skip to main content
10.1145/3610977.3634993acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
research-article
Open Access
Honorable Mention

A Taxonomy of Robot Autonomy for Human-Robot Interaction

Published:11 March 2024Publication History

ABSTRACT

Robot autonomy is an influential and ubiquitous factor in human-robot interaction (HRI), but it is rarely discussed beyond a one-dimensional measure of the degree to which a robot operates without human intervention. As robots become more sophisticated, this simple view of autonomy could be expanded to capture the variety of autonomous behaviors robots can exhibit and to match the rich literature on human autonomy in philosophy, psychology, and other fields. In this paper, we conduct a systematic literature review of robot autonomy in HRI and integrate this with the broader literature into a taxonomy of six distinct forms of autonomy: those based on robot and human involvement at runtime (operational autonomy, intentional autonomy, shared autonomy), human involvement before runtime (non-deterministic autonomy), and expressions of autonomy at runtime (cognitive autonomy, physical autonomy). We discuss future considerations for autonomy in HRI that emerge from this study, including moral consequences, the idealization of "full" robot autonomy, and connections to agency and free will.

Skip Supplemental Material Section

Supplemental Material

References

  1. Gene M. Alarcon, Joseph B. Lyons, Sarah A. Jessup, et al. 2023. Affective responses to trust violations in a human-autonomy teaming context: humans versus robots. International Journal of Social Robotics, 1--13.Google ScholarGoogle Scholar
  2. D. D. Allan, Andrew J. Vonasch, and Christoph Bartneck. 2022. Better than us: the role of implicit self-theories in determining perceived threat responses in hri. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 215--224. doi: 10.1109/HRI53351.2022.9889520.Google ScholarGoogle ScholarCross RefCross Ref
  3. Fady Alnajjar, Massimiliano Cappuccio, Abdulrahman Renawi, Omar Mubin, and Chu Kiong Loo. 2021. Personalized robot interventions for autistic children: an automated methodology for attention assessment. International Journal of Social Robotics, 13, 67--82.Google ScholarGoogle ScholarCross RefCross Ref
  4. Antonio Andriella, Henrique Siqueira, Di Fu, Sven Magg, Pablo Barros, Stefan Wermter, Carme Torras, and Guillem Alenyà. 2021. Do i have a personality? endowing care robots with context-dependent personality traits. International Journal of Social Robotics, 13, (Dec. 2021), 1--22. doi: 10.1007/s12369-020-0069 0--5.Google ScholarGoogle ScholarCross RefCross Ref
  5. Jacy Reese Anthis and Eze Paez. 2021. Moral circle expansion: A promising strategy to impact the far future. Futures, 130, (June 2021), 102756. doi: 10.101 6/j.futures.2021.102756.Google ScholarGoogle Scholar
  6. Junki Aoki, Ryota Yamashina, and Ryo Kurazume. 2021. Teleoperation method by illusion of human intention and time. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 482-- 487. doi: 10.1109/RO-MAN50785.2021.9515457.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Reuben M. Aronson, Thiago Santini, Thomas C. Kübler, Enkelejda Kasneci, Siddhartha Srinivasa, and Henny Admoni. 2018. Eye-hand behavior in humanrobot shared manipulation. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI '18). Association for Computing Machinery, Chicago, IL, USA, 4--13. isbn: 9781450349536. doi: 10.1145/317122 1.3171287.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dante Arroyo and Fumihide Tanaka. 2018. A time-based strategy for the transition of control in telepresence robots. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 342-- 347. doi: 10.1109/ROMAN.2018.8525639.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Shiri Azenkot, Sanjana Prasain, Alan Borning, Emily Fortuna, R.E. Ladner, and Jacob Wobbrock. 2011. Enhancing independence and safety for blind and deaf-blind public transit riders. In (May 2011), 3247--3256. doi: 10.1145/19789 42.1979424.Google ScholarGoogle ScholarCross RefCross Ref
  10. Franziska Babel, Johannes Kraus, and Martin Baumann. 2022. Findings from a qualitative field study with an autonomous robot in public: exploration of user reactions and conflicts. International Journal of Social Robotics, 14, 7, 1625--1655.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gregory Bales and Zhaodan Kong. 2022. Neurophysiological and behavioral differences in human-multiagent tasks: an eeg network perspective. J. Hum.- Robot Interact., 11, 4, Article 42, (Sept. 2022), 25 pages. doi: 10.1145/3527928.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kim Baraka and Manuela M Veloso. 2018. Mobile service robot state revealing through expressive lights: formalism, design, and evaluation. International Journal of Social Robotics, 10, 65--92.Google ScholarGoogle ScholarCross RefCross Ref
  13. Juan Antonio Barragan, Daniela Chanci, Denny Yu, and Juan P. Wachs. 2021. Sachets: semi-autonomous cognitive hybrid emergency teleoperated suction. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1243--1248. doi: 10.1109/RO-MAN50785.2021.951 5517.Google ScholarGoogle ScholarCross RefCross Ref
  14. Andrea Bauer et al. 2009. The autonomous city explorer: towards natural human-robot interaction in urban environments. I. J. Social Robotics, 1, (Apr. 2009), 127--140. doi: 10.1007/s12369-009-0011--9.Google ScholarGoogle ScholarCross RefCross Ref
  15. Jenay M. Beer, Arthur D. Fisk, and Wendy A. Rogers. 2014. Toward a framework for levels of robot autonomy in human-robot interaction. J. Hum.-Robot Interact., 3, 2, (June 2014), 74--99. doi: 10.5898/JHRI.3.2.Beer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dan Bennett, Oussama Metatla, Anne Roudaut, and Elisa D. Mekler. 2023. How does HCI understand human agency and autonomy? In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. ACM, (Apr. 2023). doi: 10.1145/3544548.3580651.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Christopher Bertram. 2023. Jean Jacques Rousseau. In The Stanford Encyclopedia of Philosophy. (Summer 2023 ed.). Edward N. Zalta and Uri Nodelman, (Eds.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  18. Tapomayukh Bhattacharjee, Ethan K. Gordon, Rosario Scalise, Maria E. Cabrera, Anat Caspi, Maya Cakmak, and Siddhartha S. Srinivasa. 2020. Is more autonomy always better? exploring preferences of users with mobility impairments in robot-assisted feeding. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20). Association for Computing Machinery, Cambridge, United Kingdom, 181--190. isbn: 9781450367462. doi: 10.1145/3319502.3374818.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Alexandru Blidaru, Stephen L. Smith, and Dana Kulic. 2018. Assessing user specifications for robot task planning. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 72--79. doi: 10.1109/ROMAN.2018.8525546.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Cara Bloom and Josiah Emery. 2022. Privacy expectations for human-autonomous vehicle interactions. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1647--1654. doi: 10.1109/ROMAN53752.2022.9900615.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Jonathan Bohren, Chris Paxton, Ryan Howarth, Gregory D. Hager, and Louis L. Whitcomb. 2016. Semi-autonomous telerobotic assembly over high-latency networks. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 149--156. doi: 10.1109/HRI.2016.7451746.Google ScholarGoogle ScholarCross RefCross Ref
