skip to main content
10.1145/3613347.3613351acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicomsConference Proceedingsconference-collections
research-article

The Mathematical Pitfalls of the Original Single Particle Model

Published:13 December 2023Publication History

ABSTRACT

The single particle model (SPM) is widely recognized as a fundamental physical-based battery model commonly employed in contemporary battery management systems. Its origins can be traced back to a seminal paper by Zhang et al. However, despite its widespread citation, several limitations and issues within this original paper have remained unaddressed in subsequent research. In order to enhance the accessibility and applicability of battery modeling, particularly the SPM approach, this study aims to thoroughly investigate and rectify these aforementioned pitfalls. Furthermore, we present an up-to-date implementation of the SPM in Python, making it openly accessible to the scientific community.

References

  1. Harikesh Arunachalam and Simona Onori. 2018. What if the Doyle-Fuller-Newman Model Fails? A New Macroscale Modeling Framework. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, Miami Beach, 5702–5707. https://doi.org/10.1109/cdc.2018.8619793Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adrien M. Bizeray, Jin-Ho Kim, Stephen R. Duncan, and David A. Howey. 2019. Identifiability and Parameter Estimation of the Single Particle Lithium-Ion Battery Model. IEEE Transactions on Control Systems Technology 27, 5 (sep 2019), 1862–1877. https://doi.org/10.1109/tcst.2018.2838097Google ScholarGoogle ScholarCross RefCross Ref
  3. Marc Doyle, Thomas F. Fuller, and John Newman. 1993. Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell. Journal of The Electrochemical Society 140, 6 (jun 1993), 1526–1533. https://doi.org/10.1149/1.2221597Google ScholarGoogle ScholarCross RefCross Ref
  4. Marc Doyle, John Newman, Antoni S. Gozdz, Caroline N. Schmutz, and Jean-Marie Tarascon. 1996. Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells. Journal of The Electrochemical Society 143, 6 (jun 1996), 1890–1903. https://doi.org/10.1149/1.1836921Google ScholarGoogle ScholarCross RefCross Ref
  5. Parthasarathy M. Gomadam, John W. Weidner, Roger A. Dougal, and Ralph E. White. 2002. Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources 110, 2 (aug 2002), 267–284. https://doi.org/10.1016/s0378-7753(02)00190-8Google ScholarGoogle ScholarCross RefCross Ref
  6. Thomas R. B. Grandjean, Liuying Li, Maria Ximena Odio, and Widanalage D. Widanage. 2019. Global Sensitivity Analysis of the Single Particle Lithium-Ion Battery Model with Electrolyte. In 2019 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE Press, Waikoloa, HI, USA, 1–7. https://doi.org/10.1109/vppc46532.2019.8952455Google ScholarGoogle ScholarCross RefCross Ref
  7. Tom Gustafsson and G. McBain. 2020. scikit-fem: A Python package for finite element assembly. Journal of Open Source Software 5, 52 (aug 2020), 2369. https://doi.org/10.21105/joss.02369Google ScholarGoogle ScholarCross RefCross Ref
  8. Ernst Hairer and Gerhard Wanner. 1996. Solving Ordinary Differential Equations II. Springer Berlin Heidelberg, Berlin. https://doi.org/10.1007/978-3-642-05221-7Google ScholarGoogle ScholarCross RefCross Ref
  9. Ali Jokar, Barzin Rajabloo, Martin Désilets, and Marcel Lacroix. 2016. Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries. Journal of Power Sources 327 (sep 2016), 44–55. https://doi.org/10.1016/j.jpowsour.2016.07.036Google ScholarGoogle ScholarCross RefCross Ref
  10. Paulo Kemper and Dongsuk Kum. 2013. Extended Single Particle Model of Li-Ion Batteries Towards High Current Applications. In 2013 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, Beijing, China, 158–163. https://doi.org/10.1109/vppc.2013.6671682Google ScholarGoogle ScholarCross RefCross Ref
  11. Changlong Li, Naxin Cui, Chunyu Wang, and Chenghui Zhang. 2021. Reduced-order electrochemical model for lithium-ion battery with domain decomposition and polynomial approximation methods. Energy 221 (apr 2021), 119662. https://doi.org/10.1016/j.energy.2020.119662Google ScholarGoogle ScholarCross RefCross Ref
  12. Dongsheng Lu, Weishan Li, Xiaoxi Zuo, Zhongzhi Yuan, and Qiming Huang. 2007. Study on Electrode Kinetics of Li+ Insertion in LixMn2O4 (0 ≤ x ≤ 1) by Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry C 111, 32 (jul 2007), 12067–12074. https://doi.org/10.1021/jp0732920Google ScholarGoogle ScholarCross RefCross Ref
