoogle ScholarCross RefCross Ref
  4. Boris Andreianov, Mostafa Bendahmane, Florence Hubert, and Stella Krell. 2012. On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. IMA Journal of Numerical Analysis 32, 4 (2012), pp.1574--1603. Google ScholarGoogle ScholarCross RefCross Ref
  5. Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. 2006. Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006), 1--155.Google ScholarGoogle ScholarCross RefCross Ref
  6. Prusty Aurojyoti, Piska Raghu, Amirtham Rajagopal, and Jn Reddy. 2019. An n-sided polygonal finite element for nonlocal nonlinear analysis of plates and laminates. Internat. J. Numer. Methods Engrg. 120 (2019), 1071--1107.Google ScholarGoogle ScholarCross RefCross Ref
  7. Lourenço Beirão da Veiga, Franco Brezzi, and Luisa Donatella Marini. 2013. Virtual Elements for Linear Elasticity Problems. SIAM J. Numer. Anal. 51, 2 (2013), 794--812.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Lourenço Beirão da Veiga, Franco Dassi, and Alessandro Russo. 2017. High-order Virtual Element Method on polyhedral meshes. Computers and Mathematics with Applications 74 (2017), 1110--1122.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. J.E. Bishop. 2009. Simulating the Pervasive Fracture of materials and Structures Using Randomly Close Packed Voronoi Tessellations. Computational Mechanics 44, 4 (2009), 455--471.Google ScholarGoogle ScholarCross RefCross Ref
  10. J.E. Bishop. 2014. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Internat. J. Numer. Methods Engrg. 97 (2014), 1--31.Google ScholarGoogle ScholarCross RefCross Ref
  11. Mario Botsch, Robert Sumner, Mark Pauly, and Markus Gross. 2006. Deformation Transfer for Detail-Preserving Surface Editing. In Proc. of Vision, Modeling and Visualization. 357--364.Google ScholarGoogle Scholar
  12. Franco Brezzi, Konstantin Lipnikov, Mikhail Shashkov, and Valeria Simoncini. 2007. A new Discretization Methodology for Diffusion Problems on Generalized Polyhedral Meshes. Computer Methods in Applied Mechanics and Engineering 196, 37 (2007), 3682--3692. Google ScholarGoogle ScholarCross RefCross Ref
  13. Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. 2005. A Family of Mimetic Finite Difference Methods on Polygonal and Polyhedral Meshes. Mathematical Models and Methods in Applied Sciences 15, 10 (2005), 1533--1551.Google ScholarGoogle ScholarCross RefCross Ref
  14. Astrid Bunge and Mario Botsch. 2023. A Survey on Discrete Laplacians for General Polygonal Meshes. Computer Graphics Forum 42, 2 (2023), 521--544. Google ScholarGoogle ScholarCross RefCross Ref
  15. Astrid Bunge, Mario Botsch, and Marc Alexa. 2021. The Diamond Laplace for Polygonal and Polyhedral Meshes. Computer Graphics Forum 40, 5 (2021), 217--230.Google ScholarGoogle ScholarCross RefCross Ref
  16. Astrid Bunge, Philipp Herholz, Misha Kazhdan, and Mario Botsch. 2020. Polygon Laplacian Made Simple. Computer Graphics Forum 39, 2 (2020), 303--313. Astrid Bunge, Philipp Herholz, Olga Sorkine-Hornung, Mario Botsch, and Michael Kazhdan. 2022. Variational Quadratic Shape Functions for Polygons and Polyhedra. ACM Trans. Graph. 41, 4, Article 54 (2022), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Renjie Chen and Craig Gotsman. 2016. On pseudo-harmonic barycentric coordinates. Computer Aided Geometric Design 44 (2016), 15--35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Yanqing Chen, Timothy A. Davis, William W. Hager, and Sivasankaran Rajamanickam. 2008. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3 (2008), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael Kazhdan. 2009. Estimating the Laplace-Beltrami Operator by Restricting 3D Functions. Computer Graphics Forum 28, 5 (2009), 1475--1484.Google ScholarGoogle ScholarCross RefCross Ref
  20. Yves Coudière and Florence Hubert. 2011. A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations. SIAM J. Sci. Comput. 33, 4 (2011), 1739--1764.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Keenan Crane. 2019. The n-dimensional cotangent formula. https://www.cs.cmu.edu/~kmcrane/Projects/Other/nDCotanFormula.pdf.Google ScholarGoogle Scholar