  22. Annika Boos, Markus Zimmermann, Monika Zych, and Klaus Bengler. 2022. Polite and unambiguous requests facilitate willingness to help an autonomous delivery robot and favourable social attributions. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1620--1626. doi: 10.1109/RO-MAN53752.2022.9900870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Cynthia Breazeal, Nick DePalma, Jeff Orkin, Sonia Chernova, and Malte Jung. 2013. Crowdsourcing human-robot interaction: new methods and system evaluation in a public environment. J. Hum.-Robot Interact., 2, 1, (Feb. 2013), 82--111. doi: 10.5898/JHRI.2.1.Breazeal.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Yohan Breux, Sebastien Druon, and Rene Zapata. 2018. From perception to semantics: an environment representation model based on human-robot interactions. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 672--677. doi: 10.1109/ROMAN.2018.8 525527.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gordon Briggs and Matthias Scheutz. 2014. How robots can affect human behavior: investigating the effects of robotic displays of protest and distress. International Journal of Social Robotics, 6, 343--355.Google ScholarGoogle ScholarCross RefCross Ref
  26. Connor Brooks and Daniel Szafir. 2019. Balanced information gathering and goal-oriented actions in shared autonomy. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 85--94. doi: 10.1109/HRI.2019.8 673192.Google ScholarGoogle ScholarCross RefCross Ref
  27. Daniel J. Brooks, Momotaz Begum, and Holly A. Yanco. 2016. Analysis of reactions towards failures and recovery strategies for autonomous robots. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 487--492. doi: 10.1109/ROMAN.2016.7745162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sarah Buss and Andrea Westlund. 2018. Personal Autonomy. In The Stanford Encyclopedia of Philosophy. (Spring 2018 ed.). Edward N. Zalta, (Ed.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  29. Maria E. Cabrera, Tapomayukh Bhattacharjee, Kavi Dey, and Maya Cakmak. 2021. An exploration of accessible remote tele-operation for assistive mobile manipulators in the home. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1202--1209. doi: 10.1109 /RO-MAN50785.2021.9515511.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Fanta Camara and Charles Fox. 2022. Extending quantitative proxemics and trust to hri. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 421--427. doi: 10.1109/RO-MAN53752 .2022.9900821.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tiffany Chen, Chih-Hung King, Andrea Thomaz, and Charles Kemp. 2014. An investigation of responses to robot-initiated touch in a nursing context. International Journal of Social Robotics, 6, (Jan. 2014). doi: 10.1007/s12369-013 -0215-x.Google ScholarGoogle ScholarCross RefCross Ref
  32. Manolis Chiou, Faye McCabe, Markella Grigoriou, and Rustam Stolkin. 2021. Trust, shared understanding and locus of control in mixed-initiative robotic systems. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 684--691. doi: 10.1109/RO-MAN50785 .2021.9515476.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Jung Ju Choi, Yunkyung Kim, and Sonya S. Kwak. 2014. The autonomy levels and the human intervention levels of robots: the impact of robot types in human-robot interaction. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 1069--1074. doi: 10.1109/ROMAN.201 4.6926394.Google ScholarGoogle ScholarCross RefCross Ref
  34. John Christman. 2020. Autonomy in Moral and Political Philosophy. In The Stanford Encyclopedia of Philosophy. (Fall 2020 ed.). Edward N. Zalta, (Ed.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  35. Jason R. Cody, Karina A. Roundtree, and Julie A. Adams. 2021. Humancollective collaborative target selection. J. Hum.-Robot Interact., 10, 2, Article 18, (Mar. 2021), 29 pages. doi: 10.1145/3442679.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. sense 2.a cognition n. sense n. 2023. Oxford English Dictionary. Oxford University Press.Google ScholarGoogle Scholar
  37. Mihaela Constantinescu and Roger Crisp. 2022. Can robotic ai systems be virtuous and why does this matter? International Journal of Social Robotics, 14, 6, 1547--1557.Google ScholarGoogle ScholarCross RefCross Ref
  38. Joseph Cooper and Michael A. Goodrich. 2008. Towards combining uav and sensor operator roles in uav-enabled visual search. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI '08). Association for Computing Machinery, Amsterdam, The Netherlands, 351-- 358. isbn: 9781605580173. doi: 10.1145/1349822.1349868.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Dagoberto Cruz-Sandoval, Arturo Morales-Tellez, Eduardo Benitez Sandoval, and Jesus Favela. 2020. A social robot as therapy facilitator in interventions to deal with dementia-related behavioral symptoms. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20). Association for Computing Machinery, Cambridge, United Kingdom, 161-- 169. isbn: 9781450367462. doi: 10.1145/3319502.3374840.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. W.G.P. D. 2017. The Promise of Human Autonomy. Xlibris US. isbn: 9781477127766. https://books.google.com/books?id=eycrDwAAQBAJ.Google ScholarGoogle Scholar
  41. Kate Darling. 2012. Extending legal protection to social robots: the effects of anthropomorphism, empathy, and violent behavior towards robotic objects. SSRN Electronic Journal, (Apr. 2012). doi: 10.2139/ssrn.2044797.Google ScholarGoogle ScholarCross RefCross Ref
  42. Devleena Das, Siddhartha Banerjee, and Sonia Chernova. 2021. Explainable ai for robot failures: generating explanations that improve user assistance in fault recovery. In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI '21). Association for Computing Machinery, Boulder, CO, USA, 351--360. isbn: 9781450382892. doi: 10.1145/3434073.34446 57.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Amel Dechemi, Vikarn Bhakri, Ipsita Sahin, Arjun Modi, Julya Mestas, Pamodya Peiris, Dannya Enriquez Barrundia, Elena Kokkoni, and Konstantinos Karydis. 2021. Babynet: a lightweight network for infant reaching action recognition in unconstrained environments to support future pediatric rehabilitation applications. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 461--467. doi: 10.1109/RO-MAN50785 .2021.9515507.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. E.L. Deci and R. Flaste. 1995. WhyWe Do whatWe Do: The Dynamics of Personal Autonomy. A Grosset/Putnam book. Putnam's Sons. isbn: 9780399140471. http s://books.google.com/books?id=gUnuAAAAMAAJ.Google ScholarGoogle Scholar
  45. Edward Deci and Richard Ryan. 2008. Self-determination theory: a macrotheory of human motivation, development, and health. Canadian Psychologypsychologie Canadienne - CAN PSYCHOL-PSYCHOL CAN, 49, (Aug. 2008). doi: 10.1037/a0012801.Google ScholarGoogle ScholarCross RefCross Ref
  46. Maartje de Graaf. 2016. An ethical evaluation of human--robot relationships. International Journal of Social Robotics, 8, (Aug. 2016). doi: 10.1007/s12369-01 6-0368--5.Google ScholarGoogle ScholarCross RefCross Ref
