skip to main content
10.1145/3613424.3614274acmconferencesArticle/Chapter ViewAbstractPublication PagesmicroConference Proceedingsconference-collections
research-article

QuCT: A Framework for Analyzing Quantum Circuit by Extracting Contextual and Topological Features

Published: 08 December 2023 Publication History

Abstract

In the current Noisy Intermediate-Scale Quantum era, quantum circuit analysis is an essential technique for designing high-performance quantum programs. Current analysis methods exhibit either accuracy limitations or high computational complexity for obtaining precise results. To reduce this tradeoff, we propose QuCT, a unified framework for extracting, analyzing, and optimizing quantum circuits. The main innovation of QuCT is to vectorize each gate with each element, quantitatively describing the degree of the interaction with neighboring gates. Extending from the vectorization model, we propose two representative downstream models for fidelity prediction and unitary decomposition. The fidelity prediction model performs a linear transformation on all gate vectors and aggregates the results to estimate the overall circuit fidelity. By identifying critical weights in the transformation matrix, we propose two optimizations to improve the circuit fidelity. In the unitary decomposition model, we significantly reduce the search space by bridging the gap between unitary and circuit via gate vectors. Experiments show that QuCT improves the accuracy of fidelity prediction by 4.2 × on 5-qubit and 18-qubit quantum devices and achieves 2.5 × fidelity improvement compared to existing quantum compilers [19, 55]. In unitary decomposition, QuCT achieves 46.3 × speedup for 5-qubit unitary and more than hundreds of speedup for 8-qubit unitary, compared to the state-of-the-art method [87].

