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ABSTRACT 
Current sound recognition systems for deaf and hard of hearing 
(DHH) people identify sound sources or discrete events. However, 
these systems do not distinguish similar sounding events (e.g., a 
patient monitor beep vs. a microwave beep). In this paper, we 
introduce HACS, a novel futuristic approach to designing human-
AI sound awareness systems. HACS assigns AI models to identify 
sounds based on their characteristics (e.g., a beep) and prompts DHH 
users to use this information and their contextual knowledge (e.g., 
“I am in a kitchen”) to recognize sound events (e.g., a microwave). 
As a first step for implementing HACS, we articulated a sound 
taxonomy that classifies sounds based on sound characteristics 
using insights from a multi-phased research process with people of 
mixed hearing abilities. We then performed a qualitative (with 9 
DHH people) and a quantitative (with a sound recognition model) 
evaluation. Findings demonstrate the initial promise of HACS for 
designing accurate and reliable human-AI systems. 
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1 INTRODUCTION 
Past studies indicated that deaf and hard of hearing (DHH) people 
seek enhanced sound awareness [1, 3]. Current sound awareness 
systems like SoundWatch [16] identify sound sources and events but 
often misidentify sounds due to the lack of contextual information 
and difficulty distinguishing similar sounds (e.g., reporting a smoke 
alarm while the heart rate monitor beeps in the hospital room). 
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[13]. To address this, we propose a fundamentally novel approach 
to designing human-AI sound awareness systems, HACS (Human-
AI Collaborative Sound Awareness). The underlying idea behind 
HACS is that AI models recognize and inform DHH users of the 
sounds based on “how they sound like” (instead of the sound events 
or sources), and then DHH users leverage their knowledge about the 
situated contexts to recognize actual sound events. For example, if a 
DHH user has just finished cooking in the kitchen, and the system 
reports “liquid flowing,” the user may recognize the sound as a 
dishwasher running instead of a washing machine, even though the 
two sounds are similar. Beyond the potential to increase accuracy, 
this approach drastically increases the agency of DHH users in the 
sound processing process, enabling them to take over the role of 
“predictor” to accurately determine sound events. 

As a first step of implementing HACS, we articulated a 
characteristics-based sound taxonomy that categorizes sounds 
based on “how they sound like.” We began by compiling a list 
of eighteen source-ambiguous sounds from Audio Set [10] that cov-
ered DHH people’s desired sounds [8]. To arrive at Deaf-friendly 
representations of these sounds, we conducted semi-structured in-
terviews with eight interpreters to understand how these sounds 
are represented in American Sign Language (ASL). We also invited 
these interpreters to complete a card sorting task by clustering the 
18 sound items into categories based on similarities in their signs. 
Based on the insights from the semi-structured interviews, card 
sorting activities, and in-depth discussions with a research team 
of mixed hearing abilities (2 ASL interpreters, 2 CART writers, 1 
DHH researcher, 2 hearing researchers), we articulated an 18-class, 
characteristics-based, ASL-friendly sound taxonomy. 

We conducted two preliminary evaluations of HACS. The first 
study simulated a scenario where a HACS-based system reported 
the characteristics of a sound (e.g., beep) that was taking place in 
a given context (e.g., a kitchen) and prompted DHH participants 
to recognize sound events based on this information. Participants’ 
responses provided initial evidence that HACS can help DHH users 
distinguish similar sound events (e.g., blender vs. vacuum cleaner). 
Moreover, HACS showed the potential to help DHH users identify 
different “states” of the sounds generated by the same sound source 
(e.g., door knock vs. door slam). For the second evaluation study, 
we trained a sound recognition model based on the characteristics-
based taxonomy to assess whether the sound classes enclosed in 
the taxonomy could be accurately recognized through algorith-
mic approaches. We found a near-perfect classification accuracy 
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(98.6%) when evaluated on a small dataset, further demonstrating 
the promise of our approach. 

In summary, our work contributes (1) a novel human-AI ap-
proach to designing sound awareness systems, (2) an 18-class tax-
onomy that classifies sounds based on sound characteristics, and 
(3) two preliminary evaluations demonstrating the initial promise 
of our approach in accurately recognizing sound events. 

2 RELATED WORK 
We present background on and situated our work within DHH 
culture and American Sign Language, sound classification schemes, 
and state-of-the-art sound awareness solutions. 

2.1 DHH Culture and American Sign Language 
Deafness is not just audiologically represented. Researchers have 
represented hearing loss through three models of disability: medi-
cal, social, and cultural [6, 24, 32]. While medical and social models 
emphasize physiological, social, and environmental barriers, the 
cultural model of deafness embodies a linguistic and cultural group 
(i.e., DHH Culture). DHH culture is a diverse cultural milieu char-
acterized by an established set of values, norms, behaviors, and 
languages like American Sign Language (ASL) [6, 25]. ASL is a nat-
ural language with linguistic components like syntax and grammar 
and is capable of expressing complex and abstract ideas, emotions, 
and narratives in a visual-spatial modality [19, 28, 31]. An important 
ASL concept relevant to our study is classifiers, a morphological 
system that can represent events and states [12]. Classifiers can 
represent an entity, describe the size and shape of the objects, and 
indicate the interactions between objects [12]. These attributes can 
help describe sound events, as sounds can be interpreted as the 
interactions of materials in an environment [9]. Our study extends 
the impacts of ASL to the development of assistive technologies 
by exploring how everyday sounds can be effectively represented 
based on sign language interpretations. 

