Enhancing Programming Error Messages in Real Time with

Bailey Kimmel
Abilene Christian University
Abilene, Texas, United States

blk20c@acu.edu

Brendan Gipson
Abilene Christian University
Abilene, Texas, United States

bmg20b@acu.edu

Hunter Vaught
Abilene Christian University
Abilene, Texas, United States

hrvi9a@acu.edu

Generative Al

Austin Lee Geisert
Abilene Christian University
Abilene, Texas, United States

alg22b@acu.edu

Ronald Taylor Hotchkiss

Abilene Christian University

Abilene, Texas, United States
rth19b@acu.edu

Grant Wininger
Abilene Christian University
Abilene, Texas, United States

tgw20a@acu.edu

Lily Yaro
Abilene Christian University
Abilene, Texas, United States
lcy20a@acu.edu

Sidney Kwame Osae-Asante
Abilene Christian University
Abilene, Texas, United States

sko2la@acu.edu

Chase Yamaguchi
Abilene Christian University
Abilene, Texas, United States

chy20a@acu.edu

ABSTRACT

Generative Al is changing the way that many disciplines are taught,
including computer science. Researchers have shown that genera-
tive Al tools are capable of solving programming problems, writing
extensive blocks of code, and explaining complex code in simple
terms. Particular promise has been shown in using generative Al to
enhance programming error messages. Both students and instruc-
tors have complained for decades that these messages are often
cryptic and difficult to understand. Yet recent work has shown that
students make fewer repeated errors when enhanced via GPT-4.
We extend this work by implementing feedback from ChatGPT for
all programs submitted to our automated assessment tool, Athene,
providing help for compiler, run-time, and logic errors. Our results
indicate that adding generative Al to an automated assessment tool
does not necessarily make it better and that design of the interface
matters greatly to the usability of the feedback that GPT-4 provided.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); Empirical studies in HCI; User studies; Natural
language interfaces; User interface programming; - Comput-
ing methodologies — Artificial intelligence; « Social and pro-
fessional topics — Computing education; Computer science
education; CS1; « Applied computing — Education.

KEYWORDS

AT; Artificial Intelligence; Automatic Code Generation; Codex; Copi-
lot; CS1; GitHub; GPT-4; ChatGPT; HCI; Introductory Program-
ming; Large Language Models; LLM; Novice Programming; OpenAI

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0331-7/24/05

https://doi.org/10.1145/3613905.3647967

ACM Reference Format:

Bailey Kimmel, Austin Lee Geisert, Lily Yaro, Brendan Gipson, Ronald Taylor
Hotchkiss, Sidney Kwame Osae-Asante, Hunter Vaught, Grant Wininger,
and Chase Yamaguchi. 2024. Enhancing Programming Error Messages in
Real Time with Generative Al In Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems (CHI EA °24), May 11-16, 2024,
Honolulu, HI, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3613905.3647967

1 INTRODUCTION

The introduction of artificial intelligence (AI) in the form of large
language models (LLMs) is changing many disciplines, including
computer science education [5]. Models such as GPT-3 and GPT-4
and tools such as Github Copilot have upended decades of peda-
gogical wisdom [1]. These tools can write, explain, and debug code
in ways that simply were not possible just two years ago [19]. Re-
searchers have been quick to measure the ability of these LLMs with
regard to typical computer science programs [7, 8], code explana-
tions [12], exams [17], and even Parsons Problems (mixed-up code
problems) [24]. This has led to instructors having many concerns,
such as students using autogenerated code that they don’t under-
stand [23] or using these tools to do their work for them [1, 11].
Still other concerns, such as over-reliance, biases inherent in the
models, and trustworthiness, remain active points of discussion in
current research [31].

Despite the alarm, generative Al has positive uses. For instruc-
tors, these models can automatically generate programming exer-
cises [25] and code explanations [15]. They can even be used to
create entirely new types of problems for students to solve, such
as Prompt Problems, which ask students to write the prompt that
would solve a given problem [4]. For students, generative Al can
be a useful tool for learning when it’s used to generate code a stu-
dent already knows how to write [19], explain code or a concept
that they don’t understand [12], and encourage better problem
definition through prompt engineering [3].

One area in which very recent strides have been made is in
using generative Al to explain cryptic programming error messages

https://orcid.org/0009-0000-6655-0564
https://orcid.org/0009-0000-0058-5254
https://orcid.org/0009-0003-4080-3676
https://orcid.org/0009-0003-3229-2220
https://orcid.org/0009-0004-1081-2296
https://orcid.org/0009-0006-0732-9038
https://orcid.org/0009-0003-4564-9508
https://orcid.org/0009-0009-0339-0618
https://orcid.org/0009-0007-3198-6318
https://doi.org/10.1145/3613905.3647967
https://doi.org/10.1145/3613905.3647967
https://doi.org/10.1145/3613905.3647967
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3647967&domain=pdf&date_stamp=2024-05-11

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

(PEMs) [13]. Students and instructors have complained for the past
six decades about how difficult it can be to understand some PEMs
[2]. Recent work has shown that enhancing PEMs via generative
Al is very effective in actual classroom settings [27, 30]. However,
these have just been for compiler error messages.

In this paper, we explore the integration of generative Al into
an automated assessment tool (AAT) in a CS1 course that provides
feedback on compiler errors, run-time errors, and logic errors. We
added real-time feedback from ChatGPT to one of the programming
assignments in CS1 during the Fall 2023 semester and report on
submission statistics as well as survey responses after the assign-
ment was completed. Our hypotheses are that students will make
fewer submissions with the guidance of ChatGPT and that students
will find the real-time Al feedback helpful.

We are guided by the following research questions:

RQ1: To what extent does real-time Al feedback impact student
submission behavior when working on programming assign-
ments?

RQ2: How do students perceive real-time Al feedback on their
assignment submissions?

The contributions of this work are:

(1) We implement generative Al into an automated assessment
tool to enhance all programming error messages at both
compile time and run time, as well as logic errors, for the
first time.

(2) We discuss design considerations for integrating generative
Al into automated assessment tools. The implications for
how students utilize such feedback can help both future
researchers and tool creators make more usable interfaces.

2 RELATED WORK

Early work on LLMs in computing education centered on the capa-
bilities of such tools. Already with GPT-3, which debuted in 2021,
researchers found that generative Al was capable of solving com-
mon programming problems, such as the Rainfall Problem, with
relative ease. Finnie-Ansley et al. found that it could solve most
published variants of the problem with just the text description
provided to the model. They also found that the model could answer
exam questions, placing in the top quartile when compared to real
student performance in a CS1 course [7]. Follow-up work revealed
similar performance in a CS2 course [8]. Recent work with GPT-4
has shown that current models outperform their predecessors by
getting nearly every question correct, placing this model near the
top spot when compared to humans [19, 26].

Students are also using these tools to help them write code. Re-
cent user studies on student behavior and interaction with LLMs,
such as Github Copilot, have provided an interesting window into
their use. Vaithilingam et al. looked at very early usage of students
using LLMs to code and found that students preferred using it, de-
spite it not decreasing their overall task completion times [29]. The
fact that it didn’t make novices any faster at solving programming
problems could be because students struggle to understand code
that has been autogenerated for them, as found by Prather et al.
[23]. Kazemitabaar et al. found that students will utilize it to either
explore new ways of doing a task or to attempt to accelerate their
task completion time [10].

B. Kimmel et al.

One way to help students is to use LLMs to produce code explana-
tions. MacNeil et al. added code explanations to an ebook in a small
study (n=30) and found that students rated them as understandable
and helpful, though they did not engage with them as much as
expected [15]. Leinonen et al. compared code explanations from
students and GPT-3 in a large study (n= 1,000), rating the explana-
tions for accuracy, understandability, and length. They found that
LLM-created explanations were significantly easier to understand
and more accurate than student-created explanations [12].

Another related area of support that students have consistently
needed over the past six decades is in understanding the feedback
they receive about their programs [2, 6, 21, 22]. Leinonen et al.
used Codex (a coding model built, at the time, on GPT-3) to inter-
pret common PEMs and found the GPT-enhanced versions often
surpassed the original PEMs in understability and actionability.
Although showing promising results, the model they used is now
outdated and they utilized a static approach. More recent work by
Wang et al. implemented real-time GPT-4 feedback on compiler
error messages in a large-scale course [30]. They found that stu-
dents repeated an error 23% less often and resolved the error in
36% fewer attempts, when compared to students using the original
error messages. Taylor et al. implemented GPT feedback on com-
piler error messages into the Debugging C Compiler (DCC) in a
very large course (n=2,565) [27]. They found that these messages
were accurate 90% of the time and were well received by students.
However, they only provided feedback for compiler error messages.
Given that there may be less of a need to provide feedback on
syntax errors only — because generative Al can write syntactically
correct code — it is important to now move beyond PEMs and into
additional feedback on student submissions.

Hellas et al. examined how GPT-3.5 would respond to novice
programmer help requests [9]. They had previously collected a
dataset of students who had pressed a “help” button and placed
their help request into a queue for the instructor. When evaluating
these requests via GPT-3.5, they noted that it often provided good
feedback and almost always included code. In related work, Liffiton
et al. created a tool for students (CodeHelp) to use where they could
get automated help from an LLM for their coding problems. The
tool allows them to paste the relevant part of their code, an error
message, and a question into three separate boxes and then request
help [14]. They found that students valued the tool’s availability be-
cause it could be accessed when instructors or TAs were otherwise
not available.

Our study extends the above work by using LLMs to providing
feedback on all submissions, not just PEMs. We also extend the
recent line of work on student help requests by having GPT re-
sponses to student submissions any time they submit and having
that response provide feedback on their overall submission. Instead
of having to ask for help or paste relevant bits of code and an error
message into a tool, our implementation provides consistent help
automatically.

3 METHODOLOGY

Students in the introductory programming course at Abilene Chris-
tian University in the Fall 2023 semester (n=52) were recruited to

Enhancing Programming Error Messages in Real Time with Generative Al

Prime Factorization

Prime Factorization

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Create a program that lists out the prime factors of a number in nondescending order, as shown in

the examples below.
Number:

(2*5)

Number:

(2+%2+%2%2*3)

Number:

Most recent submission results:

-
~

You passed 1 of 51 test cases.

Expected output:
Number:

(0)

Actual output:

Number:

‘

Al Feedback

It seems like the student is trying to implement a program to factorize a number.
However, there seems to be a missing opening parenthesis in the output.

Ask the student to review the output formatting of their code.

They should consider where the opening parenthesis should be placed in the output.

Source: | Choose File | No file chosen

View problem in a new window

Figure 1: The problem description in ATHENE followed by the most recent submission results. This shows expected vs. actual
outputs as well as the response from ChatGPT listed under "AI Feedback".

participate in the study. All students were briefed on the study be-
fore participation by one of the authors and then provided consent
forms. We also requested the previous ten years of submissions
data from the Athene administrator. We gained approval for this
study by the Abilene Christian University IRB committee.

3.1 Implementation

We deployed a PHP plug-in to integrate with Athene, the auto-
mated assessment tool (AAT) used in our department. Athene has
been used since 2009 at Abilene Christian University for providing
automated feedback for CS1 programming problems [28]. Many
studies have been done on enhancing the error messages served to
students through Athene [18, 20-22]. This made our integration of
ChatGPT with Athene a logical choice.

A typical programming problem in Athene provides a text-based
description of the problem and sample runs as examples for the
student to see input transformed to output (see Figure 1). The
student can then submit their code and receive feedback. If it does
not compile, Athene returns the compiler error message. If it does
compile, Athene will run the submitted code against test cases and
return the number of test cases passed. Athene will return to the
user an example of the first failed test case. Our plugin submits the
student code to ChatGPT (running GPT-4) with a prompt before
it. It was important that it not return code because we didn’t want
generative Al to solve the problem for the student. Given prior
research on the difficulty of coaxing generative Al into providing a
hint without also providing code [9, 14], we crafted the following
prompt over the course of many attempts:

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

You are a programming tutor for an introductory pro-
gramming course. You are supposed to help students
without telling them what to do or how to do it. You
cannot provide answers or straightforward instruc-
tions about how to fix their code. You are trying to
help them learn themselves. Here is some code that
a student wrote in this introductory programming
course. Please provide a hint about what to do next,
but do not tell the answer and do not provide any
code in your feedback.

Code:

<code inserted starting here (in place of this comment)>

The plugin was integrated into one assignment, “Prime Fac-
torization”. Students were given this problem as an extra credit
assignment and provided a week to complete it. Each time they sub-
mitted, they received feedback from ChatGPT under the label “Al
Feedback” (see Figure 1). We collected all program submissions to
Athene for this problem as well as survey data after the assignment
due date had passed.

3.2 Surveys

Our first round survey was sent via email. We workshopped our
questions with fellow students (who were not in the introductory
programming course) as well as faculty. We chose Likert-style and
yes/no questions in an attempt to collect more quantifiable data (see
Tables 1, 2, 3). Responses from the first round survey raised further
issues around student perception of the GPT-enhanced feedback.
We therefore sent a second round survey to collect additional data.
This time, we chose to collect open response questions. These are
also reported below in Section 4.2.

3.3 Threats to Validity

There are three primary threats to validity for our study. First,
students could ask ChatGPT to solve their coding assignment before
they turned it into Athene. There were no restrictions in place to
prevent this from happening and our study was done in good faith
that students would engage in the process as requested. Second,
students are encouraged to compile locally to check for errors before
submitting to Athene for grading. Therefore, we do not capture
all of their attempts. Rather, we only capture when they submit
to Athene. Third, the professor of this course made this particular
assignment for extra credit. This could skew participation rates.

4 RESULTS AND DISCUSSION

We examined the submission logs for the Prime Factorization prob-
lem during the Fall 2023 semester as well as the previous ten years
for the same problem in Fall semesters. Even though 50 students
signed the consent forms, only 42 attempted the Prime Factoriza-
tion programming problem. The mean number of submissions in
fall 2023 was 6.405 (SD = 5.133, min = 1, max = 24). This is quite a
bit higher than in previous years (see Figure 2). Our hypothesis was
that there would be fewer submissions on average in 2023, which
was proved false. A look at the means reveal that 2023 has a sig-
nificantly higher mean submission rate than the next highest year
(2018), and consequently, all other years (t(97) = 3.60, p < .05). This
would be in direct contrast to recent work that showed real-time

B. Kimmel et al.

Submit Counts

25

20 A

154
o
o]

Submits

10 A

o
o} o o]
O
o
5 o
o}
2013 2014 2015 2016 2017 2018 2019 2021 2022 2023
Year

Figure 2: Submission data visualized from the experiment
(2023) and the previous ten years for the same problem, Prime
Factorization.

Al feedback lowered the number of submissions [27, 30]. However,
we did not measure learning outcomes, so there could be other
explanations for the increase in submissions. Therefore, we turned
to the survey data to help find an explanation for this behavior.

4.1 First Round Survey

The first round was sent immediately after the assignment closed
(one week after opening) and included 12 questions. Thirty-three
students responded to the first round survey. We anticipated that
students would find the real-time AI feedback helpful. However,
we received a mixed set of opinions. With regard to the Likert-scale
questions, all averages fell to around 3.0 (see Table 1). The yes/no
questions (see Table 2) also revealed a similarly mixed response to
the Al feedback, with the notable exception of the question, Would
you like the Al assistance on other assignments in the future?, which
received 69.7% of students saying “yes”. Most students indicated
that having the Al feedback did not help them learn or that having
Al feedback made no difference (see Table 3). It seemed students
were not too impressed with Al feedback, but were still interested in
using it again. Therefore, we sent a second round survey with open-
ended responses in an attempt understand the mixed responses and
the higher submission rate.

4.2 Second Round Survey

The second round survey consisted of four questions and was sent
out a few days after the first. The questions were:

(1) Please tell us about your experience using the Al feedback
in the assignment.

(2) Did you like or dislike AI feedback on your programming
assignment? Please explain why.

(3) What do you think could have made the Al feedback more
helpful for you?

Enhancing Programming Error Messages in Real Time with Generative Al

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Question (Scale: 1-Strongly Disagree -> 5-Strongly Agree) Mean
Having Al assistance helped me complete the assignment easier. 2.87
The AI feedback messages provided by ChatGPT were more helpful than feedback in previous assignments without AL 3.33
AT helped prevent me from seeking any other external resources for this assignment (stack overflow, tutoring...etc). 2.87
If T always had Al feedback in Athene, I would use less outside resources. 3.12
I was frustrated with Athene in previous assignments this semester. 3.09
I was frustrated with Athene in the Prime Factorization problem that utilized Al feedback. 2.96
Table 1: Response data from the first survey on Likert-style questions.
Question (Yes or No response) Yes No
Do you think this assignment on average took you less time than normal? 7 26
Do you think the Al assistance helped you actually understand what you were coding more effectively? 18 15
Would you like Al assistance on other assignments in the future? 23 10
Did using Al in this assignment make you want to pursue coding as a career more? 12 21
Did this assignment make you more confident in coding? 14 19

Table 2: Response data from the first survey on yes/no questions.

Question (More/No Difference/Less)

‘More No Difference Less

Do you think you learned more or less during this assignment?

| 14 16 3

Table 3: Response data from the first survey on our final question with responses yes/no difference/less.

(4) Was the Al feedback ever wrong? If so, please describe what
happened and how you dealt with it.

We examined all nine responses to the four questions and dis-
cussed the most commonly occurring themes together.

4.2.1 Vague or Incorrect Advice: The most commonly mentioned
topic in the survey was that the Al feedback was often too vague.
Eight of the nine respondents mentioned this, sometimes multiple
times. P4 wrote, I felt it was pretty vague at times. At one point it
said that I should check my loop. The problem with that was I had two
loops at the time, and it did not specify which one.” And P5 wrote, “It
wasn’t wrong because it never really provided any useful solution”
These quotes illustrate student frustration with AI feedback that
never quite helps them enough and could explain the lukewarm
responses to the first survey. P1 also wrote, “It gave me feedback to
change a line of code that produced a compiling error”, which could
also have contributed to the lack of reception of the tool in the first
survey. The fact that Al could provide incorrect feedback has been
noted in the literature and is concerning enough for some to seek
to ban the use of generative Al tools altogether [11]. One solution
utilized in the CodeHelp tool by Liffiton et al. was to prominently
place a warning above the feedback that it could be incorrect [14].

4.2.2 Helpful: Four of the nine respondents wrote that they found
the Al feedback helpful. For instance, P6 wrote, ‘It made the coding
process significantly easier”. So, it seems that some students were
helped more than others. However, this positive perception could
be caused by students receiving more help than usual. For instance,
P2 wrote, ‘T liked it because it gave more thorough feedback than
regular Athene”. Usually Athene only provides programming error
messages or test case failure data, so some students felt that any
additional information was an improvement. This finding is in line
with user studies on code explanations [14, 15].

4.2.3 Interaction: Five of the nine respondents mentioned the in-
teraction style of the Al feedback. P2 and P3 wrote that it should
provide narrower answers, instead of the high-level broad feedback
we directed it to provide through our prompt. P5 wrote that, ‘T did
not like the Al feedback because it was very generic and there was no
way to converse with it. It only gave me feedback when I submitted
code and I could not add any other commentary.” And P6 wrote,
“Enabling it to learn from previous submission.” Students wanted to
interact with the Al rather than see a single-shot hint or bit of
advice. It seems that students want the ability to engage the Al
system in a conversation about their error, asking clarifying ques-
tions, or to simply allow it to use a conversation thread to provide
better answers in context. However, as Liffiton et al. note, using a

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

one-shot approach without the possibility of follow-up or dialogue
(like the one in this experiment) makes it less likely that the model
goes “off the rails” or produces harmful or biased responses [14].

One student wrote about what drove their engagement with the
system. P7 wrote, “It was quite simple to use Al feedback for this
assignment because you could keep submitting your code and verify
what it is that you’re missing or not getting through.” This could be
the answer to why students submitted so many more times on aver-
age during the experiment semester and why a majority wanted Al
feedback in future assignments. It’s possible that students submitted
more often because they hoped to receive advanced feedback when
they were stuck, whereas students in previous semesters wouldn’t
have bothered until their local output matched whatever failed test
case Athene had given them. A similar surge in engagement was
noted by Liffiton et al. [14] in their CodeHelp tool. Implementing Al
feedback has the potential to shift the student experience. Instead
of dreading to submit for fear of receiving the same response, the
student is encouraged to experiment and receive new feedback each
time.

5 CONCLUSION

In this paper, we presented a study on adding generative Al feedback
to an AAT and tracked student code submissions and perceptions
of the experience. From all the data presented above, it seems that
merely adding generative Al feedback to an AAT does not neces-
sarily make it better. Our data indicates that the interaction style
could impact the tool’s usefulness and trustworthiness. Students
want more feedback and help on their programs, and are willing
to engage with Al feedback, but are wary of it being too vague
or even incorrect and therefore a waste of their time. Similarly,
they expect to have the normal affordances [16] that have become
the gold standard of generative Al interaction, such as chat-type
interfaces where they can ask follow-up questions. Future work
should explore designing an interface that allows limited in-context
follow-up to Al submission feedback.

ACKNOWLEDGMENTS

Thank you to Dr. Solofoarisina Arisoa Randrianasolo for allowing
us to utilize your CS1 course for this experiment. Thank you to Dr.
Dwayne Towell for helping us collect the data from Athene. Thank
you to Dr. Brent Reeves for helping us analyze the collected data.
Thank you to Dr. James Prather for mentoring the ACU SIGCHI
Local Chapter. Finally, thank you to Dr. Paul Denny, Dr. Brett Becker,
and Dr. Juho Leinonen for reviewing this paper before submission.

REFERENCES

[1] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,
500-506. https://doi.org/10.1145/3545945.3569759

Brett A. Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J. Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, Janice L. Pearce, and James Prather. 2019. Compiler Error Messages Con-
sidered Unhelpful: The Landscape of Text-Based Programming Error Message Re-
search. In Proceedings of the Working Group Reports on Innovation and Technology
in Computer Science Education (ITiCSE-WGR ’19). Association for Computing Ma-
chinery, New York, NY, USA, 177-210. https://doi.org/10.1145/3344429.3372508

[2

=

B3

[10

[11

[12

[13

[14

[15

[16

(17

]

]

B. Kimmel et al.

Paul Denny, Viraj Kumar, and Nasser Giacaman. 2023. Conversing with Copilot:
Exploring Prompt Engineering for Solving CS1 Problems Using Natural Lan-
guage. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023). ACM, NY, USA, 1136-1142. https://doi.org/10.
1145/3545945.3569823

Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent Reeves. 2024. Prompt Problems: A New
Programming Exercise for the Generative Al Era. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). ACM,
NY, USA, 7.

Paul Denny, James Prather, Brett A. Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N. Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2024. Computing Education in the Era of Generative AL Commun.
ACM 67, 2 (jan 2024), 56-67. https://doi.org/10.1145/3624720

Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming
Error Messages for Novices: Readability and Its Constituent Factors. In Proceed-
ings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI °21).
Association for Computing Machinery, New York, NY, USA, Article 55, 15 pages.
https://doi.org/10.1145/3411764.3445696

James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of Ope-
nAI Codex on Introductory Programming. In Australasian Computing Education
Conference (ACE 22). Association for Computing Machinery, New York, NY, USA,
10-19. https://doi.org/10.1145/3511861.3511863

James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My Al Wants to Know If This Will
Be on the Exam: Testing OpenAI's Codex on CS2 Programming Exercises. In
Proceedings of the 25th Australasian Computing Education Conference (ACE "23).
Association for Computing Machinery, New York, NY, USA, 97-104. https:
//doi.org/10.1145/3576123.3576134

Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpia,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference
on International Computing Education Research - Volume 1 (ICER ’23). Association
for Computing Machinery, New York, NY, USA, 93-105. https://doi.org/10.1145/
3568813.3600139

Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI "23).
Association for Computing Machinery, New York, NY, USA, Article 455, 23 pages.
https://doi.org/10.1145/3544548.3580919

Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resis-
tance is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools Such as ChatGPT and
GitHub Copilot. In Proceedings of the 2023 ACM Conference on International Com-
puting Education Research - Volume 1 (ICER °23). Association for Computing Ma-
chinery, New York, NY, USA, 106-121. https://doi.org/10.1145/3568813.3600138
Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2023).
Association for Computing Machinery, New York, NY, USA, 124-130. https:
//doi.org/10.1145/3587102.3588785

Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2023. Using Large Language Models to Enhance Program-
ming Error Messages. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1 (SIGCSE 2023). Association for Computing Ma-
chinery, New York, NY, USA, 563-569. https://doi.org/10.1145/3545945.3569770
Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp: Us-
ing Large Language Models with Guardrails for Scalable Support in Programming
Classes. arXiv:cs.CY/2308.06921

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny,
Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code Expla-
nations Generated by Large Language Models in a Web Software Development
E-Book. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023). Association for Computing Machinery, New York,
NY, USA, 931-937. https://doi.org/10.1145/3545945.3569785

Stephen MacNeil, Andrew Tran, Joanne Kim, Ziheng Huang, Seth Bernstein, and
Dan Mogil. 2023. Prompt Middleware: Mapping Prompts for Large Language
Models to UI Affordances. arXiv preprint arXiv:2307.01142 (2023).

Joyce Mahon, Brian Mac Namee, and Brett A. Becker. 2023. No More Pencils No
More Books: Capabilities of Generative Al on Irish and UK Computer Science
School Leaving Examinations. In Proceedings of the 2023 Conference on United
Kingdom & Ireland Computing Education Research (UKICER ’23). Association for
Computing Machinery, New York, NY, USA, Article 2, 7 pages. https://doi.org/
10.1145/3610969.3610982

https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/3545945.3569823
https://doi.org/10.1145/3624720
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3545945.3569770
https://arxiv.org/abs/cs.CY/2308.06921
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3610969.3610982
https://doi.org/10.1145/3610969.3610982

Enhancing Programming Error Messages in Real Time with Generative Al

[18] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’17).
Association for Computing Machinery, New York, NY, USA, 465-470. https:
//doi.org/10.1145/3017680.3017768

[19] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,

Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-

Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,

and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative Al

Revolution in Computing Education. In Proceedings of the 2023 Working Group

Reports on Innovation and Technology in Computer Science Education (ITiCSE-

WGR °23). Association for Computing Machinery, New York, NY, USA, 108-159.

https://doi.org/10.1145/3623762.3633499

James Prather, Raymond Pettit, Brett A. Becker, Paul Denny, Dastyni Loksa, Alani

Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing

Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of

the 50th ACM Technical Symposium on Computer Science Education (SIGCSE ’19).

Association for Computing Machinery, New York, NY, USA, 531-537. https:

//doi.org/10.1145/3287324.3287374

[21] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and
Maxine Cohen. 2018. Metacognitive Difficulties Faced by Novice Programmers
in Automated Assessment Tools. In Proceedings of the 2018 ACM Conference on In-
ternational Computing Education Research (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 41-50. https://doi.org/10.1145/3230977.3230981

[22] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction with
Compiler Error Messages: A Human Factors Approach. In Proceedings of the
2017 ACM Conference on International Computing Education Research (ICER ’17).
Association for Computing Machinery, New York, NY, USA, 74-82. https://doi.
org/10.1145/3105726.3106169

[23] James Prather, Brent N. Reeves, Paul Denny, Brett A. Becker, Juho Leinonen,
Andrew Luxton-Reilly, Garrett Powell, James Finnie-Ansley, and Eddie Antonio
Santos. 2024. “It’s Weird That It Knows What I Want”: Usability and Interactions
with Copilot for Novice Programmers. ACM Trans. Comput.-Hum. Interact. 31, 1,
Article 4 (nov 2024), 31 pages. https://doi.org/10.1145/3617367

[20

[24

[25

[26

[27

[28

[29

[30

[31

]

]

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Brent Reeves, Sami Sarsa, James Prather, Paul Denny, Brett A. Becker, Arto
Hellas, Bailey Kimmel, Garrett Powell, and Juho Leinonen. 2023. Evaluating the
Performance of Code Generation Models for Solving Parsons Problems With
Small Prompt Variations. In Proceedings of the 2023 Conference on Innovation
and Technology in Computer Science Education V. 1 (ITiCSE 2023). Association for
Computing Machinery, New York, NY, USA, 299-305. https://doi.org/10.1145/
3587102.3588805

Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gen-
eration of Programming Exercises and Code Explanations Using Large Language
Models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research - Volume 1 (ICER ’22). Association for Computing Machinery,
New York, NY, USA, 27-43. https://doi.org/10.1145/3501385.3543957

Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle
to Pass Assessments in Higher Education Programming Courses. The 19th ACM
Conference on International Computing Education Research (ICER) (2023).
Andrew Taylor, Alexadra Vassar, Jake Renzella, and Hammond Pearce. 2024. dcc
—help: Transforming the Role of the Compiler by Generating Context-Aware
Error Explanations with Large Language Models. In Proceedings of the 55th ACM
Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). ACM,
NY, USA, 7.

Dwayne Towell and Brent Reeves. 2010. From Walls to Steps: Using online
automatic homework checking tools to improve learning in introductory pro-
gramming courses. ACET Journal of Computer Education and Research (2010).
Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In CHI Conference on Human Factors in Computing Systems
Extended Abstracts. Association for Computing Machinery, New York, NY, USA,
1-7.

Sierra Wang, John C. Mitchell, and Chris Piech. 2024. A Large Scale RCT on Effec-
tive Error Messages in CS1. In Proceedings of the 55th ACM Technical Symposium
on Computer Science Education V. 1 (SIGCSE 2024). ACM, NY, USA, 7.

Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative Al in Computing Education: Perspectives of
Students and Instructors. arXiv preprint arXiv:2308.04309 (2023).

https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3617367
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3587102.3588805
https://doi.org/10.1145/3501385.3543957

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Implementation
	3.2 Surveys
	3.3 Threats to Validity

	4 Results and Discussion
	4.1 First Round Survey
	4.2 Second Round Survey

	5 Conclusion
	Acknowledgments
	References