  22. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Transactions on Graphics 32, 5 (2013), 152:1--152:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Fernando de Goes, Andrew Butts, and Mathieu Desbrun. 2020. Discrete Differential Operators on Polygonal Meshes. ACM Transactions on Graphics 39, 4 (2020), 110:1--110:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Fernando de Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016. Subdivision Exterior Calculus for Geometry Processing. ACM Transactions on Graphics 35, 4 (2016), 133:1--133:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mathieu Desbrun, Anil N. Hirani, Melvin Leok, and Jerrold E. Marsden. 2005. Discrete Exterior Calculus. arXiv: Differential Geometry (2005). Google ScholarGoogle ScholarCross RefCross Ref
  26. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of ACM SIGGRAPH. 317--324.Google ScholarGoogle Scholar
  27. K. Domelevo and P. Omnés. 2005. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. Math. Model. Numer. Anal. (M2AN) 39, 6 (2005), 1203--1249.Google ScholarGoogle Scholar
  28. G.M. Dusinberre. 1961. Heat-transfer Calculations by Finite Differences. International Textbook Company.Google ScholarGoogle Scholar
  29. G. M. Dusinberre. 1955. Heat transfer calculations by numerical methods. Journal of the American Society for Naval Engineers 67, 4 (1955), 991--1002. Google ScholarGoogle ScholarCross RefCross Ref
  30. Gerhard Dziuk. 1988. Finite Elements for the Beltrami operator on arbitrary surfaces. In Partial Differential Equations and Calculus of Variations, Stefan Hildebrandt and Rolf Leis (Eds.). Springer Berlin Heidelberg, 142--155. Google ScholarGoogle ScholarCross RefCross Ref
  31. Graeme Fairweather and Andreas Karageorghis. 1998. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics 9, 1 (1998), 69--95.Google ScholarGoogle ScholarCross RefCross Ref
  32. Michael S. Floater. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1 (2003), 19--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Michael S. Floater. 2015. Generalized Barycentric Coordinates and Applications. Acta Numerica 24 (2015), 161--214. Google ScholarGoogle ScholarCross RefCross Ref
  34. Richard Franke. 1979. A critical comparison of some methods for interpolation of scattered data. Technical Report. Naval Postgraduate School.Google ScholarGoogle Scholar
  35. Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations. Johns Hopkins University Press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  37. Philipp Herholz, Jan Eric Kyprianidis, and Marc Alexa. 2015. Perfect Laplacians for Polygon Meshes. Computer Graphics Forum 34, 5 (2015), 211--218.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. F. Hermeline. 2000. A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160, 2 (2000), 481--499.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. F. Hermeline. 2009. A Finite Volume Method for Approximating 3D Diffusion Operators on General Meshes. J. Comput. Phys. 228, 16 (2009), 5763--5786.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Klaus Hildebrandt, Konrad Polthier, and Max Wardetzky. 2006. On the Convergence of Metric and Geometric Properties of Polyhedral Surfaces. Geometriae Dedicata 123 (2006), 89--112. Google ScholarGoogle ScholarCross RefCross Ref
  41. W. Höhn and H. D. Mittelmann. 1981. Some remarks on the discrete maximum-principle for finite elements of higher order. Computing 27, 2 (1 June 1981), 145--154. Google ScholarGoogle ScholarCross RefCross Ref
  42. K. Hormann and N. Sukumar. 2008. Maximum Entropy Coordinates for Arbitrary Polytopes. Computer Graphics Forum 27, 5 (2008), 1513--1520.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. T.J.R. Hughes. 2012. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications.Google ScholarGoogle Scholar
  44. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic Coordinates for Character Articulation. ACM Trans. Graph. 26, 3 (2007), 71--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Tao Ju, Scott Schaefer, and Joe Warren. 2005. Mean Value Coordinates for Closed Triangular Meshes. ACM Transactions on Graphics 24, 3 (2005), 561--566.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Dilip Krishnan, Raanan Fattal, and Richard Szeliski. 2013. Efficient Preconditioning of Laplacian Matrices for Computer Graphics. ACM Transactions on Graphics 32, 4, Article 142 (2013), 15 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. J.M. Lee. 1997. Riemannian Manifolds: An Introduction to Curvature. Springer New York.Google ScholarGoogle Scholar
  48. Konstantin Lipnikov, Gianmarco Manzini, and Mikhail Shashkov. 2014. Mimetic finite difference method. J. Comput. Phys. 257 (2014), 1163--1227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Richard MacNeal. 1949. The Solution of Partial Differential Equations by Means of Electrical Networks. Ph. D. Dissertation. California Institute of Technology.Google ScholarGoogle Scholar
  50. G. Manzini, A. Russo, and N. Sukumar. 2014. New perspectives on polygonal and polyhedral finite element methods. Mathematical Models and Methods in Applied Sciences 24 (2014), 1665--1699.Google ScholarGoogle ScholarCross RefCross Ref
  51. Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross. 2008. Polyhedral Finite Elements Using Harmonic Basis Functions. Computer Graphics Forum 27, 5 (2008), 1521--1529.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Meyer, M. Desbrun, P. Schröder, and A. H. Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer-Verlag, 35--57.Google ScholarGoogle Scholar
  53. Ean Tat Ooi, Chongmin Song, Francis Tin-Loi, and Zhenjun Yang. 2012. Polygon scaled boundary finite elements for crack propagation modelling. Internat. J. Numer. Methods Engrg. 91, 3 (2012), 319--342. Google ScholarGoogle ScholarCross RefCross Ref
  54. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experim. Math. 2 (1993), 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  55. El Houssaine Quenjel, Mazen Saad, Mustapha Ghilani, and Marianne Bessemoulin-Chatard. 2020. Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations. Calcolo 50, 19 (2020). Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Bastian E. Rapp. 2017. Chapter 31 - Finite Volume Method. In Microfluidics: Modelling, Mechanics and Mathematics. Elsevier, Oxford, 633--654. Google ScholarGoogle ScholarCross RefCross Ref
  57. Steven Rosenberg. 1997. The Laplacian on a Riemannian Manifold. Cambridge University Press, 1--51. Google ScholarGoogle ScholarCross RefCross Ref
  58. Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis Zorin. 2018. Decoupling Simulation Accuracy from Mesh Quality. ACM Transactions on Graphics 37, 6 (2018), 280:1--280:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Teseo Schneider, Yixin Hu, Xifeng Gao, Jeremie Dumas, Denis Zorin, and Daniele Panozzo. 2022. A Large Scale Comparison of Tetrahedral and Hexahedral Elements for Solving Elliptic PDEs with the Finite Element Method. ACM Transactions on Graphics 41, 3 (2022), 23:1--23:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Nicholas Sharp. 2021. Intrinsic Triangulations in Geometry Processing. PhD thesis. Carnegie Mellon University. Google ScholarGoogle ScholarCross RefCross Ref
  61. Alireza Tabarraei and N. Sukumar. 2006. Application of Polygonal Finite Elements in Linear Elasticity. International Journal of Computational Methods 03 (2006), 503--520.Google ScholarGoogle ScholarCross RefCross Ref
  62. Alireza Tabarraei and N. Sukumar. 2008. Extended Finite Element Method on Polygonal and Quadtree Meshes. Computer Methods in Applied Mechanics and Engineering 197 (2008), 425--438. Google ScholarGoogle ScholarCross RefCross Ref
  63. Max Wardetzky. 2008. Convergence of the Cotangent Formula: An Overview. Birkhäuser Basel, Basel, 275--286. Google ScholarGoogle ScholarCross RefCross Ref
  64. Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. 2007. Discrete Laplace operators: No free lunch. In Proceedings of Eurographics Symposium on Geometry Processing. 33--37.Google ScholarGoogle Scholar
  65. Hassler Whitney. 1957. Geometric Integration Theory. Princeton University Press.Google ScholarGoogle Scholar
  66. Martin Wicke, Mario Botsch, and Markus Gross. 2007. A Finite Element Method on Convex Polyhedra. Computer Graphics Forum 26, 3 (2007), 355--364.Google ScholarGoogle ScholarCross RefCross Ref
  67. O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. 2013. Chapter 8 - The Patch Test, Reduced Integration, and Nonconforming Elements. In The Finite Element Method: its Basis and Fundamentals (7th edition ed.), O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu (Eds.). Butterworth-Heinemann, Oxford, 257--284. Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Discrete Laplacians for General Polygonal and Polyhedral Meshes
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SA '23: SIGGRAPH Asia 2023 Courses
          December 2023
          1359 pages
          ISBN:9798400703096
          DOI:10.1145/3610538

          Copyright © 2023 Owner/Author

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 6 December 2023

          Check for updates

          Qualifiers

          • course

          Acceptance Rates

          Overall Acceptance Rate178of869submissions,20%
        • Article Metrics

          • Downloads (Last 12 months)168
          • Downloads (Last 6 weeks)16

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader