skip to main content
10.1145/3611314.3615909acmconferencesArticle/Chapter ViewAbstractPublication Pagesweb3dConference Proceedingsconference-collections
research-article

MORGAN: MPEG Original Reference Geometric Avatar Neutral

Published:09 October 2023Publication History

ABSTRACT

To address the need for interoperable user representations (avatars) cross-platform exchange format for immersive realities, ISO/IEC JTC 1/SC29/WG03 MPEG Systems has standardized a Scene Description framework in ISO/IEC 23090-14 [ISO/IEC 2023]. It serves as a baseline format for user representation format to enrich the interactive experience between 3D objects in an immersive scene. This work presents the MPEG Original Reference Geometric Avatar Neutral (Morgan), a humanoid avatar specified as informative content in the MPEG-I Scene Description (MPEG-I SD) standardization group. Morgan is a generic avatar representation that facilitates interactivity and manipulation in immersive realities and is accompanied by a complete body mesh and realistic appearance, hierarchical skeletal representation, blend shapes, eye globes, jaws with teeth and semantical representation of human body parts.

References

  1. T. Beeler, B. Bickel, P. Beardsley, B. Sumner, and M. Gross. 2010. High-quality single-shot capture of facial geometry. In ACM SIGGRAPH, Vol. 29. ACM, New York, NY, USA, 40:1–40:9. https://doi.org/10.1145/1778765.1778777Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Bulat and G. Tzimiropoulos. 2017. How Far are We from Solving the 2D & 3D Face Alignment Problem? (and a Dataset of 230,000 3D Facial Landmarks). ICCV (12 2017), 1021–1030. https://doi.org/10.1109/ICCV.2017.116Google ScholarGoogle Scholar
  3. Chen Cao, Yanlin Weng, Shun Zhou, Yiying Tong, and Kun Zhou. 2014. FaceWarehouse: A 3D facial expression database for visual computing. IEEE Transactions on Visualization and Computer Graphics 20, 3 (2014), 413–425. https://doi.org/10.1109/TVCG.2013.249Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Carranza, C. Theobalt, M. A. Magnor, and H-P. Seidel. 2003. Free-viewpoint Video of Human Actors. ACM Trans. Graph. 22, 3 (July 2003), 569–577. https://doi.org/10.1145/882262.882309Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. 2015. High-quality Streamable Free-viewpoint Video. ACM Trans. Graph. 34, 4, Article 69 (July 2015), 69:1–69:13 pages. https://doi.org/10.1145/2766945Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. F. Danieau, I. Gubins, N. Olivier, O. Dumas, B. Denis, T. Lopez, N. Mollet, B. Frager, and Q. Avril. 2019. Automatic Generation and Stylization of 3D Facial Rigs. In 2019 IEEE Conf. on Virtual Reality and 3D User Interfaces. 784–792. https://doi.org/10.1109/VR.2019.8798208Google ScholarGoogle ScholarCross RefCross Ref
  7. C. Doukas, S. Zafeiriou, and V. Sharmanska. 2021. HeadGAN: One-shot Neural Head Synthesis and Editing. ICCV (2021). https://doi.org/10.1109/iccv48922.2021.01413 arxiv:2012.08261Google ScholarGoogle Scholar
  8. P. Ekman, W. V. Freisen, and S. Ancoli. 1980. Facial signs of emotional experience. In Journal of Personality and Social Psychology. 1125–1134. https://doi.org/10.1037/h0077722Google ScholarGoogle Scholar
  9. R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. 2008. Multi-PIE. In FG. 1–8. http://dx.doi.org/10.1109/AFGR.2008.4813399Google ScholarGoogle Scholar
  10. ISO/IEC. 2006. ISO/IEC 19774:2006 Information technology — Computer graphics and image processing — Humanoid Animation (H-Anim). Standard ISO/IEC 19774:2006. International Organization for Standardization.Google ScholarGoogle Scholar
  11. ISO/IEC. 2020. ISO/IEC 23005 MPEG-V, Information technology — Media context and control. Standard ISO/IEC 23005. International Organization for Standardization.Google ScholarGoogle Scholar
  12. ISO/IEC. 2023. Potential improvements of ISO/IEC 23090-14 CDAM 2 Support for haptics, augmented reality, avatars, interactivity, MPEG-I audio and lighting. Standard ISO/IEC 23090-14:2023. International Organization for Standardization.Google ScholarGoogle Scholar
  13. M. Kowalski, J. Naruniec, and T. Trzcinski. 2017. Deep Alignment Network: A Convolutional Neural Network for Robust Face Alignment. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Vol. 2017-July. 2034–2043. https://doi.org/10.1109/CVPRW.2017.254 arxiv:1706.01789Google ScholarGoogle Scholar
  14. R. Li, K. Bladin, Y. Zhao, C. Chinara, O. Ingraham, P. Xiang, X. Ren, P. Prasad, B. Kishore, J. Xing, and H. Li. 2020. Learning formation of physically-based face attributes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020), 3407–3416. https://doi.org/10.1109/CVPR42600.2020.00347 arxiv:2004.03458Google ScholarGoogle Scholar
  15. Tianye Li, Timo Bolkart, Michael J. Black, Hao Li, and Javier Romero. 2017. Learning a model of facial shape and expression from 4D scans. In ACM Transactions on Graphics, Vol. 36. Association for Computing Machinery. https://doi.org/10.1145/3130800.3130813Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. 2015. SMPL: A Skinned Multi-Person Linear Model. (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Ma, T. Simon, J. Saragih, D. Wang, Y. Li, F. De La Torre, and Y. Sheikh. 2021. Pixel Codec Avatars. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 64–73. https://doi.org/10.1109/CVPR46437.2021.00013 arxiv:2104.04638Google ScholarGoogle Scholar
  18. R. McDonnell, M. Breidt, and H. Bülthoff. 2012. Render me real?: investigating the effect of render style on the perception of animated virtual humans. ACM Trans. on Graph. 31, 4 (2012), 1–11. https://doi.org/10.1145/2185520.2185587Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. N. Olivier, K. Baert, F. Danieau, F. Multon, and Q. Avril. 2023. FaceTuneGAN: Face autoencoder for convolutional expression transfer using neural generative adversarial networks. Computers & Graphics 110 (2023), 69–85. https://doi.org/10.1016/j.cag.2022.12.004Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. N. Olivier, G. Kerbiriou, F. Arguelaguet, Q. Avril, F. Danieau, P. Guillotel, L. Hoyet, and F. Multon. 2022. Study on Automatic 3D Facial Caricaturization: From Rules to Deep Learning. Frontiers in Virtual Reality 2 (01 2022). https://doi.org/10.3389/frvir.2021.785104Google ScholarGoogle Scholar
  21. Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. 2009. A 3D face model for pose and illumination invariant face recognition. In 6th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009. 296–301. https://doi.org/10.1109/AVSS.2009.58Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Marius Preda and Françoise Preteux. 2002. Critic review on MPEG-4 face and body animation. In IEEE International Conference on Image Processing, Vol. 3. https://doi.org/10.1109/icip.2002.1039018Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. 2013. 300 Faces in-the-Wild Challenge: The First Facial Landmark Localization Challenge. In 2013 IEEE International Conference on Computer Vision Workshops, ICCV Workshops 2013, Sydney, Australia, December 1-8, 2013. IEEE Computer Society, 397–403. https://doi.org/10.1109/ICCVW.2013.59Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Maria V. Sanchez-Vives and Mel Slater. 2005. From presence to consciousness through virtual reality., 332–339 pages. https://doi.org/10.1038/nrn1651Google ScholarGoogle Scholar
  25. J. Starck and A. Hilton. 2007. Surface Capture for Performance-Based Animation. IEEE Computer Graph. and App. 27, 3 (2007), 21–31. https://doi.org/10.1109/MCG.2007.68Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. K. Teotia, B. Mallikarjun, X. Pan, H. Kim, P. Garrido, M. Elgharib, and C. Theobalt. 2023. HQ3DAvatar: High Quality Controllable 3D Head Avatar. arxiv:2303.14471 [cs.CV]Google ScholarGoogle Scholar
  27. A. Tewari, M. Zollhöfer, H. Kim, P. Garrido, F. Bernard, P Pérez, and C. Theobalt. 2017. MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction. ICCV (2017).Google ScholarGoogle Scholar
  28. The Khronos Group. 2021. glTF TM 2.0 Specification. https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.htmlGoogle ScholarGoogle Scholar
  29. Unreal Engine. 2021. Grooming for Real-Time Realism: Hair and Fur with Unreal Engine. https://www.unrealengine.com/en-US/blog/realistic-hair-and-fur-with-unreal-engine-get-the-white-paperGoogle ScholarGoogle Scholar
  30. VRM Consortium. 2019. A General Incorporated Association Dedicated to Developing and Disseminating the "VRM" File Format for 3D Avatars. https://vrm-consortium.org/en/#vrmGoogle ScholarGoogle Scholar
  31. T-C. Wang, A. Mallya, and M-Y. Liu. 2021. One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing. CVPR (2021). https://doi.org/10.1109/cvpr46437.2021.00991 arxiv:2011.15126Google ScholarGoogle Scholar
  32. E. Wood, T. Baltrušaitis, C. Hewitt, S. Dziadzio, T. Cashman, and J. Shotton. 2021. Fake it till you make it: face analysis in the wild using synthetic data alone. In Proceedings of the IEEE International Conference on Computer Vision. 3661–3671. https://doi.org/10.1109/ICCV48922.2021.00366 arxiv:2109.15102Google ScholarGoogle Scholar

Index Terms

  1. MORGAN: MPEG Original Reference Geometric Avatar Neutral

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      Web3D '23: Proceedings of the 28th International ACM Conference on 3D Web Technology
      October 2023
      244 pages
      ISBN:9798400703249
      DOI:10.1145/3611314

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 October 2023

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate27of71submissions,38%
    • Article Metrics

      • Downloads (Last 12 months)72
      • Downloads (Last 6 weeks)5

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format