References

[1]
Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. 2020. Circuit compilation methodologies for quantum approximate optimization algorithm. In Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 215–228.
[2]
Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Hiroshi Horii, Shaohan Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Luh, Yunho Maeng, Manoel Marques, Francisco Jose Martín-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikolaj Moll, Diego Moreda Rodríguez, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Viktor Prutyanov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing. (2019).
[3]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, Willliam Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhan Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandra, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthhew Neeley, Charles Neil, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M Martinis. 2019. Quantum supremacy using a programmable superconducting processor. Nature (2019), 505–510.
[4]
Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel Scheiermann, and Ramona Wolf. 2020. Training deep quantum neural networks. Nature communications (2020), 808.
[5]
Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997. Strengths and weaknesses of quantum computing. SIAM journal on Computing (1997), 1510–1523.
[6]
Alex Bocharov, Martin Roetteler, and Krysta M Svore. 2015. Efficient synthesis of universal repeat-until-success quantum circuits. Physical review letters 114, 8 (2015), 080502.
[7]
Leo Breiman. 2001. Random forests. Machine learning (2001), 5–32.
[8]
John Chiaverini, Dietrich Leibfried, Tobias Schaetz, Murray D Barrett, RB Blakestad, Joseph Britton, Wayne M Itano, John D Jost, Emanuel Knill, Christopher Langer, R. Ozeri, and D. J. Wineland. 2004. Realization of quantum error correction. Nature (2004), 602–605.
[9]
Laura Clinton, Johannes Bausch, and Toby Cubitt. 2021. Hamiltonian simulation algorithms for near-term quantum hardware. Nature communications (2021), 1–10.
[10]
Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta. 2019. Validating quantum computers using randomized model circuits. Physical Review A (2019), 032328.
[11]
Poulami Das, Eric Kessler, and Yunong Shi. 2023. The Imitation Game: Leveraging CopyCats for Robust Native Gate Selection in NISQ Programs. In 2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 787–801.
[12]
Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi. 2021. Adapt: Mitigating idling errors in qubits via adaptive dynamical decoupling. In Proceedings of the 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 950–962.
[13]
Poulami Das, Swamit Tannu, and Moinuddin Qureshi. 2021. Jigsaw: Boosting fidelity of nisq programs via measurement subsetting. In Proceedings of the 54th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 937–949.
[14]
Anmer Daskin and Sabre Kais. 2011. Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians. The Journal of chemical physics (2011), 144112.
[15]
Marc G Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin Iancu. 2020. Towards optimal topology aware quantum circuit synthesis. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 223–234.
[16]
Christopher M Dawson and Michael A Nielsen. 2005. The solovay-kitaev algorithm. arXiv preprint quant-ph/0505030 (2005).
[17]
Alexis De Vos and Stijn De Baerdemacker. 2016. Block-Z X Z synthesis of an arbitrary quantum circuit. Physical Review A (2016), 052317.
[18]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL) (2018).
[19]
Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, and Frederic T Chong. 2020. Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation. In Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 201–214.
[20]
Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker, Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer Blatt. 2019. Characterizing large-scale quantum computers via cycle benchmarking. Nature communications (2019), 5347.
[21]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).
[22]
Francois Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. 2007. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on knowledge and data engineering (2007), 355–369.
[23]
Joel N Franklin. 2012. Matrix theory. Courier Corporation.
[24]
Jay M Gambetta, Antonio D Córcoles, Seth T Merkel, Blake R Johnson, John A Smolin, Jerry M Chow, Colm A Ryan, Chad Rigetti, Stefano Poletto, Thomas A Ohki, 2012. Characterization of addressability by simultaneous randomized benchmarking. Physical review letters 109, 24 (2012), 240504.
[25]
Konstantinos Georgopoulos, Clive Emary, and Paolo Zuliani. 2021. Modeling and simulating the noisy behavior of near-term quantum computers. Physical Review A (2021), 062432.
[26]
Brett Giles and Peter Selinger. 2013. Exact synthesis of multiqubit Clifford+ T circuits. Physical Review A (2013), 032332.
[27]
DM Greenberger, MA Horne, and A Zeilinger. 1989. Going beyond Bell’s theorem, in “Bell’s theorem, quantum theory, and conceptions of the universe,” M. Kafakos, editor, Vol. 37 of. Fundamental Theories of Physics (1989).
[28]
Robert Grone, Russell Merris, and VS_ Sunder. 1990. The Laplacian spectrum of a graph. SIAM Journal on matrix analysis and applications 11, 2 (1990), 218–238.
[29]
Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866
[30]
Mauricio Gutiérrez, Lukas Svec, Alexander Vargo, and Kenneth R Brown. 2013. Approximation of realistic errors by Clifford channels and Pauli measurements. Physical Review A (2013), 030302.
[31]
Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram, and Frederic T Chong. 2020. NISQ+: Boosting quantum computing power by approximating quantum error correction. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 556–569.
[32]
Sihao Huang, Benjamin Lienhard, Greg Calusine, Antti Vepsäläinen, Jochen Braumüller, David K Kim, Alexander J Melville, Bethany M Niedzielski, Jonilyn L Yoder, Bharath Kannan, 2021. Microwave package design for superconducting quantum processors. PRX Quantum 2, 2 (2021), 020306.
[33]
Sergei V Isakov, Dvir Kafri, Orion Martin, Catherine Vollgraff Heidweiller, Wojciech Mruczkiewicz, Matthew P Harrigan, Nicholas C Rubin, Ross Thomson, Michael Broughton, Kevin Kissell, Peters Evan, Gustafson Erik, Andy C. Y. Li, Henry Lamm, Gabriel Perdue, Alan K. Ho, Doug Strain, and Sergio Boixo. 2021. Simulations of quantum circuits with approximate noise using qsim and cirq. arXiv preprint arXiv:2111.02396 (2021).
[34]
Raban Iten, Roger Colbeck, Ivan Kukuljan, Jonathan Home, and Matthias Christandl. 2016. Quantum circuits for isometries. Physical Review A (2016), 032318.
[35]
Raban Iten, Romain Moyard, Tony Metger, David Sutter, and Stefan Woerner. 2022. Exact and practical pattern matching for quantum circuit optimization. ACM Transactions on Quantum Computing (2022), 1–41.
[36]
Mohsen Jamali and Martin Ester. 2009. Trustwalker: a random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 397–406.
[37]
Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T Chong, and Margaret Martonosi. 2014. ScaffCC: A framework for compilation and analysis of quantum computing programs. In Proceedings of the 11th ACM Conference on Computing Frontiers. 1–10.
[38]
Julian Kelly, Peter O’Malley, Matthew Neeley, Hartmut Neven, and John M Martinis. 2018. Physical qubit calibration on a directed acyclic graph. arXiv preprint arXiv:1803.03226 (2018).
[39]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[40]
Martin Kliesch and Ingo Roth. 2021. Theory of quantum system certification. PRX quantum (2021), 010201.
[41]
Paul V Klimov, Julian Kelly, John M Martinis, and Hartmut Neven. 2020. The snake optimizer for learning quantum processor control parameters. arXiv preprint arXiv:2006.04594 (2020).
[42]
Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R Brad Blakestad, John D Jost, Chris Langer, Roee Ozeri, Signe Seidelin, and David J Wineland. 2008. Randomized benchmarking of quantum gates. Physical Review A (2008), 012307.
[43]
Efekan Kökcü, Thomas Steckmann, Yan Wang, JK Freericks, Eugene F Dumitrescu, and Alexander F Kemper. 2022. Fixed depth Hamiltonian simulation via Cartan decomposition. Physical Review Letters (2022), 070501.
[44]
Risi Kondor and Horace Pan. 2016. The multiscale laplacian graph kernel. Advances in neural information processing systems (2016).
[45]
Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D Oliver. 2019. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews (2019), 021318.
[46]
Anna M Krol, Aritra Sarkar, Imran Ashraf, Zaid Al-Ars, and Koen Bertels. 2022. Efficient decomposition of unitary matrices in quantum circuit compilers. Applied Sciences (2022), 759.
[47]
Ni Lao, Tom Mitchell, and William W. Cohen. 2011. Random walk inference and learning in a large scale knowledge base. In Proceedings of the 2011 conference on empirical methods in natural language processing. 529–539.
[48]
Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’19). 1001–1014.
[49]
Gushu Li, Yunong Shi, and Ali Javadi-Abhari. 2021. Software-hardware co-optimization for computational chemistry on superconducting quantum processors. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE, 832–845.
[50]
Seth Lloyd and Christian Weedbrook. 2018. Quantum Generative Adversarial Learning. Physical Review Letters (2018), 040502.1–040502.5.
[51]
Shunlong Luo and Qiang Zhang. 2004. Informational distance on quantum-state space. Physical Review A (2004), 032106.
[52]
Emanuel Malvetti, Raban Iten, and Roger Colbeck. 2021. Quantum circuits for sparse isometries. Quantum (2021), 412.
[53]
Esteban A Martinez, Thomas Monz, Daniel Nigg, Philipp Schindler, and Rainer Blatt. 2016. Compiling quantum algorithms for architectures with multi-qubit gates. New Journal of Physics (2016), 063029.
[54]
Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Camille Negrevergne. 2008. Quantum circuit simplification and level compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2008), 436–444.
[55]
Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, and Aws Albarghouthi. 2022. Qubit Mapping and Routing via MaxSAT. In Proceedings of the 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 1078–1091.
[56]
Mikko Möttönen, Juha J Vartiainen, Ville Bergholm, and Martti M Salomaa. 2004. Quantum circuits for general multiqubit gates. Physical Review Letters (2004), 130502.
[57]
Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020. Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’20). 1001–1016.
[58]
Yunseong Nam, Neil J Ross, Yuan Su, Andrew M Childs, and Dmitri Maslov. 2018. Automated optimization of large quantum circuits with continuous parameters. npj Quantum Information (2018), 1–12.
[59]
Paul D Nation, Hwajung Kang, Neereja Sundaresan, and Jay M Gambetta. 2021. Scalable mitigation of measurement errors on quantum computers. PRX Quantum 2, 4 (2021), 040326.
[60]
Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques actually helping programmers?. In Proceedings of the 2011 international symposium on software testing and analysis. 199–209.
[61]
Tirthak Patel, Baolin Li, Rohan Basu Roy, and Devesh Tiwari. 2020. UREQA: Leveraging Operation-Aware Error Rates for Effective Quantum Circuit Mapping on NISQ-Era Quantum Computers. In 2020 USENIX Annual Technical Conference (ATC). 705–711.
[62]
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duchesnay. 2011. Scikit-learn: Machine learning in Python. the Journal of machine Learning research (2011), 2825–2830.
[63]
John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum (2018), 79.
[64]
Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. 2022. Measuring the capabilities of quantum computers. Nature Physics (2022), 75–79.
[65]
Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin Blume-Kohout, and Kevin Young. 2022. Scalable randomized benchmarking of quantum computers using mirror circuits. Physical Review Letters (2022), 150502.
[66]
HT Quan, Zhi Song, Xu F Liu, Paolo Zanardi, and Chang-Pu Sun. 2006. Decay of Loschmidt echo enhanced by quantum criticality. Physical Review Letters (2006), 140604.
[67]
Péter Rakyta and Zoltán Zimborás. 2022. Approaching the theoretical limit in quantum gate decomposition. Quantum 6 (2022), 710.
[68]
P. Rebentrost, M. Mohseni, and S. Lloyd. 2013. Quantum support vector machine for big feature and big data classification. Physical Review Letters (2013), 130503.
[69]
Michiel A Rol, Livio Ciorciaro, Filip K Malinowski, Brian M Tarasinski, Ramiro E Sagastizabal, Cornelis Christiaan Bultink, Yves Salathe, Niels Haandbæk, Jan Sedivy, and Leonardo DiCarlo. 2020. Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor. Applied Physics Letters (2020), 054001.
[70]
Vedika Saravanan and Samah M Saeed. 2022. Data-driven reliability models of quantum circuit: From traditional ml to graph neural network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2022).
[71]
Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. 2020. Detecting crosstalk errors in quantum information processors. Quantum 4 (2020), 321.
[72]
Vivek V Shende, Stephen S Bullock, and Igor L Markov. 2005. Synthesis of quantum logic circuits. In Proceedings of the 2005 Asia and South Pacific Design Automation Conference. 272–275.
[73]
Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics. 488–495.
[74]
Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science. IEEE, 124–134.
[75]
Kaitlin N Smith and Mitchell A Thornton. 2019. A quantum computational compiler and design tool for technology-specific targets. In Proceedings of the 46th International Symposium on Computer Architecture. 579–588.
[76]
Mathias Soeken, D Michael Miller, and Rolf Drechsler. 2013. Quantum circuits employing roots of the Pauli matrices. Physical Review A (2013), 042322.
[77]
Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker, James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational quantum algorithms. In Proceedings of the 49th Annual International Symposium on Computer Architecture (ISCA). 59–71.
[78]
Brian D Sutton. 2009. Computing the complete CS decomposition. Numerical Algorithms (2009), 33–65.
[79]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 279–290.
[80]
Robert R Tucci. 1998. A rudimentary quantum compiler. arXiv preprint quant-ph/9805015 (1998).
[81]
Juha J Vartiainen, Mikko Möttönen, and Martti M Salomaa. 2004. Efficient decomposition of quantum gates. Physical Review Letters (2004), 177902.
[82]
Hanrui Wang, Pengyu Liu, Jinglei Cheng, Zhiding Liang, Jiaqi Gu, Zirui Li, Yongshan Ding, Weiwen Jiang, Yiyu Shi, Xuehai Qian, 2022. Graph Transformer for Quantum Circuit Reliability Prediction. (2022), 1–9.
[83]
Tianyi Wang, Yang Chen, Zengbin Zhang, Tianyin Xu, Long Jin, Pan Hui, Beixing Deng, and Xing Li. 2011. Understanding graph sampling algorithms for social network analysis. In 2011 31st international conference on distributed computing systems workshops. IEEE, 123–128.
[84]
Lei Xie, Jidong Zhai, ZhenXing Zhang, Jonathan Allcock, Shengyu Zhang, and Yi-Cong Zheng. 2022. Suppressing ZZ crosstalk of Quantum computers through pulse and scheduling co-optimization. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’22). 499–513.
[85]
Amanda Xu, Abtin Molavi, Lauren Pick, Swamit Tannu, and Aws Albarghouthi. 2023. Synthesizing Quantum-Circuit Optimizers. Proceedings of the ACM on Programming Languages 7, PLDI (2023), 835–859.
[86]
Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A Acar, 2022. Quartz: superoptimization of quantum circuits. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 625–640.
[87]
Ed Younis, Koushik Sen, Katherine Yelick, and Costin Iancu. 2021. Qfast: Conflating search and numerical optimization for scalable quantum circuit synthesis. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 232–243.

Cited By

View all
  • (2024)Compiling Conditional Quantum Gates without Using Helper QubitsProceedings of the ACM on Programming Languages10.1145/36564368:PLDI(1463-1484)Online publication date: 20-Jun-2024

Index Terms

  1. QuCT: A Framework for Analyzing Quantum Circuit by Extracting Contextual and Topological Features

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MICRO '23: Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture
    October 2023
    1528 pages
    ISBN:9798400703294
    DOI:10.1145/3613424
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 08 December 2023

    Check for updates

    Author Tags

    1. quantum circuit synthesis
    2. quantum computing
    3. quantum error correction

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • National Natural Science Foundation of China under Grant
    • Zhejiang Pioneer (Jianbing) Project

    Conference

    MICRO '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 484 of 2,242 submissions, 22%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)217
    • Downloads (Last 6 weeks)12
    Reflects downloads up to 18 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Compiling Conditional Quantum Gates without Using Helper QubitsProceedings of the ACM on Programming Languages10.1145/36564368:PLDI(1463-1484)Online publication date: 20-Jun-2024

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media