  47. Jesse de Pagter. 2023. From eu robotics and ai governance to hri research: implementing the ethics narrative. International Journal of Social Robotics, 1-- 15.Google ScholarGoogle Scholar
  48. Munjal Desai, Poornima Kaniarasu, Mikhail Medvedev, Aaron Steinfeld, and Holly Yanco. 2013. Impact of robot failures and feedback on real-time trust. In 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 251--258. doi: 10.1109/HRI.2013.6483596.Google ScholarGoogle ScholarCross RefCross Ref
  49. Daniela Doroftei, Tom De Vleeschauwer, Salvatore Lo Bue, Michaël Dewyn, Frik Vanderstraeten, and Geert De Cubber. 2021. Human-agent trust evaluation in a digital twin context. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 203--207. doi: 10.1109/RO-MAN50785.2021.9515445.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Jane Dryden. 2023. Autonomy. https://iep.utm.edu/autonomy/. Accessed: 2023-07--24. (2023).Google ScholarGoogle Scholar
  51. Francesco Del Duchetto, Paul Baxter, and Marc Hanheide. 2019. Lindsey the tour guide robot - usage patterns in a museum long-term deployment. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1--8. doi: 10.1109/RO-MAN46459.2019.8956329.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Nicholas Epley, Adam Waytz, et al. 2010. Mind perception. Handbook of social psychology, 1, 5, 498--541.Google ScholarGoogle Scholar
  53. Reza Etemad-Sajadi, Antonin Soussan, and Théo Schöpfer. 2022. How ethical issues raised by human--robot interaction can impact the intention to use the robot? International Journal of Social Robotics, 14, (June 2022). doi: 10.1007/s1 2369-021-00857--8.Google ScholarGoogle ScholarCross RefCross Ref
  54. Haruhiko Eto and H. Harry Asada. 2019. Seamless manual-to-autopilot transition: an intuitive programming approach to robotic welding. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1--7. doi: 10.1109/RO-MAN46459.2019.8956403.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Elisa Foderaro, Amedeo Cesta, Alessandro Umbrico, and Andrea Orlandini. [76] 2021. Simplifying the a.i. planning modeling for human-robot collaboration. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1011--1016. doi: 10.1109/RO-MAN50785.2021.951 5431.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Deen K. Chatterjee, (Ed.) 2011. Political autonomy. Encyclopedia of Global Justice. Springer Netherlands, Dordrecht, 853--854. isbn: 978--1--4020--9160--5. doi: 10.1007/978--1--4020--9160--5_350.Google ScholarGoogle ScholarCross RefCross Ref
  57. Matthew C. Fontaine and Stefanos Nikolaidis. 2022. Evaluating human--robot interaction algorithms in shared autonomy via quality diversity scenario generation. J. Hum.-Robot Interact., 11, 3, Article 25, (Sept. 2022), 30 pages. doi: 10.1145/3476412.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Eduard Fosch Villaronga, Pranav Khanna, Hadassah Drukarch, and Bart Custers. 2022. The role of humans in surgery automation: exploring the influence of automation on human--robot interaction and responsibility in surgery innovation. International Journal of Social Robotics, 15, (Apr. 2022). doi: 10.1007/s12369-022-00875-0.Google ScholarGoogle ScholarCross RefCross Ref
  59. Harry Frankfurt. 1999. On caring. In Necessity, Volition, and Love. Cambridge University Press, Cambridge. Chap. 10, 155--180.Google ScholarGoogle Scholar
  60. Denise Y. Geiskkovitch, Derek Cormier, Stela H. Seo, and James E. Young. 2016. Please continue, we need more data: an exploration of obedience to robots. J. Hum.-Robot Interact., 5, 1, (Mar. 2016), 82--99.Google ScholarGoogle Scholar
  61. Ken Gemes and Christopher Janaway. 2006. Nietzsche on free will, autonomy and the sovereign individual. Aristotelian Society Supplementary Volume, 80, 1, 321--357. doi: 10.1111/j.0066--7373.2006.00135.x.Google ScholarGoogle ScholarCross RefCross Ref
  62. Soheil Gholami, Virginia Ruiz Garate, Elena De Momi, and Arash Ajoudani. 2020. A shared-autonomy approach to goal detection and navigation control of mobile collaborative robots. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1026--1032. doi: 10.1109/RO-MAN47096.2020.9223583.Google ScholarGoogle ScholarCross RefCross Ref
  63. R Gillon. 1985. Autonomy and the principle of respect for autonomy. BMJ, 290, 6484, 1806--1808. eprint: https://www.bmj.com/content/290/6484/1806.fu ll.pdf. doi: 10.1136/bmj.290.6484.1806.Google ScholarGoogle ScholarCross RefCross Ref
  64. Dylan F. Glas, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2009. Field trial for simultaneous teleoperation of mobile social robots. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (HRI '09). Association for Computing Machinery, La Jolla, California, USA, 149--156. isbn: 9781605584041. doi: 10.1145/1514095.1514123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Eduardo González and Fernando A. Auat Cheein. 2018. Preliminary results on reducing the workload of assistive vehicle users: a collaborative driving approach. International Journal of Social Robotics, 10, 555--568.Google ScholarGoogle ScholarCross RefCross Ref
  66. John-Stewart Gordon. 2023. Bioethics. https://iep.utm.edu/bioethics/. Accessed: 2023-07--24. (2023).Google ScholarGoogle Scholar
  67. Arzu Guneysu and Bert Arnrich. 2017. Socially assistive child-robot interaction in physical exercise coaching. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 670--675. doi: 10.1109/ROMAN.2017.8172375.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Yue Guo, Boshi Wang, Dana Hughes, Michael Lewis, and Katia Sycara. 2020. Designing context-sensitive norm inverse reinforcement learning framework for norm-compliant autonomous agents. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 618--625. doi: 10.1109/RO-MAN47096.2020.9223344.Google ScholarGoogle ScholarCross RefCross Ref
  69. Paul Guyer. 2003. Kant on the theory and practice of autonomy. Social Philosophy and Policy, 20, 2, 70--98. doi: 10.1017/S026505250320203X.Google ScholarGoogle ScholarCross RefCross Ref
  70. Belaidi Hadjira, Abdelfetah Hentout, and Hamid Bentarzi. 2019. Human--robot shared control for path generation and execution. International Journal of Social Robotics, 11, (Aug. 2019). doi: 10.1007/s12369-019-00520--3.Google ScholarGoogle ScholarCross RefCross Ref
  71. John Hadley. 2017. Non-autonomous sentient beings and original acquisition. Analysis, 77, 2, pp. 293--299. Retrieved June 13, 2023 from https://www.jstor.o rg/stable/48545185.Google ScholarGoogle ScholarCross RefCross Ref
  72. Janik Hager, Ruben Bauer, Marc Toussaint, and Jim Mainprice. 2021. Graspme - grasp manifold estimator. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 626--632. doi: 10.1109/ROMAN50785.2021.9515479.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Marc Hanheide, Denise Hebesberger, and Tomas Krajnik. 2017. The when, where, and how: an adaptive robotic info-terminal for care home residents. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI '17). Association for Computing Machinery, Vienna, Austria, 341--349. isbn: 9781450343367. doi: 10.1145/2909824.3020228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. 2023. Hanson robotics sophia. https://www.hansonrobotics.com/sophia/. Accessed: 2023-07--24. (2023).Google ScholarGoogle Scholar