  13. Languang Lu, Xuebing Han, Jianqiu Li, Jianfeng Hua, and Minggao Ouyang. 2013. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 226 (mar 2013), 272–288. https://doi.org/10.1016/j.jpowsour.2012.10.060Google ScholarGoogle ScholarCross RefCross Ref
  14. Scott J. Moura, Federico Bribiesca Argomedo, Reinhardt Klein, Anahita Mirtabatabaei, and Miroslav Krstic. 2017. Battery State Estimation for a Single Particle Model With Electrolyte Dynamics. IEEE Transactions on Control Systems Technology 25, 2 (mar 2017), 453–468. https://doi.org/10.1109/tcst.2016.2571663Google ScholarGoogle ScholarCross RefCross Ref
  15. Matsuhiko Nishizawa, Tomoaki Ise, Hiromichi Koshika, Takashi Itoh, and Isamu Uchida. 2000. Electrochemical In-Situ Conductivity Measurements for Thin Film of Li1 − xMn2O4 Spinel. Chemistry of Materials 12, 5 (apr 2000), 1367–1371. https://doi.org/10.1021/cm990696zGoogle ScholarGoogle ScholarCross RefCross Ref
  16. Chuying Ouyang, Siqi Shi, Zhaoxiang Wang, Xuejie Huang, and Liquan Chen. 2004. Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4. Solid State Communications 130, 7 (may 2004), 501–506. https://doi.org/10.1016/j.ssc.2004.02.041Google ScholarGoogle ScholarCross RefCross Ref
  17. Stack Overflow. 2022. Most used programming languages among developers worldwide as of. Technical Report. Stack Overflow. 2022 pages. https://survey.stackoverflow.co/2022/#technology-most-popular-technologiesGoogle ScholarGoogle Scholar
  18. Gregory L. Plett. 2015. Battery management systems Battery modeling. Artech House, Colorado. 343 pages.Google ScholarGoogle Scholar
  19. Christopher Rackauckas and Qing Nie. 2017. DifferentialEquations.jl–a performant and feature-rich ecosystem for solving differential equations in Julia. Journal of Open Research Software 5, 1 (2017).Google ScholarGoogle ScholarCross RefCross Ref
  20. Venkatasailanathan Ramadesigan, Paul W. C. Northrop, Sumitava De, Shriram Santhanagopalan, Richard D. Braatz, and Venkat R. Subramanian. 2012. Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective. Journal of The Electrochemical Society 159, 3 (2012), R31–R45. https://doi.org/10.1149/2.018203jesGoogle ScholarGoogle ScholarCross RefCross Ref
  21. Shriram Santhanagopalan, Qingzhi Guo, Premanand Ramadass, and Ralph E. White. 2006. Review of models for predicting the cycling performance of lithium ion batteries. Journal of Power Sources 156, 2 (jun 2006), 620–628. https://doi.org/10.1016/j.jpowsour.2005.05.070Google ScholarGoogle ScholarCross RefCross Ref
  22. Granville Sewell. 2018. Solving Partial Differential Equation Applications with PDE2D. John Wiley & Sons, Inc., Texas. https://doi.org/10.1002/9781119507918Google ScholarGoogle ScholarCross RefCross Ref
  23. Lawrence F. Shampine and Mark W. Reichelt. 1997. The MATLAB ODE Suite. SIAM J. Sci. Comput. 18 (1997), 1–22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. S. Tamilselvi, S. Gunasundari, N. Karuppiah, Abdul Razak RK, S. Madhusudan, Vikas Madhav Nagarajan, T. Sathish, Mohammed Zubair M. Shamim, C. Ahamed Saleel, and Asif Afzal. 2021. A Review on Battery Modelling Techniques. Sustainability 13, 18 (sep 2021), 10042. https://doi.org/10.3390/su131810042Google ScholarGoogle ScholarCross RefCross Ref
  25. Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272. https://doi.org/10.1038/s41592-019-0686-2Google ScholarGoogle ScholarCross RefCross Ref
  26. Yujie Wang, Jiaqiang Tian, Zhendong Sun, Li Wang, Ruilong Xu, Mince Li, and Zonghai Chen. 2020. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews 131 (oct 2020), 110015. https://doi.org/10.1016/j.rser.2020.110015Google ScholarGoogle ScholarCross RefCross Ref
  27. Dong Zhang, Branko N. Popov, and Ralph E. White. 2000. Modeling Lithium Intercalation of a Single Spinel Particle under Potentiodynamic Control. Journal of The Electrochemical Society 147, 3 (2000), 831. https://doi.org/10.1149/1.1393279Google ScholarGoogle ScholarCross RefCross Ref
  28. Willi Zschiebsch. 2023. BatMania. https://doi.org/10.5281/ZENODO.7684758Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Mathematical Pitfalls of the Original Single Particle Model

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          ICoMS '23: Proceedings of the 2023 6th International Conference on Mathematics and Statistics
          July 2023
          160 pages
          ISBN:9798400700187
          DOI:10.1145/3613347

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 December 2023

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited
        • Article Metrics

          • Downloads (Last 12 months)14
          • Downloads (Last 6 weeks)1

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format