2.2 Sound Classification Schemes 
Researchers have explored systematic sound classification schemes 
for decades. We review the four common ones: source-based, 
interaction-based, signal-based, and hybrid approaches. 

Source-based. Early researchers like Schafer pioneered sound-
scape research and categorized environmental sounds based on the 
presence of human activities [29]. Following this work, many stud-
ies proposed sound classifications based on sound sources across 
different domains, including urban areas [5, 27], restaurants [20], 
and geographical locations [14]. 

Interaction-based. Gaver [9] proposed an “ecological” and 
interaction-based approach for sound classification based on the 
material of the sound sources and their physical interactions with 
the environment. For example, the sound of a waterfall could be 
described as a large amount of liquid pouting into a pond from high 
elevation + high-force splash. 

Signal-based. The signal-based classification scheme concerns 
the acoustic signals or audio features [22, 23]. For example, Mitrović 
et al. [22] classified sounds based on the perceptual properties of 
sounds, including amplitude and pitch. 

Hybrid approach. Many recent sound classification approaches 
are based on both semantic and signal-based properties of the sound 
[2, 10]. For example, Audio Set, a 632-class sound taxonomy, cat-
egorizes sounds based on both high-level, semantic relations of 
sound sources (e.g., animals – pets – dogs) and more general sound 
characteristics like “whir” [10]. 

Regardless of the approaches, most of the sound classification 
schemes are based on the auditory perception and cognition of hear-
ing people. An exception includes Rosen’s work that probed the 
representations of sounds in the American Deaf Culture [26]. How-
ever, to our knowledge, no research focused on developing sound 
classifications from a DHH-centric perspective. While developing 
DHH-centric sound classification schemes seems counterintuitive, 
many prior studies demonstrated the benefits of sound awareness 
for DHH people (e.g., helping perform everyday tasks) [3, 8, 15, 16]. 
To address this gap, we articulated a sound taxonomy that classifies 
sounds based on sound characteristics depicted in ASL (e.g., ASL 
signs for whirring and liquid flowing). 

2.3 State-of-the-Art Sound Awareness Solutions 
The current state-of-the-art sound awareness systems [15, 16, 18] 
apply a discrete, source-based approach (i.e., identifying discrete 
sound events like door knock) to classify sounds. However, field 
studies of these technologies with DHH users [13, 15] showed that 
the source-based approach is not accurate or reliable enough for 
everyday use due to several limitations. First, source-based systems 
may fail to distinguish sound events with similar physical proper-
ties (e.g., door knock and footsteps). Second, source-based systems 
may fail to recognize different “states” of a sound source (e.g., dif-
ferent cycles of washing machines). Third, these systems often lack 
contextual knowledge, leading to sound feedback that might be 
context-inappropriate (e.g., recognizing the patient monitor beep as 
a smoke alarm). AdaptiveSound [7] responded with a feedback-loop 
system that enabled DHH users to provide feedback on the model 
output to make it more contextually appropriate, but the challenges 
in classifying similar sounding sounds remain. This work addresses 
the above limitations by proposing a novel approach for designing 
sound awareness solutions that leverages the strengths of both AI 
models (i.e., pattern recognition) and DHH users (i.e., contextual 
awareness) while recognizing sound events. 

3 THE HUMAN-AI COLLABORATIVE SOUND 
AWARENESS (HACS) APPROACH 

As we described in Section 2.3, prior field studies [13, 15] found 
that the sound recognition systems that identify discrete sound 
events or sources were prone to errors due to the AI system’s 
lack of contextual knowledge and the ability to distinguish similar-
sounding sounds (e.g., patient monitor vs. smoke alarms). This 
finding motivated us to design a new approach that addresses the 
above limitations. 

We propose HACS, a novel approach for designing human-AI 
sound awareness systems (Figure 1). The main idea of HACS is to 
leverage both AI’s pattern recognition and DHH users’ contextual 
awareness abilities to achieve sound awareness. The human-AI 
sound recognition systems based on the HACS approach work as 
follows: 



A Human-AI Collaborative Approach for Designing Sound Awareness Systems CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Figure 1: The HACS approach for human-AI collaborative sound awareness. 

1. The sound recognition model receives audio signals from 
the environment, processes the audio, and recognizes its 
characteristics. 

2. The model informs DHH users of the sound characteristics. 
3. The DHH users will then use the information enclosed in the 

sound characteristics and their knowledge about the situated 
contexts, including the location, activities, etc. (e.g., “I am 
currently standing in a kitchen cooking”), to recognize the 
actual sound events. 

HACS can address two key shortcomings of the source-based 
approaches (i.e., identifying discrete sound events or sources). First, 
by prompting AI models to classify sounds based on characteristics, 
HACS can bypass AI’s limitations in distinguishing sounds with 
similar physical properties. Second, HACS incorporates contextual 
knowledge of DHH users, which can help elicit context-appropriate 
sound recognition. For example, when DHH users are informed 
of a “beeping” (sound characteristic) sound in a hospital room 
(situated context), they are more likely to recognize the sound as a 
patient monitor beep rather than a microwave beep (sound event). 
Similarly, suppose a DHH user just finished cooking and receives a 
“liquid flowing” sound notification. In that case, they may recognize 
the sound event as a dishwasher running rather than a washing 
machine, even though the two sound events are similar. 

4 CONSTRUCTING A 
CHARACTERISTICS-BASED SOUND 
TAXONOMY FOR HACS 

We articulated a characteristics-based taxonomy as the first step 
for implementing HACS. The design goals for this taxonomy are 
twofold. First, the sound classes presented in the taxonomy should 
support automatic classification (step 1 of the HACS). Second, the 
information enclosed in the taxonomy should be informative and 
intuitive enough to help DHH people make sense of the sound 
events (steps 2 and 3 of the HACS). 

Table 1: Demographics of ASL interpreters for the formative 
study 

Participant ID Gender Age Years of 
Experience 

I1 Female 26 5 years 
I2 Female 50 13 years 
I3 Male 21 1 year 
I4 Male 30 8 years 
I5 Female 23 1.5 years 
I6 Female 26 5.5 years 
I7 Male 34 11 years 
I8 Female 47 29 years 

4.1 Formative Study Methods 
Participants: As an integral part of DHH culture, ASL can bridge 
the gap between DHH people and sounds. This property makes ASL 
signs a fitting medium for describing sound characteristics in a way 
that is closely aligned with DHH culture. Therefore, we recruited 8 
ASL interpreters through online study ads, social media (e.g., Reddit 
posts), emails, and snowball sampling (see Table 1). The average 
age of these participants was 32.1 years old (SD=10.9, range=21-50). 
The average years of experience was 9.25 (SD=9.0, range=1-29). All 
interpreters were U.S. residents and had experience working with 
DHH people professionally. 

Procedure: To begin constructing our characteristics-based tax-
onomy, the first and second authors, who are hearing, indepen-
dently selected source-ambiguous sounds from the Audio Set ontol-
ogy [10] that could comprehensively represent sounds in real life. 
For example, the first author considered the “whir” sound from the 
Audio Set ontology to represent appliances running (e.g., washers 
and dryers) and the “thump” sound to represent dull objects like 
books dropping to the floor. The authors then met to construct a 
singular list of sounds by sorting, splitting (e.g., separating “thump” 
and “tap” into independent categories), and combining (e.g., “rip” 
and “tearing” into a single category) the sound categories. This 
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process was guided by DHH people’s desired sounds elicited by 
Bragg et al. and Findlater et al.’s large-scale surveys [3, 8]. More 
specifically, we ensured that the characteristics of all desired sound 
sources by DHH people in past work are covered by our list of 
sounds (e.g., we included “whir” of the rotatory motor and “beep” 
sounds to cover both classes of sounds emitted by “microwave,” a 
commonly desired sound source by DHH people in prior work). 
This resulted in a list of 18 source-ambiguous sound items. We then 
acquired audio files for these 18 classes by searching their labels 
(e.g., “whir”) on FreeSound [34]. 

To understand how our list of 18 sound items can be represented 
in ASL and to further refine our list, we conducted semi-structured 
interviews with eight ASL interpreters in Spoken English via Zoom. 
We first asked participants to complete a brief background form to 
collect their demographic information and experience with sign 
language. We then asked 15 questions about (1) interpreters’ ex-
perience and contexts of working with DHH clients and (2) sign 
language interpretations of everyday sounds. Finally, we invited 
these interpreters to engage in a card-sorting task using a FigJam 
board with the 18 sound items, each labeled S1 to S18; see Appendix 
A3 for the list. For each sound item, the interpreters listened to the 
clips once, demonstrated or described the signs, and were instructed 
to freely move and cluster the sound items into categories based 
on how similar these sounds could be. We played only 5 seconds 
of each sound clip to ensure that our study stayed within the time 
limit. Interpreters could replay the clip if needed. We allocated 30 
minutes for this task. Seven interpreters completed the task within 
this time, with one taking five extra minutes. The first and second 
authors observed and recorded the task as edited FigJam files. All 
interpreters shared their screens while completing the task. 

Analysis: Our formative study data consisted of the transcripts 
of eight interview sessions obtained from real-time captioners and 
eight edited FigJam files. For the transcripts, we used Braun and 
Clarke’s six-phase approach [4]. The first author skimmed and fa-
miliarized with the data (step 1) and discussed with the research 
team to generate an initial codebook (step 2). The first author then 
walked through the data in detail and iteratively applied the codes 
to the data while refining the codebook. The final codebook had a 
3-level hierarchy: 6 first-level, 17 second-level, and 63 third-level 
codes. The second author independently applied the codes based on 
the final codebook (step 4). We calculated the interrater reliability 
between two coders using the ReCal 2 package [33] and resolved 
the disagreements among coders. The average Krippendorff’s alpha 
value was 0.696, and the raw agreement was 84.3%. Finally, we 
organized the first-level themes (step 5) and constructed our narra-
tives accordingly (step 6). We have attached our final codebook as 
supplementary material. 

We also performed a cluster analysis on the participants’ re-
sponses in the card sorting task, which consisted of eight edited 
FigJam files. We first walked through the individual files and logged 
the clusters formed by participants. For example, if a participant 
formed a cluster that contained S7, S10, S12, we noted “<S7, S10, 
S12>”. After all clusters were logged, we listed all two-item pairs 
within individual clusters. Using the above example, the three two-
item pairs would be <S7, S10>, <S7, S12>, and <S10, S12>. We 
then constructed an 18x18 similarity matrix to visualize the co-
occurrences (see Appendix A1). We considered sound pairs with 

Figure 2: The signs demonstrated by interpreters who used 
classifiers + NMM combinations to represent sounds. 

50% or more agreement (four or more interpreters) “signed simi-
larly.” The authors then further discussed the results with two ASL 
interpreters within our research team, during which we covered: 
(1) what sound items should be merged and (2) what other sounds 
should be included. Upon consensus on the sound classes, we in-
vited the two interpreters to generate the “glosses” (approximate 
written descriptions of the ASL signs, see Table 2) for each sound 
class. We also invited two CART writers to generate the English 
captions for the sound classes after listening to the corresponding 
sound clips (e.g., [LIQUID FLOWING]). These captions were later 
used as the labels for the taxonomy’s sound classes (see Table 2). 

4.2 Findings from the Formative Study 
Findings: During the interview, interpreters reported a diverse set 
of techniques for describing sound characteristics in ASL with-
out disclosing sources, including classifier construction and/or 
Non-Manual Markers (NMM; N=6) and listing possible sounds 
(N=3). For example, I7 demonstrated that “rumble” sounds like 
“jet flying overhead” could be signed with classifiers and NMMs 
like “widening eyes,” the subtle “blowing air” expression, and the 
“up-and-down” hand movements (Figure 2A). Similarly, “screechy 
or squeaky” sounds could be described with both hands, with the 
CL-B classifier indicating a motion of “bottom of an object rubbing 
against a surface” and the NMM of “harsh sounds” (I1; Figure 2B). 
These patterns were reflected during the card sorting task, as for 
most sounds, the signs demonstrated by the interpreters were sim-
ilar for the same sound with minor differences in classifiers (e.g., 
different handshapes for representing objects). For example, all in-
terpreters demonstrated the “thump” sounds as objects falling onto 
the ground. However, the handshapes used to represent the objects 
were different (e.g., CL-S vs. CL-5). Three interpreters also stated 
that indicating possible sounds, or “reference points” (I3), could help 
DHH people make sense of the sound events based on the contexts. 

During the card sorting task, all interpreters produced similar 
signs for the same sound with minor differences in classifiers (e.g., 
CL-S vs. CL-5 when signing the “thump” sound). The cluster analysis 
on the card sorting task responses showed that four sound pairs 
had similar signs: tap – knock, beep – tap, breaking – splash, and 
whir – rolling. Per interpreters’ recommendations, we merged the 
tap and knock into one sound class due to similar signs and did the 
same for whir and rolling, leading to a list of 16 sound items with 
distinct signs. Further discussions elicited two source-ambiguous 
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Table 2: The Sound Taxonomy designed for the Human-AI Collaborative Sound Awareness Framework 

Class Class Label ASL Sign Description Examples 

C1 Liquid Flowing WATER running down from top Water coming out of faucet, river flowing, 
sizzling oil 

C2 Machine Humming MACHINE running 
(NMM: puffed cheek) 

Car engine, dryer 

C3 Shatter Object (CL-S) fall and break suddenly into pieces Glass bottle breaks, ceramic breaks apart 
C4 Fracture STICK (CL-G for both hands) breaks apart Breaking branches, chopping wood 
C5 Rip/Tear PAPER being teared apart Ripping clothes, peeling tape 
C6 Splash Object (CL-S) strike or fall into liquids Jumping into water, Stepping into mud 
C7 Screech Indicating a harsh sound from the contact of two 

surfaces (CL-B) 
Sudden brake (cars, bicycles), nail on a 
chalkboard 

C8 Blender BLENDER Juicer, blender, coffee grinder 
C9 Electrical Buzzer BUZZER Neon lights, basketball court buzzer 
C10 Beep BEEP Car horn, microwave beep, fire alarm 
C11 Knock/Tap Knocking (CL-S) on a surface Door knock, raindrops hitting on the 

window 
C12 Thump Dull object (CL-5) falls on and hit the surface 

(CL-5) 
Footsteps, book falling onto the ground 

C13 Bam/Bang Sound and vibration of a hard blow Gunshot, fireworks, thunder 
C14 Scrape Object (CL-C) Scrape or scratch on a surface 

(CL-B) 
Chair being dragged, 

C15 Ding/Clink BELL / downward CL-A hits CL-B and reverberates Bell, Toast with wine glasses 
C16 Squeal/Shriek SCREAM Scream, pig squeals, birds 
C17 Whoosh Object (CL-3) passing with high speed 

(NMM: thick cheeks blow air out) 
Car passing, strong wind 

C18 Crumple Crush things into wrinkles 
(NMM: grind teeth) 

Aluminum foil, candy wrappers 

sounds from the Audio Set’s source-ambiguous sound category [10] 
that are common in real life and have distinct signs: ding (e.g., bike 
bells and wine glasses) and whoosh (e.g., wind, a car passing with 
high speed) – resulting in a list of 18-class, ASL-friendly sound 
taxonomy that categorizes sounds based on how ASL describes 
their characteristics. 

4.3 The Characteristics-Based Sound Taxonomy 
The novel sound taxonomy classifies sounds based on the ASL de-
scriptions of their characteristics (e.g., “machine humming”). The 
taxonomy, outlined in Table 2 below, contains four fields: Class 
Code, Class Labels, ASL Sign Descriptions, and Examples. As we 
mentioned in Section 4.1, the class labels were derived from the 
captions generated by CART writers. The ASL Sign Description 
field delineates how the sound classes are described with ASL signs 
and contains classifiers (e.g., CL-G), generic objects with dedicated 
signs (e.g., PAPER), and/or non-manual markers (NMM). The Ex-
amples field serves as “reference points” and helps DHH people 
understand the kind of sound events each sound class represents 
(e.g., the Crumple sound class can be produced by candy wrappers 
or aluminum foils). 

The information enclosed in the sound classes should be inter-
preted as: the [Class Label] sound can be represented in ASL by 
following [ASL Description], and the sound events like [Examples] 

belong to this class. For example, the “Thump” sound can be repre-
sented in ASL through the signs that describe dull objects (CL-5) 
falling on and hitting the surface (CL-5), and sound events like 
footsteps and books falling onto the ground fall into this category. 

In summary, we propose HACS, a novel approach for designing 
sound awareness systems. In HACS, AI models will be trained to 
identify the sound characteristics instead of discrete sound events 
or sources, and DHH users can leverage this information and their 
knowledge about the situated contexts to recognize the sound 
events. As a first step for implementing HACS, we articulated an 
18-class sound taxonomy that classifies sounds based on the sound 
characteristics depicted in ASL. 

5 PRELIMINARY EVALUATIONS OF HACS 
We conducted two preliminary evaluation studies to assess the fea-
sibility of the HACS approach. Our objectives were twofold. First, 
we examined if the information enclosed in HACS’ sound classes 
could help DHH individuals identify sound events relevant to the 
specific contexts using their contextual understanding. Second, we 
evaluated whether our taxonomy’s classes could be classified accu-
rately using algorithmic approaches. We describe these evaluations 
in detail below. 
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Table 3: PE1 participants’ background information. SimCom stands for “simultaneous communication,” a communication 
method where people use spoken language at the same time. PMOC stands for “preferred mode of communication.” 

PID Gender Age Identity Hearing loss ASL Exp. PMOC 

P1 Male 21 Deaf Profound 2 years Sign Language (D) 
Sign Language (H) 

P2 Female 20 deaf Moderate 2 years Sign Language (D) 
SimCom (H) 

P3 Female 33 deaf Profound 32 years Sign Language (D) 
Writing (H) 

P4 Female 30 Deaf Moderate 2 years Sign Language (D) 
Sign Language (H) 

P5 Female 47 Deaf Profound 45 years Sign Language (D) 
Writing/Texting (H) 

P6 Male 72 Deaf Severe 45 years Sign Language (D) 
Verbal (H) 

P7 Female 28 Deaf Profound 26.5 years Sign Language (D) 
Writing (H) 

P8 Female 59 Deaf Profound 30+ years Sign Language (D) 
Verbal (H) 

P9 Female 37 Deaf Profound Whole life Sign Language (D) 
Verbal (H) 

5.1 Preliminary Evaluation 1: Online 
Simulation of HACS-based Systems 

The goal of PE1 was to evaluate whether the information enclosed 
in the characteristics-based taxonomy could help DHH individuals 
identify sound events using the contextual knowledge. This evalua-
tion tested steps 2 and 3 of the HACS workflows we described in 
Section 3. 

Participants: PE1 sessions were conducted by the first, second, 
and fourth authors, one of whom is DHH. We also recruited an ASL 
interpreter and a real-time captioner to facilitate communication 
for all sessions. We proceeded with sessions once we received the 
participants’ consent with IRB-approved consent forms. At the 
beginning of the session, we asked the participant to complete a 
background form asking about their demographic information (see 
Table 3). The average age of these participants was 38.6 years old 
(SD=17.6, range=20-72). The average years of experience signing 
ASL was 24.6 years (SD=18.0, range=2-45). 

Study setup and procedure: Before the PE1 sessions, we ac-
quired 18 sound clips from FreeSound [34] by searching with the 
sound class labels (e.g., “shatter” and “thump”). We also prepared 
a list of contexts from three categories (i.e., indoor–home, indoor– 
public spaces, and outdoor; Figure 3), which would be presented to 
participants. Participants were briefed about the taxonomy to un-
derstand the sound classes better. During the sessions, we created 
an online simulation via Zoom, where a HACS-based sound aware-
ness system identified a sound class from the characteristics-based 
taxonomy and informed DHH users, who possessed knowledge 
of their situated contexts. Specifically, for each sound class, we 
followed the below steps (see Figure 4): 

1. We played the sound clip while ASL interpreters signed 
the sound based on the “ASL Sign Description” field of the 
taxonomy. 

2. We presented the DHH participants with the correspond-
ing sound information, including “Class Label,” “ASL Sign 
Description,” and “Examples.” We also selected one context 
from each of the three categories (a total of three) and pre-
sented these contexts to the DHH participant. The context 
selection within the categories rotated for participants. For 
example, we presented P4 with “kitchen” and P5 with “living 
room” for the home category. 

3. Participants were asked to imagine being in the given context 
and to suggest possible sound events that were occurring. 

After the sessions, we asked DHH participants for overall feed-
back about HACS and the characteristics-based taxonomy. 

Data Analysis: Our PE1 data consisted of the transcripts of 
nine study sessions obtained from the real-time captioner, and a 
list of sound events participants inferred based on sound and con-
textual information. For the transcripts, we used the same analysis 
approach as that for the Formative Study (Braun and Clarke’s six-
phase approach [4]; Section 4) to analyze interview transcripts, 
resulting in a Krippendorf’s alpha of 0.692 and raw agreement of 
84.8% between the two coders. We attached the final codebook as 
supplementary materials and the list of participants’ inferred sound 
events in the Appendix A2. 

Findings: Based on the responses, we elicited a list of inferred 
sound events across different contexts for each sound class (see 
Appendix A2). Here, we highlight several important insights that 
demonstrate the flexibility and robustness of the HACS approach 
in supporting sound awareness for DHH people. 

First, DHH participants successfully identified different sound 
events within the same sound class across various contexts. For 
instance, P9 recognized the “Beep” sound (C10) as a car honk on a 
“busy street” and as a “ping for the pick-up orders” in a restaurant. 
Another example is P6 recognizing the “Blender” sound (C6) as a 
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Figure 3: The collection of contexts we used during the Preliminary Evaluation 1. 

Figure 4: The setup for Preliminary Evaluation 1: (1) We played the audio clip, and the ASL interpreter signed the sound using 
the “ASL Sign Description” field; (2) We presented sound class information from the characteristics-based taxonomy and the 
contexts; (3) We asked the DHH participant to infer sound events based on the information listed in (2). 

coffee grinder in a coffee shop and as a vacuum cleaner in a living 
room. These responses indicated that HACS could help DHH users 
appropriately interpret sound classes and apply them to recognize 
sound events in specific contexts. 

Second, participants linked one sound source to different sound 
classes in two ways: 

1. Different states or behaviors of the same source. For example, 
the sounds of “door knock” and “door slam” were identified 
by P4 as belonging to different classes in a living room con-
text (i.e., Knock/Tap vs. Bam/Bang). In another instance, on 
a busy street, the “Squeak/Screech” sound was interpreted as 
the car “screeching to a halt” (P9), and a “Bang/Bam” sound 
could mean a car accident (P5, P7). 

2. Variations in sound sources. For example, P4 and P7 identi-
fied the sound of “microwave done” using the “Beep” class, 

while P9 identified the same event using “Ding/Clink.” This 
reflected participants’ experience with different appliance 
models. 

Post-session, we asked participants for feedback about HACS 
and the taxonomy. The feedback was generally positive, with many 
finding the ASL information helpful for understanding sound events 
(N =7). Moreover, P8 noted the adaptability of HACS, stating that 
this approach could help her learn the differences between the 
“windows rolling down” sound now vs. “50 years ago”. A few partic-
ipants (N=3) expressed some concerns about the need to expand 
the taxonomy (P9) and the potential learning curve associated with 
using it (P6). 
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5.2 Preliminary Evaluation 2: Sound 
Classification Experiment 

For PE2, we focused on step 1 of the HACS workflow, where sound 
recognition models process the audio signal and identify the sound 
characteristics. Specifically, we trained and evaluated a sound clas-
sification model based on our characteristics-based taxonomy. 

We first compiled our dataset. We downloaded sound clips for the 
18 sound classes in our taxonomy from FreeSound [34], an online 
corpus of high-quality, labeled sound effects. All downloaded clips 
were converted to a single format (16Khz, 16-bit, mono), and silences 
greater than one second were removed, resulting in 9.8 hours of 
recordings and a total of 35,280 clips (1,960 per class). We divided 
our recordings into a train and a test set, with 80% and 20% split, 
respectively. 

To generate input features for our model, we segmented each 
clip into one-second segments and computed short-time Fourier 
Transforms using a 25ms sliding window and 10ms step size (fre-
quency range 20Hz to 8000Hz), yielding a 96-length spectrogram. 
We then converted our linear spectrogram into 64-bin log-scaled 
Mel spectrogram and generated a 100 x 64 input for every second 
of audio. To these log-Mel spectrograms, we applied Cepstral Mean 
and Variance Normalization (CMVN) [30]. 

To train our model, we adopted a transfer learning approach 
commonly used for sound classification (e.g., [15, 16, 18]). We down-
loaded a pre-trained VGG-16 CNN model [11], replaced the last 
fully connected layer with a fresh layer (using a sigmoid activation 
function), and finetuned the model on our training set. For training, 
we used a cross-entropy loss function with an Adam optimizer [17]. 

We evaluated our model using a clip-level prediction. Specifically, 
we aggregated the classification confidences for each one-second 
prediction across the entire clip and returned the top prediction. 
We found that our model returned a near-perfect accuracy of 98.6% 
on our test set, demonstrating the potential feasibility of training 
accurate sound recognition models based on our characteristics-
based taxonomy. 

6 DISCUSSION, LIMITATIONS, AND FUTURE 
WORK 

We propose HACS, a novel approach for designing human-AI sound 
awareness systems. HACS uses AI to identify sound characteristics 
and prompts DHH users to use this information and their knowl-
edge about the situated contexts (e.g., location, activities, human 
presence, etc.) to identify sound events. HACS addresses previous 
systems’ limitations, especially in distinguishing similar sounds 
[13]. 

As a first step for implementing HACS, we articulated a 
characteristics-based sound taxonomy (Table 2). This taxonomy 
classifies sounds based on how sound characteristics are depicted 
by ASL signs, which reflects multiple dimensions of sound char-
acteristics, including the interaction of objects and materials [9], 
the mechanics of the sound (e.g., continuous vs. discrete) [2, 22], 
and the affective properties (e.g., pleasantness) [2]. Moreover, the 
inclusion of ASL aligns the characteristics-based taxonomy with 
DHH culture. For future HACS-based sound awareness systems, 
the ASL Sign Descriptions field can be visualized as animations like 
Figure 2 (e.g., on a mobile device or a watch). 

In two preliminary evaluations, HACS showed potential in help-
ing DHH users recognize contextually appropriate sound events 
and distinguish sounds with similar physical properties. It also 
proved adaptable to varying sound environments and was able to 
help DHH users recognize different sounds produced by the same 
kind of sound source. PE2 confirmed the feasibility of automatic 
recognition of the sound classes. 

HACS’ customizability and adaptability open new possibilities 
for designing human-AI sound awareness systems in many domains. 
For example, HACS-based sound recognition systems may allow 
DHH users to personalize them by assigning labels to sound classes 
across various contexts. For online videos, HACS can also be applied 
to overcome the challenges in captioning ambiguous non-speech 
sounds [1]. It can also be baked into customizable interfaces that 
visualize the non-speech sounds (e.g., ARAO [21]). 

Our study has several limitations, including the reliance on ASL, 
the need for adaptation to other sign languages (e.g., Indo-Pakistani 
Sign Language, Chinese Sign Language), and the preliminary nature 
of evaluations. HACS also does not address the recognition of over-
lapping (co-occurring) sounds, an open research area. Furthermore, 
we do not claim that our taxonomy is exhaustive or will work as-is 
for all users. For example, our taxonomy does not cover music or 
melodic sound patterns. However, we ensured that all commonly 
desired sounds by DHH people in past work were covered, and 
music was not one of them. We welcome future work that further 
validates and expands our taxonomy. Finally, HACS may only suit 
some DHH individuals, but its flexibility offers a promising avenue 
for customizable sound recognition systems. 
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APPENDIX 

A1 - THE SIMILARITY MATRIX FROM THE CLUSTER ANALYSIS 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 

S1 0 1 1 0 4 1 1 1 1 3 1 1 2 0 1 1 0 
S2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
S3 1 1 1 0 1 1 0 3 2 1 0 0 0 0 2 1 0 
S4 1 0 1 3 1 0 0 0 0 0 0 0 1 1 3 0 1 
S5 0 0 0 3 1 0 0 0 0 1 0 0 3 1 1 0 1 
S6 4 0 1 1 1 2 0 1 1 5 1 0 2 0 1 1 0 
S7 1 0 1 0 0 2 2 1 4 1 1 0 0 0 0 1 1 
S8 1 0 0 0 0 0 2 0 2 0 3 1 1 0 0 0 1 
S9 1 0 3 0 0 1 1 0 3 1 0 0 0 0 0 1 0 
S10 1 0 2 0 0 1 4 2 3 1 1 0 0 0 0 1 1 
S11 3 0 1 0 1 5 1 0 1 1 2 0 2 0 0 1 0 
S12 1 0 0 0 0 1 1 3 0 1 2 1 1 0 0 0 1 
S13 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 
S14 2 0 1 0 3 2 0 1 0 0 2 1 1 1 0 0 0 
S15 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 
S16 1 1 2 3 1 1 0 0 0 0 0 0 0 0 0 0 2 
S17 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 0 
S18 0 0 0 1 1 0 1 1 0 1 0 1 1 0 0 2 0 

A2 – A LIST OF SOUND EVENTS IDENTIFIED BY PARTICIPANTS IN PE1 
During Preliminary Evaluation 1, we prompted participants to suggest possible sound events given the sound information from the 
characteristics-based taxonomy and contextual information and noted these sound events. We compile a list of participants’ suggested sound 
events and present it below. 

Class # Class Label Sound Events 

C1 Liquid Flowing/Running Water coming out of faucet (P6), water running (P4, P7, P8, P9), waterfall (P7), rain (P9), river flowing (P9) 
C2 Machine Humming Car engine running (P5, P6, P7, P8), washer (P4, P5, P8, P9), dryer (P5), lawn mower (P6, P7), fan (P6), cotton mill 

(P6) 
C3 Shatter Fragile object hits the floor (P5), glass bottle breaking (P6, P7, P8), dish breaks (P6), window breaking (P7) 
C4 Fracture Plastic rod breaks (P5), Wood chopped (P6), Twig snaps (P7), car broken (P9) 
C5 Rip/Tear Paper being ripped (P4, P6, P7, P8, P9), pants ripping (P4), backpack unzipping (P4, P8), opening a package (P7) 
C6 Splash Water spilled (P4, P6, P8), waterfall (P6), person jumping into water (P7, P8), heavy rain (P7), drop things into 

water (P9) 
C7 Squeak/Screech Whistle (P4), bird calling (P6), feedback from microphone (P7), writing on chalkboard (P9), car screeching to a halt 

(P9), plane taking off (P9) 
C8 Blender Blender (P4, P5, P6, P7, P8, P9), coffee grinder (P4, P5, P6), garbage disposal (P5), vacuum cleaner (P6) 
C9 Electrical Buzzer Alarm (P4, P5, P7), electric stove (P4), Razor (P5), dryer done (P6), phone buzzing (P9) 
C10 Beep Car honk (P4, P5, P7, P8, P9), microwave done (P4, P7), EKG (P5), phone beep (P5), oven beep (P8), pings for 

pick-up orders in boba shop (P9) 
C11 Knock/Tap Door knock (P4, P5, P6, P7, P8), knocking on the countertop (P4), footsteps (P5), settling things down on table (P8), 

object falls on the pavement (P9) 
C12 Thump Ball bounce (P4), footsteps (P4, P6, P7, P8), book falling on the floor (P5, P7), tree falls (P8) 
C13 Bam/Bang Gunshot (P4, P6, P8), door slam (P4), bomb (P5), car accident (P5, P7), fireworks (P7), throwing hammer at wood 

(P9) 
C14 Scrape/Scratch Chalk on a chalkboard (P5), scratching on table (P5), moving furniture (P6), scratching on a furniture (P4, P5, P7), 

scrape on a wok (P8), scratching one’s face (P9) 
C15 Ding/Clink Timer done (P4), wind chimes (P4), toasting with wine glasses (P4), bell (P5, P6, P7), messaging notification (P8), 

cash register (P8), microwave done (P9) 
C16 Squeal/Shriek Human scream (P4, P6), animals (P4, P8), baby crying (P5, P8), mouse (P5), bird calls (P6), computer not working 

(P9) 
C17 Whoosh Car passing (P4, P5, P6, P7, P8), wind blowing (P5, P9), airplane flying overhead (P7), person walking by (P8), 

motorcycle passing (P9) 
C18 Crumple Plastic bags crumpling (P4), paper crumpling (P5, P8), candy wrapper (P6), walking on piles of leaves (P7), foil (P8), 

crush food into pieces (P9) 
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A3 – SOUND LABELS AND CORRESPONDING CODE 
Sound Code Sound Labels 

S1 Beep 
S2 Crumpling 
S3 Sizzle 
S4 Grinding 
S5 Whir 
S6 Knock 
S7 Breaking 
S8 Bang 
S9 Liquid Flowing 
S10 Splashing 
S11 Tap 
S12 Thump 
S13 Scraping 
S14 Rattle 
S15 Rolling 
S16 Buzz 
S17 Tearing 
S18 Squeak 
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