  75. Benjamin Hardin and Michael A. Goodrich. 2009. On using mixed-initiative control: a perspective for managing large-scale robotic teams. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (HRI '09). Association for Computing Machinery, La Jolla, California, USA, 165-- 172. isbn: 9781605584041. doi: 10.1145/1514095.1514126.Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Jamie Harris and Jacy Reese Anthis. 2021. The Moral Consideration of Artificial Entities: A Literature Review. Science and Engineering Ethics, 27, 4, (Aug. 2021), 53. doi: 10.1007/s11948-021-00331--8.Google ScholarGoogle ScholarCross RefCross Ref
  77. Vahagn Harutyunyan, Vimitha Manohar, Issak Gezehei, and JacobW. Crandall. 2013. Cognitive telepresence in human-robot interactions. J. Hum.-Robot Interact., 1, 2, (Jan. 2013), 158--182. doi: 10.5898/JHRI.1.2.Harutyunyan.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Denise Hebesberger, Tobias Koertner, Christoph Gisinger, and Jürgen Pripfl. 2017. A long-term autonomous robot at a care hospital: a mixed methods study on social acceptance and experiences of staff and older adults. International Journal of Social Robotics, 9, 3, 417--429.Google ScholarGoogle ScholarCross RefCross Ref
  79. Ala'aldin Hijaz, Jessica Korneder, and Wing-Yue Geoffrey Louie. 2021. In-thewild learning from demonstration for therapies for autism spectrum disorder. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1224--1229. doi: 10.1109/RO-MAN50785.2021.951 5439.Google ScholarGoogle ScholarCross RefCross Ref
  80. Ala'aldin Hijaz, Wing-Yue Geoffrey Louie, and Iyad Mansour. 2019. Towards a driver monitoring system for estimating driver situational awareness. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1--6. doi: 10.1109/RO-MAN46459.2019.8956378.Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Junya Hirose, Masakazu Hirokawa, and Kenji Suzuki. 2014. Robotic gaming companion to facilitate social interaction among children. In The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 63-- 68. doi: 10.1109/ROMAN.2014.6926231.Google ScholarGoogle ScholarCross RefCross Ref
  82. Toshio Hori and Yoshifumi Nishida. 2008. Improvement of position estimation of the ultrasonic 3d tag system. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 436--441. doi: 10.1109/ROMAN.2008.4600705.Google ScholarGoogle ScholarCross RefCross Ref
  83. Hanns-Peter Horn, Matthias Nadig, Johannes Hackbarth, Christian Willms, Caspar Jacob, Serge Autexier, Tim Schwartz, and Ivana Kruijff-Korbayová. 2022. Iterative user-centric development of mobile robotic systems with intuitive multimodal human-robot interaction in a clinic environment. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 963--968. doi: 10.1109/RO-MAN53752.2022.9900703.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Aike C. Horstmann and Nicole C. Krämer. 2022. The fundamental attribution error in human-robot interaction: an experimental investigation on attributing responsibility to a social robot for its pre-programmed behavior. International Journal of Social Robotics, 14, 5, 1137--1153.Google ScholarGoogle ScholarCross RefCross Ref
  85. Hui-Min Huang. 2007. Autonomy levels for unmanned systems (alfus) framework: safety and application issues. In (PerMIS '07). Association for Computing Machinery, Washington, D.C., 48--53. isbn: 9781595938541. doi: 10.1145/1 660877.1660883.Google ScholarGoogle ScholarCross RefCross Ref
  86. Sophie Husemann, Jan Pöppel, and Stefan Kopp. 2022. Differences and biases in mentalizing about humans and robots. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 490-- 497. doi: 10.1109/RO-MAN53752.2022.9900849.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Rainer Jäkel, Sven R. Schmidt-Rohr, Steffen W. Rühl, Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. 2012. Learning of planning models for dexterous manipulation based on human demonstrations. International Journal of Social Robotics, 4, 437--448.Google ScholarGoogle ScholarCross RefCross Ref
  88. Wei Wen, Johan Hagelbäck, and Veronica Sundstedt. 2018. The effect of emotions and social behavior on performance in a collaborative serious game between humans and autonomous robots. International Journal of Social Robotics, 10, (Jan. 2018), 1--15. doi: 10.1007/s12369-017-0437--4.Google ScholarGoogle ScholarCross RefCross Ref
  89. Michelle J. Johnson, Mayumi Mohan, and Rochelle Mendonca. 2022. Therapistpatient interactions in task-oriented stroke therapy can guide robot-patient interactions. International Journal of Social Robotics, 14, 6, 1527--1546.Google ScholarGoogle ScholarCross RefCross Ref
  90. Robert Johnson and Adam Cureton. 2022. Kant's Moral Philosophy. In The Stanford Encyclopedia of Philosophy. (Fall 2022 ed.). Edward N. Zalta and Uri Nodelman, (Eds.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  91. Immanuel Kant. 1998. Groundwork of the Metaphysics of Morals. Mary Gregor, (Ed.) Cambridge University Press, Cambridge.Google ScholarGoogle Scholar
  92. Richard Kelley, Alireza Tavakkoli, Christopher King, Monica Nicolescu, Mircea Nicolescu, and George Bebis. 2008. Understanding human intentions via hidden markov models in autonomous mobile robots. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI '08). Association for Computing Machinery, Amsterdam, The Netherlands, 367--374. isbn: 9781605580173. doi: 10.1145/1349822.1349870.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Taenyun Kim, Maria D. Molina, Minjin (MJ) Rheu, Emily S. Zhan, and Wei Peng. 2023. One ai does not fit all: a cluster analysis of the laypeople's perception of ai roles. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23) Article 29. Association for Computing Machinery, Hamburg, Germany, 20 pages. isbn: 9781450394215. doi: 10.1145/354454 8.3581340.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Takuya Kitade, Satoru Satake, Takayuki Kanda, and Michita Imai. 2013. Understanding suitable locations for waiting. In 2013 8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 57--64. doi: 10.1109/HRI.2013.6 483502.Google ScholarGoogle ScholarCross RefCross Ref
  95. Andreas Kolling, Steven Nunnally, and Michael Lewis. 2012. Towards human control of robot swarms. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI '12). Association for Computing Machinery, Boston, Massachusetts, USA, 89--96. isbn: 9781450310635. doi: 10.1145/2157689.2157704.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Elly Konijn, Brechtje Jansen, Victoria Bustos, Veerle Hobbelink, and Daniel Vanegas. 2022. Social robots for (second) language learning in (migrant) primary school children. International Journal of Social Robotics, 14, (Apr. 2022), 1--17. doi: 10.1007/s12369-021-00824--3.Google ScholarGoogle ScholarCross RefCross Ref
  97. J. E. (Hans). Korteling, G. C. van de Boer-Visschedijk, R. A. M. Blankendaal, R. C. Boonekamp, and A. R. Eikelboom. 2021. Human- versus artificial intelligence. Frontiers in Artificial Intelligence, 4. doi: 10.3389/frai.2021.622364.Google ScholarGoogle ScholarCross RefCross Ref
  98. Andrea Krausman et al. 2022. Trust measurement in human-autonomy teams: development of a conceptual toolkit. J. Hum.-Robot Interact., 11, 3, Article 33, (Sept. 2022), 58 pages. doi: 10.1145/3530874.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Jun Ki Lee, Robert Lopez Toscano, Walter Dan Stiehl, and Cynthia Breazeal. 2008. The design of a semi-autonomous robot avatar for family communication and education. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 166--173. doi: 10.1109/ROMAN.2 008.4600661.Google ScholarGoogle ScholarCross RefCross Ref
  100. Florent Levillain and Elisabetta Zibetti. 2017. Behavioral objects: the rise of the evocative machines. J. Hum.-Robot Interact., 6, 1, (May 2017), 4--24. doi: 10.5898/JHRI.6.1.Levillain.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Jing Li, Hua Peng, Huosheng Hu, Zhiming Luo, and Chao Tang. 2020. Multimodal information fusion for automatic aesthetics evaluation of robotic dance poses. International Journal of Social Robotics, 12, (Jan. 2020). doi: 10.1007/s12 369-019-00535-w.Google ScholarGoogle ScholarCross RefCross Ref
  102. Yuhua Liang and Seungcheol Lee. 2017. Fear of autonomous robots and artificial intelligence: evidence from national representative data with probability sampling. International Journal of Social Robotics, 9, (June 2017). doi: 10.1007 /s12369-017-0401--3.Google ScholarGoogle ScholarCross RefCross Ref
  103. Felix Lindner. 2016. A model of a robot's will based on higher-order desires. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 749--754. doi: 10.1109/ROMAN.2016.7745203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Alexandru Litoiu, Daniel Ullman, Jason Kim, and Brian Scassellati. 2015. Evidence that robots trigger a cheating detector in humans. In Proceedings of the tenth annual acm/ieee international conference on human-robot interaction, 165--172.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Maria Mannone, Valeria Seidita, and Antonio Chella. 2022. Quantum robosound: auditory feedback of a quantum-driven robotic swarm. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 287--292. doi: 10.1109/RO-MAN53752.2022.9900578.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Frank Martela and Tapani J. J. Riekki. 2018. Autonomy, competence, relatedness, and beneficence: a multicultural comparison of the four pathways to meaningful work. Frontiers in Psychology, 9. doi: 10.3389/fpsyg.2018.01157.Google ScholarGoogle ScholarCross RefCross Ref
  107. Georg Arbeiter, Michael Burmester, Pavel Smrz, and Birgit Graf. 2014. Semi-autonomous domestic service robots: evaluation of a user interface for remote manipulation and navigation with focus on effects of stereoscopic display. International Journal of Social Robotics, 7, (Apr. 2014), 183--202. doi: 10.1007/s12369-014-02 66--7.Google ScholarGoogle ScholarCross RefCross Ref
  108. Marcus Mast et al. 2012. User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home. J. Hum.-Robot Interact., 1, 1, (July 2012), 96--118. doi: 10.5898 /JHRI.1.1.Mast.Google ScholarGoogle Scholar
  109. Christoforos Mavrogiannis, Alena M. Hutchinson, John Macdonald, Patrícia Alves-Oliveira, and Ross A. Knepper. 2019. Effects of distinct robot navigation strategies on human behavior in a crowded environment. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 421-- 430. doi: 10.1109/HRI.2019.8673115.Google ScholarGoogle ScholarCross RefCross Ref
  110. Samuel J. McDonald, Mark B. Colton, C. Kristopher Alder, and Michael A. Goodrich. 2017. Haptic shape-based management of robot teams in cordon and patrol. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI '17). Association for Computing Machinery, Vienna, Austria, 380--388. isbn: 9781450343367. doi: 10.1145/2909824.3020243.Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Lingheng Meng, Daiwei Lin, Adam Francey, Rob Gorbet, Philip Beesley2020. Learning to engage with interactive systems: a field study on deep reinforcement learning in a public museum. J. Hum.-Robot Interact., 10, 1, Article 5, (Oct. 2020), 29 pages. doi: 10.1145/3408876.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Rajesh Elara Mohan, Wijerupage Wijesoma, Carlos Calderon, and Changjiu Zhou. 2009. Experimenting false alarm demand for human robot interactions in humanoid soccer robots. I. J. Social Robotics, 1, (Apr. 2009), 171--180. doi: 10.1007/s12369-009-0017--3.Google ScholarGoogle ScholarCross RefCross Ref
  113. AJung Moon, Peter Danielson, and HF Machiel Van der Loos. 2012. Surveybased discussions on morally contentious applications of interactive robotics. International Journal of Social Robotics, 4, 77--96.Google ScholarGoogle ScholarCross RefCross Ref
  114. Luis Yoichi Morales Saiki, Satoru Satake, Takayuki Kanda, and Norihiro Hagita. 2011. Modeling environments from a route perspective. In Proceedings of the 6th International Conference on Human-Robot Interaction (HRI '11). Association for Computing Machinery, Lausanne, Switzerland, 441--448. isbn: 9781450305617. doi: 10.1145/1957656.1957815.Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. Luca Morando, Carmine Tommaso Recchiuto, and Antonio Sgorbissa. 2020. Social drone sharing to increase the uav patrolling autonomy in emergency scenarios. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 539--546. doi: 10.1109/RO-MAN47096 .2020.9223567.Google ScholarGoogle ScholarCross RefCross Ref
  116. Christopher E. Mower, João Moura, Aled Davies, and Sethu Vijayakumar. 2019. Modulating human input for shared autonomy in dynamic environments. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1--8. doi: 10.1109/RO-MAN46459.2019.8956304.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Pierre-André Mudry, Sarah Degallier, and Aude Billard. 2008. On the influence of symbols and myths in the responsibility ascription problem in roboethics-a roboticist's perspective. In RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 563--568.Google ScholarGoogle Scholar
  118. Amir M. Naghsh, Jeremi Gancet, Andry Tanoto, and Chris Roast. 2008. Analysis and design of human-robot swarm interaction in firefighting. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 255--260. doi: 10.1109/ROMAN.2008.4600675.Google ScholarGoogle ScholarCross RefCross Ref
  119. Junya Nakanishi, Tomohisa Hazama, Jun Baba, Sichao Song, Yuichiro Yoshikawa, and Hiroshi Ishiguro. 2021. Exploring possibilities of social robot's interactive services in the case of a hotel room. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 925--930. doi: 10.1109/RO-MAN50785.2021.9515380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. Amal Nanavati, Nick Walker, Lee Taber, Christoforos Mavrogiannis, Leila Takayama, Maya Cakmak, and Siddhartha Srinivasa. 2022. Not all who wander are lost: a localization-free system for in-the-wild mobile robot deployments. In 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 422--431. doi: 10.1109/HRI53351.2022.9889620.Google ScholarGoogle ScholarCross RefCross Ref
  121. Jauwairia Nasir, Pierre Oppliger, Barbara Bruno, and Pierre Dillenbourg. 2022. Questioning wizard of oz: effects of revealing the wizard behind the robot. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1385--1392. doi: 10.1109/RO-MAN53752.2022.990 0718.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. Clifford Nass, Jonathan Steuer, and Ellen R. Tauber. 1994. Computers are social actors. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '94). Association for Computing Machinery, Boston, Massachusetts, USA, 72--78. isbn: 0897916506. doi: 10.1145/191666.191703.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. Simone Nertinger, Robin Kirschner, Djallil Naceri, and Sami Haddadin. 2022. Acceptance of remote assistive robots with and without human-in-the-loop for healthcare applications. International Journal of Social Robotics, (Oct. 2022). doi: 10.1007/s12369-022-00931--9.Google ScholarGoogle ScholarCross RefCross Ref
  124. Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and Siddhartha Srinivasa. 2017. Human-robot mutual adaptation in shared autonomy. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI '17). Association for Computing Machinery, Vienna, Austria, 294--302. isbn: 9781450343367. doi: 10.1145/2909824.3020252.Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. Timothy O'Connor and Christopher Franklin. 2022. Free Will. In The Stanford Encyclopedia of Philosophy. (Winter 2022 ed.). Edward N. Zalta and Uri Nodelman, (Eds.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  126. Yoojin Oh, Tim Schäfer, Benedikt Rüther, Marc Toussaint, and Jim Mainprice. 2021. A system for traded control teleoperation of manipulation tasks using intent prediction from hand gestures. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 503--508. doi: 10.1109/RO-MAN50785.2021.9515440.Google ScholarGoogle ScholarDigital LibraryDigital Library
  127. Yoojin Oh, Shao-Wen Wu, Marc Toussaint, and Jim Mainprice. 2020. Natural gradient shared control. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1223--1229. doi: 10.1109 /RO-MAN47096.2020.9223465.Google ScholarGoogle ScholarCross RefCross Ref
  128. Suman Ojha, Jonathan Vitale, and Mary-Anne Williams. 2021. Computational emotion models: a thematic review. International Journal of Social Robotics, 13, (Sept. 2021). doi: 10.1007/s12369-020-00713--1.Google ScholarGoogle ScholarCross RefCross Ref
  129. Suman Ojha, Mary-Anne Williams, and Benjamin Johnston. 2018. The essence of ethical reasoning in robot-emotion processing. International Journal of Social Robotics, 10, 211--223.Google ScholarGoogle ScholarCross RefCross Ref
  130. Kazuo Okamura and Seiji Yamada. 2020. Calibrating trust in human-drone cooperative navigation. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1274--1279. doi: 10.1109 /RO-MAN47096.2020.9223509.Google ScholarGoogle ScholarCross RefCross Ref
  131. Samuel A. Olatunji, Andre Potenza, Andrey Kiselev, Tal Oron-Gilad, Amy Loutfi, and Yael Edan. 2022. Levels of automation for a mobile robot teleoperated by a caregiver. J. Hum.-Robot Interact., 11, 2, Article 20, (Feb. 2022), 21 pages. doi: 10.1145/3507471.Google ScholarGoogle ScholarDigital LibraryDigital Library
  132. Masahiko Osawa, Kohei Okuoka, Yusuke Takimoto, and Michita Imai. 2020. Is automation appropriate? semi-autonomous telepresence architecture focusing on voluntary and involuntary movements. International Journal of Social Robotics, 12, 5, 1119--1134.Google ScholarGoogle ScholarCross RefCross Ref
  133. Anastasia K. Ostrowski, Raechel Walker, Madhurima Das, Maria Yang, Cynthia Breazeal, Hae Won Park, and Aditi Verma. 2022. Ethics, equity, & justice in human-robot interaction: a review and future directions. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (ROMAN), 969--976. doi: 10.1109/RO-MAN53752.2022.9900805.Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. Anita Paas, Emily B. J. Coffey, Giovanni Beltrame, and David St-Onge. 2022. Towards evaluating the impact of swarm robotic control strategy on operators' cognitive load. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 217--223. doi: 10.1109/RO-MAN53752 .2022.9900763.Google ScholarGoogle ScholarDigital LibraryDigital Library
  135. Amit Kumar Pandey and Rachid Alami. 2014. Towards human-level semantics understanding of human-centered object manipulation tasks for hri: reasoning about effect, ability, effort and perspective taking. International Journal of Social Robotics, 6, 593--620.Google ScholarGoogle ScholarCross RefCross Ref
  136. Dario Pasquali, Jonas Gonzalez Billandon, Alexander Aroyo, Giulio Sandini, Alessandra Sciutti, and Francesco Rea. 2021. Detecting lies is a child (robot)'s play: gaze-based lie detection in hri. International Journal of Social Robotics, 15, (Nov. 2021). doi: 10.1007/s12369-021-00822--5.Google ScholarGoogle ScholarCross RefCross Ref
  137. Janet V.T. Pauketat and Jacy Reese Anthis. 2022. Predicting the moral consideration of artificial intelligences. Computers in Human Behavior, 136, (Nov. 2022), 107372. doi: 10.1016/j.chb.2022.107372.Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. Xavier Perrin, Ricardo Chavarriaga, Céline Ray, Roland Siegwart, and José del R. Millán. 2008. A comparative psychophysical and eeg study of different feedback modalities for hri. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI '08). Association for Computing Machinery, Amsterdam, The Netherlands, 41--48. isbn: 9781605580173. doi: 10.1145/1349822.1349829.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. Frano Petric and Zdenko Kovacic. 2019. Hierarchical pomdp framework for a robot-assisted asd diagnostic protocol. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), 286--293. doi: 10.1109/HRI.2019 .8673295.Google ScholarGoogle ScholarCross RefCross Ref
  140. José Carlos Pulido, José Carlos González Dorado, Cristina Suárez, Antonio Bandera, Pablo Bustos, and Fernando Fernández. 2017. Evaluating the child--robot interaction of the naotherapist platform in pediatric rehabilitation. International Journal of Social Robotics, 9, (June 2017), 343--358. doi: 10.1007/s12369- 017-0402--2.Google ScholarGoogle ScholarCross RefCross Ref
  141. Nicole L. Robinson, Jennifer Connolly, Gavin Suddery, Madeliene Turner, and David J. Kavanagh. 2021. A humanoid social robot to provide personalized feedback for health promotion in diet, physical activity, alcohol and cigarette use: a health clinic trial. In 2021 30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 720--726. doi: 10.1109/ROMAN50785.2021.9515558.Google ScholarGoogle ScholarCross RefCross Ref
  142. Marta Romeo, Angelo Cangelosi, and Ray Jones. 2018. Developing a deep learning agent for hri: dataset collection and training. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 1150--1155. doi: 10.1109/ROMAN.2018.8525512.Google ScholarGoogle ScholarDigital LibraryDigital Library
  143. Astrid Rosenthal-von der Pütten, Carolin Straßmann, and Martina Mara. 2017. A long time ago in a galaxy far, far away. . . the effects of narration and appearance on the perception of robots. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 1169-- 1174. doi: 10.1109/ROMAN.2017.8172452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  144. Silvia Rossi, Alessandra Rossi, and Kerstin Dautenhahn. 2020. The secret life of robots: perspectives and challenges for robot's behaviours during noninteractive tasks. International Journal of Social Robotics, 12, (Dec. 2020). doi: 10.1007/s12369-020-00650-z.Google ScholarGoogle ScholarCross RefCross Ref
  145. Aaron M. Roth, Samantha Reig, Umang Bhatt, Jonathan Shulgach, Tamara Amin, Afsaneh Doryab, Fei Fang, and Manuela Veloso. 2019. A robot's expressive language affects human strategy and perceptions in a competitive game. In 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1--8. doi: 10.1109/RO-MAN46459.2019.8956412.Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. Sayanti Roy, Trey Smith, Brian Coltin, and Tom Williams. 2023. I need your help... or do i? maintaining situation awareness through performative autonomy. In Proceedings of the 2023 ACM/IEEE International Conference on Human- Robot Interaction (HRI '23). Association for Computing Machinery, Stockholm, Sweden, 122--131. isbn: 9781450399647. doi: 10.1145/3568162.3576954.Google ScholarGoogle ScholarDigital LibraryDigital Library
  147. Matthew Rueben, Jeffrey Klow, Madelyn Duer, Eric Zimmerman, Jennifer Piacentini, Madison Browning, Frank J. Bernieri, Cindy M. Grimm, and William D. Smart. 2021. Mental models of a mobile shoe rack: exploratory findings from a long-term in-the-wild study. J. Hum.-Robot Interact., 10, 2, Article 16, (Feb. 2021), 36 pages. doi: 10.1145/3442620.Google ScholarGoogle ScholarDigital LibraryDigital Library
  148. Adam Rule and Jodi Forlizzi. 2012. Designing interfaces for multi-user, multirobot systems. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction (HRI '12). Association for Computing Machinery, Boston, Massachusetts, USA, 97--104. isbn: 9781450310635. doi: 10.1145/2157689.2157705.Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. Richard Ryan and Edward Deci. 2000. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. The American psychologist, 55, (Feb. 2000), 68--78. doi: 10.1037/0003-066X.55.1.68.Google ScholarGoogle ScholarCross RefCross Ref
  150. Tamie Salter, François Michaud, and Hélène Larouche. 2010. How wild is wild? a taxonomy to characterize the 'wildness' of child-robot interaction. I. J. Social Robotics, 2, (Dec. 2010), 405--415. doi: 10.1007/s12369-010-0069--4.Google ScholarGoogle ScholarCross RefCross Ref
  151. Marcus M. Scheunemann, Raymond H. Cuijpers, and Christoph Salge. 2020. Warmth and competence to predict human preference of robot behavior in physical human-robot interaction. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1340--1347. doi: 10.1109/RO-MAN47096.2020.9223478.Google ScholarGoogle ScholarCross RefCross Ref
  152. Markus Schlosser. 2019. Agency. In The Stanford Encyclopedia of Philosophy. (Winter 2019 ed.). Edward N. Zalta, (Ed.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  153. Melanie Schmidt-Wolf and David Feil-Seifer. 2022. Comparison of vehicleto- bicyclist and vehicle-to-pedestrian communication feedback module: a study on increasing legibility, public acceptance and trust. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (ROMAN), 1058--1064. doi: 10.1109/RO-MAN53752.2022.9900748.Google ScholarGoogle ScholarDigital LibraryDigital Library
  154. Sebastian Schneider and Franz Kummert. 2021. Comparing robot and human guided personalization: adaptive exercise robots are perceived as more competent and trustworthy. International Journal of Social Robotics, 13, (Apr. 2021). doi: 10.1007/s12369-020-00629-w.Google ScholarGoogle ScholarCross RefCross Ref
  155. Thomas B. Sheridan, William L. Verplank, and T. L. Brooks. 1978. Human/computer control of undersea teleoperators. In NASA. Ames Res. Center The 14th Ann. Conf. on Manual Control.Google ScholarGoogle Scholar
  156. Masahiro Shiomi, Daisuke Sakamoto, Takayuki Kanda, Carlos Toshinori Ishi, Hiroshi Ishiguro, and Norihiro Hagita. 2008. A semi-autonomous communication robot: a field trial at a train station. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction (HRI '08). Association for Computing Machinery, Amsterdam, The Netherlands, 303--310. isbn: 9781605580173. doi: 10.1145/1349822.1349862.Google ScholarGoogle ScholarDigital LibraryDigital Library
  157. Rosanne M. Siino, Justin Chung, and Pamela J. Hinds. 2008. Colleague vs. tool: effects of disclosure in human-robot collaboration. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 558--562. doi: 10.1109/ROMAN.2008.4600725.Google ScholarGoogle ScholarCross RefCross Ref
  158. Grimaldo Silva, Khansa Rekik, Ali Kanso, and Leizer Schnitman. 2022. Multiperspective human robot interaction through an augmented video interface supported by deep learning. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 1168--1173. doi: 10.1109/RO-MAN53752.2022.9900671.Google ScholarGoogle ScholarDigital LibraryDigital Library
  159. Tim Smithers. 1997. Autonomy in robots and other agents. Brain and Cognition, 34, 1, 88--106. doi: https://doi.org/10.1006/brcg.1997.0908.Google ScholarGoogle ScholarCross RefCross Ref
  160. Julia Stapels and Friederike Eyssel. 2022. Robocalypse? yes, please! the role of robot autonomy in the development of ambivalent attitudes towards robots. International Journal of Social Robotics, 14, (Apr. 2022). doi: 10.1007/s12369-0 21-00817--2.Google ScholarGoogle ScholarCross RefCross Ref
  161. Halit Bener Suay, Russell Toris, and Sonia Chernova. 2012. A practical comparison of three robot learning from demonstration algorithm. International Journal of Social Robotics, 4, 319--330.Google ScholarGoogle ScholarCross RefCross Ref
  162. Tao Sun, Donghao Shao, Zhendong Dai, and Poramate Manoonpong. 2018. Adaptive neural control for self-organized locomotion and obstacle negotiation of quadruped robots. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE, 1081--1086. doi: 10.1109/ROMAN.2018.8525645.Google ScholarGoogle ScholarDigital LibraryDigital Library
  163. Kazuaki Tanaka, Naomi Yamashita, Hideyuki Nakanishi, and Hiroshi Ishiguro. 2016. Teleoperated or autonomous?: how to produce a robot operator's pseudo presence in hri. In 2016 11th ACM/IEEE International Conference on Human- Robot Interaction (HRI), 133--140. doi: 10.1109/HRI.2016.7451744.Google ScholarGoogle ScholarCross RefCross Ref
  164. 2021. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. https://www.sae.org/standards/content/j 3016_202104/. Accessed: 2023-07--24. (Apr. 2021).Google ScholarGoogle Scholar
  165. Michael Thompson. 2017.Autonomy and common good: interpreting rousseau's general will. International Journal of Philosophical Studies, 25, (Feb. 2017), 1-- 20. doi: 10.1080/09672559.2017.1286364.Google ScholarGoogle ScholarCross RefCross Ref
  166. Suzanne Tolmeijer, Astrid Weiss, Marc Hanheide, Felix Lindner, Thomas M. Powers, Clare Dixon, and Myrthe L. Tielman. 2020. Taxonomy of trust-relevant failures and mitigation strategies. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20). Association for Computing Machinery, Cambridge, United Kingdom, 3--12. isbn: 9781450367462. doi: 10.1145/3319502.3374793.Google ScholarGoogle ScholarDigital LibraryDigital Library
  167. Ilaria Torre, Alexis Linard, Anders Steen, Jana Tumová, and Iolanda Leite. 2021. Should robots chicken? how anthropomorphism and perceived autonomy influence trajectories in a game-theoretic problem. In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI '21). Association for Computing Machinery, Boulder, CO, USA, 370--379. isbn: 9781450382892. doi: 10.1145/3434073.3444687.Google ScholarGoogle ScholarDigital LibraryDigital Library
  168. Daniel Tozadore, Adam Pinto, Roseli Romero, and Gabriele Trovato. 2017. Wizard of oz vs autonomous: children's perception changes according to robot's operation condition. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 664--669. doi: 10.110 9/ROMAN.2017.8172374.Google ScholarGoogle ScholarDigital LibraryDigital Library
  169. Alexander Tyshka and Wing-Yue Geoffrey Louie. 2022. Transparent learning from demonstration for robot-mediated therapy. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 891-- 897. doi: 10.1109/RO-MAN53752.2022.9900854.Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. Daniel Ullman, Salomi Aladia, and Bertram F. Malle. 2021. Challenges and opportunities for replication science in hri: a case study in human-robot trust. In Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction (HRI '21). Association for Computing Machinery, Boulder, CO, USA, 110--118. isbn: 9781450382892. doi: 10.1145/3434073.3444652.Google ScholarGoogle ScholarDigital LibraryDigital Library
  171. Steven Umbrello and Roman Yampolskiy. 2022. Designing ai for explainability and verifiability: a value sensitive design approach to avoid artificial stupidity in autonomous vehicles. International Journal of Social Robotics, 14, (Mar. 2022), 1--10. doi: 10.1007/s12369-021-00790-w.Google ScholarGoogle ScholarCross RefCross Ref
  172. Guillaume Vailland, Yoren Gaffary, Louise Devigne, Valérie Gouranton, Bruno Arnaldi, and Marie Babel. 2020. Vestibular feedback on a virtual reality wheelchair driving simulator: a pilot study. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20). Association for Computing Machinery, Cambridge, United Kingdom, 171--179. isbn: 9781450367462. doi: 10.1145/3319502.3374825.Google ScholarGoogle ScholarDigital LibraryDigital Library
  173. Alberto Valero, Massimo Mecella, Fernando Matia, and Daniele Nardi. 2008. Adaptative human-robot interaction for mobile robots. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication, 243--248. doi: 10.1109/ROMAN.2008.4600673.Google ScholarGoogle ScholarCross RefCross Ref
  174. Dieter Vanderelst and Jurgen Willems. 2020. Can we agree on what robots should be allowed to do? an exercise in rule selection for ethical care robots. International Journal of Social Robotics, 12, 1093--1102.Google ScholarGoogle ScholarCross RefCross Ref
  175. Josca van Houwelingen-Snippe, Jered Vroon, Gwenn Englebienne, and Pim Haselager. 2017. Blame my telepresence robot joint effect of proxemics and attribution on interpersonal attraction. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 162--168. doi: 10.1109/ROMAN.2017.8172296.Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. Andrea Vanzo, Francesco Riccio, Mahmoud Sharf, Valeria Mirabella, Tiziana Catarci, and Daniele Nardi. 2020. Who is willing to help robots? a user study on collaboration attitude. International Journal of Social Robotics, 12, 589--598.Google ScholarGoogle ScholarCross RefCross Ref
  177. Somogy Varga and Charles Guignon. 2023. Authenticity. In The Stanford Encyclopedia of Philosophy. (Summer 2023 ed.). Edward N. Zalta and Uri Nodelman, (Eds.) Metaphysics Research Lab, Stanford University.Google ScholarGoogle Scholar
  178. Vighnesh Vatsal and Guy Hoffman. 2017. Wearing your arm on your sleeve: studying usage contexts for a wearable robotic forearm. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 974--980. doi: 10.1109/ROMAN.2017.8172421.Google ScholarGoogle ScholarDigital LibraryDigital Library
  179. Manuela M. Veloso. 2018. The increasingly fascinating opportunity for humanrobot- ai interaction: the cobot mobile service robots. J. Hum.-Robot Interact., 7, 1, Article 5, (May 2018), 2 pages. doi: 10.1145/3209541.Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. Huadong Wang et al. 2011. Scalable target detection for large robot teams. In Proceedings of the 6th International Conference on Human-Robot Interaction (HRI '11). Association for Computing Machinery, Lausanne, Switzerland, 363-- 370. isbn: 9781450305617. doi: 10.1145/1957656.1957792.Google ScholarGoogle ScholarDigital LibraryDigital Library
  181. Yueh-HsuanWeng, Chien-Hsun Chen, and Chuen-Tsai Sun. 2009. Toward the human--robot co-existence society: on safety intelligence for next generation robots. International Journal of Social Robotics, 1, 267--282.Google ScholarGoogle ScholarCross RefCross Ref
  182. Eva Wiese, Giorgio Metta, and Agnieszka Wykowska. 2017. Robots as intentional agents: using neuroscientific methods to make robots appear more social. Frontiers in Psychology, 8. doi: 10.3389/fpsyg.2017.01663.Google ScholarGoogle ScholarCross RefCross Ref
  183. Jason R. Wilson, Linda Tickle-Degnen, and Matthias Scheutz. 2020. Challenges in designing a fully autonomous socially assistive robot for people with parkinson's disease. J. Hum.-Robot Interact., 9, 3, Article 20, (May 2020), 31 pages. doi: 10.1145/3379179.Google ScholarGoogle ScholarDigital LibraryDigital Library
  184. Susan Wolf. 1987. Sanity and the metaphysics of responsibility. In Responsibility, Character, and the Emotions: New Essays in Moral Psychology. Ferdinand David Schoeman, (Ed.) Cambridge University Press, 46--62.Google ScholarGoogle Scholar
  185. Luke Wood, Abolfazl Zaraki, Ben Robins, and Kerstin Dautenhahn. 2021. Developing kaspar: a humanoid robot for children with autism. International Journal of Social Robotics, 13, (June 2021). doi: 10.1007/s12369-019-00563--6.Google ScholarGoogle ScholarCross RefCross Ref
  186. Lauren L.Wright, Aditi Kothiyal, Kai O. Arras, and Barbara Bruno. 2022. How a social robot's vocalization affects children's speech, learning, and interaction. In 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), 279--286. doi: 10.1109/RO-MAN53752.2022.99008 11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. Guang-Zhong Yang et al. 2017. Medical robotics--regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, 2, 4, eaam8638. eprint: https://www.science.org/doi/pdf/10.1126/scirobotics.aam8 638. doi: 10.1126/scirobotics.aam8638.Google ScholarGoogle ScholarCross RefCross Ref
  188. Setareh Zafari and Sabine T. Koeszegi. 2021. Attitudes toward attributed agency: role of perceived control. International Journal of Social Robotics, 13, 8, 2071--2080.Google ScholarGoogle ScholarCross RefCross Ref
  189. Abolfazl Zaraki, Luke Wood, Ben Robins, and Kerstin Dautenhahn. 2018. Development of a semi-autonomous robotic system to assist children with autism in developing visual perspective taking skills. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 969-- 976. doi: 10.1109/ROMAN.2018.8525681.Google ScholarGoogle ScholarDigital LibraryDigital Library
  190. Zhizheng Zhang, Zhibo Chen, and Weiping Li. 2018. Automating robotic furniture with a collaborative vision-based sensing scheme. In 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 719--725. doi: 10.1109/ROMAN.2018.8525783.Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. Jakub Zotowski, Kumar Yogeeswaran, and Christoph Bartneck. 2017. Can we control it? autonomous robots threaten human identity, uniqueness, safety, and resources. International Journal of Human-Computer Studies, 100, 48--54. doi: https://doi.org/10.1016/j.ijhcs.2016.12.008.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Taxonomy of Robot Autonomy for Human-Robot Interaction

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        HRI '24: Proceedings of the 2024 ACM/IEEE International Conference on Human-Robot Interaction
        March 2024
        982 pages
        ISBN:9798400703225
        DOI:10.1145/3610977

        Copyright © 2024 Owner/Author

        This work is licensed under a Creative Commons Attribution International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 March 2024

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate242of1,000submissions,24%
      • Article Metrics

        • Downloads (Last 12 months)484
        • Downloads (Last 6 weeks)420

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader