skip to main content
research-article

InfoPrint: Embedding Interactive Information in 3D Prints Using Low-Cost Readily-Available Printers and Materials

Published:27 September 2023Publication History
Skip Abstract Section

Abstract

We present a fully-printable method to embed interactive information inside 3D printed objects. The information is invisible to the human eye and can be read using thermal imaging after temperature transfer through interaction with the objects. Prior methods either modify the surface appearance, require customized devices or not commonly used materials, or embed components that are not fully 3D printable. Such limitations restrict the design space for 3D prints, or cannot be readily applied to the already deployed 3D printing setups. In this paper, we present an information embedding technique using low-cost off-the-shelf dual extruder FDM (Fused Deposition Modeling) 3D printers, common materials (e.g., generic PLA), and a mobile thermal device (e.g., a thermal smartphone), by leveraging the thermal properties of common 3D print materials. In addition, we show our method can also be generalized to conventional near-infrared imaging scenarios. We evaluate our technique against multiple design and fabrication parameters and propose a design guideline for different use cases. Finally, we demonstrate various everyday applications enabled by our method, such as interactive thermal displays, user-activated augmented reality, automating thermal triggered events, and hidden tokens for social activities.

Skip Supplemental Material Section

Supplemental Material

References

  1. 2003. Solids, Liquids and Gases - Thermal Conductivities. https://www.engineeringtoolbox.com/thermal-conductivity-d_429.html Last accessed on 2022-Sep-3.Google ScholarGoogle Scholar
  2. 2017. Thermal Conductivity Testing Apparatus for 3D Printed Materials. Heat Transfer Summer Conference, Vol. Volume 2: Heat Transfer Equipment; Heat Transfer in Multiphase Systems; Heat Transfer Under Extreme Conditions; Nanoscale Transport Phenomena; Theory and Fundamental Research in Heat Transfer; Thermophysical Properties; Transport Phenomena in Materials Processing and Manufacturing. https://doi.org/10.1115/HT2017-4856 arXiv:https://asmedigitalcollection.asme.org/HT/proceedings-pdf/HT2017/57892/V002T15A006/2442298/v002t15a006-ht2017-4856.pdf V002T15A006.Google ScholarGoogle ScholarCross RefCross Ref
  3. 2021. Autodesk Fusion 360. https://www.autodesk.com.au/products/fusion-360 Last accessed on 2021-Aug-29.Google ScholarGoogle Scholar
  4. 2021. Blender. https://www.blender.org Last accessed on 2021-Aug-29.Google ScholarGoogle Scholar
  5. 2021. Cat phones: Rugged Phones. https://www.catphones.com/ Last accessed on 2021-Aug-29.Google ScholarGoogle Scholar
  6. 2021. Thermal Imaging | Teledyne FLIR. https://www.flir.com.au/ Last accessed on 2021-Aug-29.Google ScholarGoogle Scholar
  7. Yomna Abdelrahman, Mohamed Khamis, Stefan Schneegass, and Florian Alt. 2017. Stay Cool! Understanding Thermal Attacks on Mobile-Based User Authentication. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI '17). Association for Computing Machinery, New York, NY, USA, 3751--3763. https://doi.org/10.1145/3025453.3025461Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Yomna Abdelrahman, Alireza Sahami Shirazi, Niels Henze, and Albrecht Schmidt. 2015. Investigation of Material Properties for Thermal Imaging-Based Interaction. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI '15). Association for Computing Machinery, New York, NY, USA, 15--18. https://doi.org/10.1145/2702123.2702290Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Yomna Abdelrahman, Eduardo Velloso, Tilman Dingler, Albrecht Schmidt, and Frank Vetere. 2017. Cognitive Heat: Exploring the Usage of Thermal Imaging to Unobtrusively Estimate Cognitive Load. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 33 (sep 2017), 20 pages. https://doi.org/10.1145/3130898Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Rafael Ballagas, Sarthak Ghosh, and James Landay. 2018. The Design Space of 3D Printable Interactivity. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 2, Article 61 (jul 2018), 21 pages. https://doi.org/10.1145/3214264Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Elisa Bellotti, Jon Spencer, Nick Lord, and Katie Benson. 2018. Counterfeit alcohol distribution: A criminological script network analysis. European Journal of Criminology (2018), 1477370818794870.Google ScholarGoogle Scholar
  12. Theodore L Bergman, Frank P Incropera, David P DeWitt, and Adrienne S Lavine. 2011. Fundamentals of heat and mass transfer. John Wiley & Sons.Google ScholarGoogle Scholar
  13. Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick Baudisch. 2015. Platener: Low-Fidelity Fabrication of 3D Objects by Substituting 3D Print with Laser-Cut Plates. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1799--1806. https://doi.org/10.1145/2702123.2702225Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Perumal Varun Chadalavada, Goutham Palaniappan, Vimal Kumar Chandran, Khai Truong, and Daniel Wigdor. 2018. ID'em: Inductive Sensing for Embedding and Extracting Information in Robust Materials. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 3 (2018), 1--28. https://doi.org/10.1145/3264907Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Arnaud Delmotte, Kenichiro Tanaka, Hiroyuki Kubo, Takuya Funatomi, and Yasuhiro Mukaigawa. 2020. Blind Watermarking for 3-D Printed Objects by Locally Modifying Layer Thickness. IEEE Transactions on Multimedia 22, 11 (2020), 2780--2791. https://doi.org/10.1109/TMM.2019.2962306Google ScholarGoogle ScholarCross RefCross Ref
  16. Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar, Aakar Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding Invisible AR Markers and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging Tools. arXiv preprint arXiv:2202.06165 (2022).Google ScholarGoogle Scholar
  17. Chao Dong, Chen Change Loy, and Xiaoou Tang. 2016. Accelerating the super-resolution convolutional neural network. In European conference on computer vision. Springer, 391--407. https://doi.org/10.1007/978-3-319-46475-6_25Google ScholarGoogle ScholarCross RefCross Ref
  18. David Espalin, Danny W Muse, Eric MacDonald, and Ryan B Wicker. 2014. 3D Printing multifunctionality: structures with electronics. The International Journal of Advanced Manufacturing Technology 72, 5-8 (2014), 963--978. https://doi.org/10.1007/s00170-014-5717-7Google ScholarGoogle ScholarCross RefCross Ref
  19. Omid Ettehadi, Fraser Anderson, Adam Tindale, and Sowmya Somanath. 2021. Documented: Embedding Information onto and Retrieving Information from 3D Printed Objects. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 424, 11 pages. https://doi.org/10.1145/3411764.3445551Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Simon Ford and Tim Minshall. 2019. Invited review article: Where and how 3D printing is used in teaching and education. Additive Manufacturing 25 (2019), 131--150. https://doi.org/10.1016/j.addma.2018.10.028Google ScholarGoogle ScholarCross RefCross Ref
  21. R. Garcia-Martin and R. Sanchez-Reillo. 2020. Vein Biometric Recognition on a Smartphone. IEEE Access 8 (2020). https://doi.org/10. 1109/ACCESS.2020.3000044Google ScholarGoogle Scholar
  22. Christopher Getschmann and Florian Echtler. 2021. Seedmarkers: Embeddable Markers for Physical Objects. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (Salzburg, Austria) (TEI '21). Association for Computing Machinery, New York, NY, USA, Article 26, 11 pages. https://doi.org/10.1145/3430524.3440645Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Chris Harrison, Robert Xiao, and Scott Hudson. 2012. Acoustic Barcodes: Passive, Durable and Inexpensive Notched Identification Tags. In Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology (Cambridge, Massachusetts, USA) (UIST '12). Association for Computing Machinery, New York, NY, USA, 563--568. https://doi.org/10.1145/2380116.2380187Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liang He, Jarrid A. Wittkopf, Ji Won Jun, Kris Erickson, and Rafael Tico Ballagas. 2022. ModElec: A Design Tool for Prototyping Physical Computing Devices Using Conductive 3D Printing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 4, Article 159 (dec 2022), 20 pages. https://doi.org/10.1145/3495000Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. James S Hutchison, Roxanne E Ward, Jacques Lacroix, Paul C Hébert, Marcia A Barnes, Desmond J Bohn, Peter B Dirks, Steve Doucette, Dean Fergusson, Ronald Gottesman, et al. 2008. Hypothermia therapy after traumatic brain injury in children. New England Journal of Medicine 358, 23 (2008), 2447--2456. https://doi.org/10.1056/NEJMoa0706930Google ScholarGoogle ScholarCross RefCross Ref
  26. Texas Instruments Incorporated. n.d.. DLP NIRscan Nano Evaluation Module. http://www.ti.com/tool/DLPNIRNANOEVM. (Accessed on 07/11/2018).Google ScholarGoogle Scholar
  27. Vikram Iyer, Justin Chan, Ian Culhane, Jennifer Mankoff, and Shyamnath Gollakota. 2018. Wireless Analytics for 3D Printed Objects. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin, Germany) (UIST '18). Association for Computing Machinery, New York, NY, USA, 141--152. https://doi.org/10.1145/3242587.3242639Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Weiwei Jiang, Gabriele Marini, Niels van Berkel, Zhanna Sarsenbayeva, Zheyu Tan, Chu Luo, Xin He, Tilman Dingler, Jorge Goncalves, Yoshihiro Kawahara, and Vassilis Kostakos. 2019. Probing Sucrose Contents in Everyday Drinks Using Miniaturized Near-Infrared Spectroscopy Scanners. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4, Article 136 (Dec. 2019), 25 pages. https://doi.org/10. 1145/3369834Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Weiwei Jiang, Zhanna Sarsenbayeva, Niels van Berkel, Chaofan Wang, Difeng Yu, Jing Wei, Jorge Goncalves, and Vassilis Kostakos. 2021. User Trust in Assisted Decision-Making Using Miniaturized Near-Infrared Spectroscopy. In Proceedings of the 2021 CHI conference on human factors in computing systems. Association for Computing Machinery, New York, NY, USA, 1--16. https://doi.org/10.1145/3411764.3445710Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weiwei Jiang, Difeng Yu, Chaofan Wang, Zhanna Sarsenbayeva, Niels van Berkel, Jorge Goncalves, and Vassilis Kostakos. 2022. Near-Infrared Imaging for Information Embedding and Extraction with Layered Structures. ACM Trans. Graph. 42, 1, Article 4 (aug 2022), 26 pages. https://doi.org/10.1145/3533426Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Hiroki Kaimoto, Junichi Yamaoka, Satoshi Nakamaru, Yoshihiro Kawahara, and Yasuaki Kakehi. 2020. ExpandFab: Fabricating Objects Expanding and Changing Shape with Heat. In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction (Sydney NSW, Australia) (TEI '20). Association for Computing Machinery, New York, NY, USA, 153--164. https://doi.org/10.1145/3374920.3374949Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Soowon Kang, Hyeonwoo Choi, Sooyoung Park, Chunjong Park, Jemin Lee, Uichin Lee, and Sung-Ju Lee. 2019. Fire in Your Hands: Understanding Thermal Behavior of Smartphones. In The 25th Annual International Conference on Mobile Computing and Networking (Los Cabos, Mexico) (MobiCom '19). Association for Computing Machinery, New York, NY, USA, Article 13, 16 pages. https://doi.org/10. 1145/3300061.3300128Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Simon Klakegg, Jorge Goncalves, Chu Luo, Aku Visuri, Alexey Popov, Niels van Berkel, Zhanna Sarsenbayeva, Vassilis Kostakos, Simo Hosio, Scott Savage, et al. 2018. Assisted Medication Management in Elderly Care Using Miniaturised Near-Infrared Spectroscopy. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 2 (2018), 69. https://doi.org/10.1145/3214272Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Simon Klakegg, Jorge Goncalves, Niels van Berkel, Chu Luo, Simo Hosio, and Vassilis Kostakos. 2017. Towards Commoditised Near Infrared Spectroscopy. In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh, United Kingdom) (DIS '17). ACM, New York, NY, USA, 515--527. https://doi.org/10.1145/3064663.3064738Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Simon Klakegg, Chu Luo, Jorge Goncalves, Simo Hosio, and Vassilis Kostakos. 2016. Instrumenting Smartphones with Portable NIRS. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (Heidelberg, Germany) (UbiComp '16). ACM, New York, NY, USA, 618--623. https://doi.org/10.1145/2968219.2971590Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Donghyeon Ko, Jee Bin Yim, Yujin Lee, Jaehoon Pyun, and Woohun Lee. 2021. Designing Metamaterial Cells to Enrich Thermoforming 3D Printed Object for Post-Print Modification. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 671, 12 pages. https://doi.org/10.1145/3411764.3445229Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Karolina Kudelina, Toomas Vaimann, Bilal Asad, Anton Rassõlkin, Ants Kallaste, and Galina Demidova. 2021. Trends and Challenges in Intelligent Condition Monitoring of Electrical Machines Using Machine Learning. Applied Sciences 11, 6 (2021). https://doi.org/10.3390/ app11062761Google ScholarGoogle Scholar
  38. Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph. 35, 4, Article 88 (jul 2016), 12 pages. https://doi.org/10.1145/2897824.2925960Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dingzeyu Li, Avinash S Nair, Shree K Nayar, and Changxi Zheng. 2017. Aircode: Unobtrusive physical tags for digital fabrication. In Proceedings of the 30th annual ACM symposium on user interface software and technology. 449--460. https://doi.org/10.1145/3126594.3126635Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Henrique Teles Maia, Dingzeyu Li, Yuan Yang, and Changxi Zheng. 2019. LayerCode: Optical Barcodes for 3D Printed Shapes. ACM Trans. Graph. 38, 4, Article 112 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3322960Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Hidenori Matsui, Takahiro Hashizume, and Koji Yatani. 2018. Al-Light: An Alcohol-Sensing Smart Ice Cube. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 126 (Sept. 2018), 20 pages. https://doi.org/10.1145/3264936Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mako Miyatake, Koya Narumi, Yuji Sekiya, and Yoshihiro Kawahara. 2021. Flower Jelly Printer: Slit Injection Printing for Parametrically Designed Flower Jelly. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 425, 10 pages. https://doi.org/10.1145/3411764.3445346Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yamato Miyatake, Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. 2022. Interiqr: Unobtrusive Edible Tags Using Food 3D Printing. In Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (Bend, OR, USA) (UIST '22). Association for Computing Machinery, New York, NY, USA, Article 84, 11 pages. https://doi.org/10.1145/3526113.3545669Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Motoki Miyoshi, Parinya Punpongsanon, Daisuke Iwai, and Kosuke Sato. 2021. SoftPrint: Investigating Haptic Softness Perception of 3D Printed Soft Object in FDM 3D Printers. Journal of Imaging Science and Technology 65, 4 (2021), 40406--1. https://doi.org/10.2352/J.ImagingSci.Technol.2021.65.4.040406Google ScholarGoogle ScholarCross RefCross Ref
  45. Alessandro Montanari, Zhao Tian, Elena Francu, Benjamin Lucas, Brian Jones, Xia Zhou, and Cecilia Mascolo. 2018. Measuring Interaction Proxemics with Wearable Light Tags. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 25 (mar 2018), 30 pages. https://doi.org/10.1145/3191757Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Nobuyuki Otsu. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 1 (1979), 62--66. https://doi.org/10.1109/TSMC.1979.4310076Google ScholarGoogle ScholarCross RefCross Ref
  47. Huaishu Peng, Jennifer Mankoff, Scott E. Hudson, and James McCann. 2015. A Layered Fabric 3D Printer for Soft Interactive Objects. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1789--1798. https://doi.org/10.1145/2702123.2702327Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Surya Prakash, Pei Yean Lee, Terry Caelli, and Tim Raupach. 2006. Robust thermal camera calibration and 3D mapping of object surface temperatures. In Thermosense XXVIII, Vol. 6205. International Society for Optics and Photonics, 62050J. https://doi.org/10.1117/12.668459Google ScholarGoogle ScholarCross RefCross Ref
  49. Alireza Sahami Shirazi, Yomna Abdelrahman, Niels Henze, Stefan Schneegass, Mohammadreza Khalilbeigi, and Albrecht Schmidt. 2014. Exploiting Thermal Reflection for Interactive Systems. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI '14). Association for Computing Machinery, New York, NY, USA, 3483--3492. https://doi.org/10.1145/2556288.2557208Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Valkyrie Savage, Andrew Head, Björn Hartmann, Dan B. Goldman, Gautham Mysore, and Wilmot Li. 2015. Lamello: Passive Acoustic Sensing for Tangible Input Components. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1277--1280. https://doi.org/10.1145/2702123.2702207Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Valkyrie Savage, Ryan Schmidt, Tovi Grossman, George Fitzmaurice, and Björn Hartmann. 2014. A Series of Tubes: Adding Interactivity to 3D Prints Using Internal Pipes. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST '14). Association for Computing Machinery, New York, NY, USA, 3--12. https://doi.org/10.1145/2642918.2647374Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Martin Schmitz, Martin Herbers, Niloofar Dezfuli, Sebastian Günther, and Max Mühlhäuser. 2018. Off-Line Sensing: Memorizing Interactions in Passive 3D-Printed Objects. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1--8. https://doi.org/10.1145/3173574.3173756Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Martin Schmitz, Mohammadreza Khalilbeigi, Matthias Balwierz, Roman Lissermann, Max Mühlhäuser, and Jürgen Steimle. 2015. Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software and Technology (Charlotte, NC, USA) (UIST '15). Association for Computing Machinery, New York, NY, USA, 253--258. https://doi.org/10.1145/2807442.2807503Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Martin Schmitz, Andreas Leister, Niloofar Dezfuli, Jan Riemann, Florian Müller, and Max Mühlhäuser. 2016. Liquido: Embedding Liquids into 3D Printed Objects to Sense Tilting and Motion. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (San Jose, California, USA) (CHI EA '16). Association for Computing Machinery, New York, NY, USA, 2688--2696. https://doi.org/10.1145/2851581.2892275Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Martin Schmitz, Florian Müller, Max Mühlhäuser, Jan Riemann, and Huy Viet Viet Le. 2021. Itsy-Bits: Fabrication and Recognition of 3D-Printed Tangibles with Small Footprints on Capacitive Touchscreens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 419, 12 pages. https://doi.org/10.1145/3411764.3445502Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Rita Shewbridge, Amy Hurst, and Shaun K. Kane. 2014. Everyday Making: Identifying Future Uses for 3D Printing in the Home. In Proceedings of the 2014 Conference on Designing Interactive Systems (Vancouver, BC, Canada) (DIS '14). Association for Computing Machinery, New York, NY, USA, 815--824. https://doi.org/10.1145/2598510.2598544Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Piyarat Silapasuphakornwong, Chaiwuth Sithiwichankit, and Kazutake Uehira. 2018. Information Embedding in 3D Printed Objects Using Metal-Infused PLA and Reading with Thermography. In NIP & Digital Fabrication Conference, Vol. 2018. Society for Imaging Science and Technology, 202--207.Google ScholarGoogle ScholarCross RefCross Ref
  58. P Silapasuphakornwong, H Torii, K Uehira, and M Suzuki. 2019. Technique for embedding information in objects produced with 3D printer using near infrared fluorescent dye. In Int. Conference on Advances in Multimedia. 55--58.Google ScholarGoogle Scholar
  59. James G Speight et al. 2005. Lange's handbook of chemistry. Vol. 1. McGraw-Hill New York.Google ScholarGoogle Scholar
  60. Andrew Spielberg, Alanson Sample, Scott E. Hudson, Jennifer Mankoff, and James McCann. 2016. RapID: A Framework for Fabricating Low-Latency Interactive Objects with RFID Tags. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 5897--5908.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Saiganesh Swaminathan, Kadri Bugra Ozutemiz, Carmel Majidi, and Scott E. Hudson. 2019. FiberWire: Embedding Electronic Function into 3D Printed Mechanically Strong, Lightweight Carbon Fiber Composite Objects. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1--11. https://doi.org/10.1145/3290605.3300797Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. DF Swinehart. 1962. The beer-lambert law. Journal of chemical education 39, 7 (1962), 333.Google ScholarGoogle ScholarCross RefCross Ref
  63. Haruki Takahashi, Parinya Punpongsanon, and Jeeeun Kim. 2020. Programmable Filament: Printed Filaments for Multi-Material 3D Printing. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST '20). Association for Computing Machinery, New York, NY, USA, 1209--1221. https://doi.org/10.1145/3379337.3415863Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. A. K. van der Vegt and L. E. Govaert. 2005. Polymeren: van keten tot kunststof (5e dr., [1e opl.] ed.). VSSD, Delft.Google ScholarGoogle Scholar
  65. Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. 2018. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience 2018 (2018). https://doi.org/10.1155/2018/7068349Google ScholarGoogle ScholarCross RefCross Ref
  66. Ludwig Wilhelm Wall, Alec Jacobson, Daniel Vogel, and Oliver Schneider. 2021. Scrappy: Using Scrap Material as Infill to Make Fabrication More Sustainable. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI '21). Association for Computing Machinery, New York, NY, USA, Article 665, 12 pages. https://doi.org/10.1145/3411764.3445187Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Guanyun Wang, Fang Qin, Haolin Liu, Ye Tao, Yang Zhang, Yongjie Jessica Zhang, and Lining Yao. 2020. MorphingCircuit: An Integrated Design, Simulation, and Fabrication Workflow for Self-Morphing Electronics. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4, Article 157 (Dec. 2020), 26 pages. https://doi.org/10.1145/3432232Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Weijia Wang, Chong Yan Chua, and Tilman Dingler. 2021. Streamlining the Prosthesis Fabrication Process Using 3D Technologies. In Proceedings of the 14th EAI International Conference on Pervasive Computing Technologies for Healthcare (Atlanta, GA, USA) (PervasiveHealth '20). Association for Computing Machinery, New York, NY, USA, 402--405. https://doi.org/10.1145/3421937.3421964Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Karl DD Willis and Andrew D Wilson. 2013. InfraStructs: fabricating information inside physical objects for imaging in the terahertz region. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10. https://doi.org/10.1145/2461912.2461936Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Tengxiang Zhang, Xin Zeng, Yinshuai Zhang, Ke Sun, Yuntao Wang, and Yiqiang Chen. 2020. ThermalRing: Gesture and Tag Inputs Enabled by a Thermal Imaging Smart Ring. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1--13. https://doi.org/10.1145/3313831.3376323Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Alla Zontak, Samuel Sideman, Oleg Verbitsky, and Rafael Beyar. 1998. Dynamic thermography: analysis of hand temperature during exercise. Annals of biomedical engineering 26, 6 (1998), 988--993. https://doi.org/10.1114/1.33Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. InfoPrint: Embedding Interactive Information in 3D Prints Using Low-Cost Readily-Available Printers and Materials

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
          Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 7, Issue 3
          September 2023
          1734 pages
          EISSN:2474-9567
          DOI:10.1145/3626192
          Issue’s Table of Contents

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 September 2023
          Published in imwut Volume 7, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader