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ABSTRACT
Large language models (LLMs) have shown remarkable abilities
to generate code. However, their ability to develop software for
physical computing and embedded systems, which requires cross-
domain hardware and software knowledge, has not been thoroughly
studied. We observe through our experiments and a 15-user pilot
study that even when LLMs fail to produce working code, they can
generate helpful reasoning about embedded design tasks, as well as
specific debugging suggestions for both novice and expert develop-
ers. These results highlight the potential to develop AI assistants to
dramatically lower the barrier to entry for working with hardware.
To evaluate the capabilities and limitations of LLMs, we develop
an automated testbench to quantify LLM performance on embed-
ded programming tasks and perform 450 trials. We leverage these
findings to analyze how programmers interact with these tools
including their productivity and sense of fulfillment and outline a
human-AI collaborative workflow for developing and debugging
embedded systems.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI;
Natural language interfaces; • Hardware→ Hardware valida-
tion; • Computer systems organization→ Sensors and actua-
tors.
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1 INTRODUCTION
Large language models (LLMs) such as GPT-3.5, GPT-4 and PaLM 2
have recently made significant strides in code generation for a va-
riety of software development tasks. These LLMs, which have been
trained on many code samples, can generate syntactically correct
and semantically meaningful code from high-level task descrip-
tions, and rival human experts on certain tasks [5]. Researchers
have also begun exploring optimizations such as encoding user
intent [24], self-repair for LLMs to correct their mistakes [35], and
collaboration between models [13]. Some integrated development
environments (IDEs) have already begun to incorporate LLMs into
their code editors [31], suggesting AI assistants will play a growing
role in software development workflows in years to come.

Despite these efforts, there has been little to no study of using
LLMs for physical computing and embedded systems development.
While tools like Github Co-Pilot can auto-complete code, they have
no link to the hardware, no context about the interconnections
of components in the system, or what outputs they would pro-
duce. Embedded systems design and programming straddles the
hardware-software interface and requires a cross-domain under-
standing of how devices interact with the physical world [25, 51].
Development of embedded systems requires a cyclical process
of continuous development and verification, entailing numerous
software-hardware integration trials. This iterative approach differs
from conventional programming, where outputs are often deter-
ministic and predictable. Embedded system development demands
complex, multi-step reasoning and verification to ensure system
reliability and functionality. For example, designing a simple wire-
less temperature sensor requires a physical understanding of the
chips and their interfaces, network connectivity, and the sensed
signals. These challenges impose a high barrier even for human pro-
grammers without hardware experience and have inspired projects
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#include<Wire.h>
void setup() {
 Wire.begin();
 Serial.begin(9600);
}
void loop(){
 int x = 0;
 ...
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Figure 1: Illustration of human AI co-design for embedded system development where human developers collaborate with
LLM-based AI agents to generate code and iteratively debug system behavior.

such as the MakeCode platform and others focused on improving
accessibility to embedded systems development [11, 20]. General-
purpose LLMs may have a robust representation of these topics
or the cross-domain reasoning ability to solve problems in this
space. This raises a key question: can LLMs generate reasoning
about these concepts, and how can they play an effective role in
embedded system development?

In this work, we aim to gain a better understanding of the differ-
ent strategies employed by developers when using LLMs as part
of an embedded system design workflow as well as the limita-
tions of the LLMs themselves on embedded development tasks. We
synthesize these findings into a generalizable workflow to enable
human-AI embedded system co-development. We find that LLMs
help bridge knowledge gaps of low level hardware implementa-
tion and offer personalized debugging advice that allowed first
time embedded programmers to design fully functional systems.
This human-AI approach has the potential to transform embedded
systems education and reduce the barrier for researchers across
the HCI community to work on hardware and physical computing
topics. We summarize our contributions below:
• Exploration of LLM usage for embedded development. We
conduct an exploratory user study with 15 individuals across ex-
perience levels. We find access to GPT-4 in addition to existing
internet resources improves productivity for users across all experi-
ence levels. In some cases, this improvement was shown in success
on complex tasks increasing from 25% to 100%. This allowed users
with zero hardware or C/C++ experience to build fully functional
two node wireless environmental sensing system in 40 minutes,
showing the potential of this approach for education and lower-
ing barriers for working with hardware. We observe that GPT-4
rarely produces fully-working code on the first attempt; however,
we find that GPT-4 can provide specific and actionable hardware
debugging advice, supporting iterative debugging alongside human
developers.
• Physical Testbench.We build an open-source, end-to-end eval-
uation pipeline for real-time LLM-powered embedded code valida-
tion with sensor-actutor pairs. We support state-of-the-art LLMs
in our framework, including PaLM 2, GPT-3.5, and GPT-4. We use

this setup to execute a comprehensive suite of 450 real-world eval-
uations involving integrated software-hardware interactions. The
data and code are released in this GitHub repository1. We envi-
sion our framework will serve as a valuable asset for the research
community, fostering further exploration in developing AI assis-
tants and validation of LLMs for the development of sensor-driven
software-hardware systems.

2 RELATEDWORK
Capabilities of Large LanguageModels. State-of-the-art LLMs [9,
36, 45] make use of transformer-based neural architectures consist-
ing of billions to trillions of parameters [46]. These models, trained
on Internet-scale text corpora, have shown the ability to perform
logic-based reasoning, solve complex problems, have scored highly
on language-task benchmarks, and produce text outputs indistin-
guishable from that of human authors [5, 22, 47]. These LLMs are
being used as foundational models in domains spanning consumer
health, medicine, education, finance, chip design, and environmen-
tal science, among others [4, 22, 27, 28, 41, 44, 53]. Such versatility
highlights the potential of LLMs to serve as integral components
within interdisciplinary research and application development.
Prompt Engineering.While these LLMs may be powerful tools,
research has found that high-quality prompting is required to re-
ceive consistently high-quality model outputs [5]. Frameworks and
workflows have been developed to optimize LLM responses [48–
50, 55, 56, 58]. In large part these prompting techniques include
using highly detailed, unambiguous prompts, providing additional
context, and asking the model to self-evaluate.

LLMs for Code Generation and Embedded Systems. As
LLMs are predominantly trained on Internet-scraped text, including
open-source software projects (GitHub, etc.), these models encode a
rich understanding of programming languages and code. Prior work
has shown language models and AI assistants (e.g., Github Copilot)
to generate software, with recent models performing on part with
competent software developers [5, 7, 12, 16, 19, 26, 32, 54, 59]. Re-
cent work has also fine-tuned LLMs for code in specific languages
showing improvement over the base models [6, 33, 34]. Researchers
have also developed code generation prompting strategies such as

1https://github.com/anonimwut/llm-embedded-testbench
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self-debugging [8, 43], task decomposition [21, 56], and prompting
frameworks [38]. Prior work has evaluated LLM-based code gener-
ation in C/C++ (commonly used for embedded software) but has
not explored uses in embedded systems with hardware interfaces.

Existing work on hardware-platform code-generation primarily
involves IDEs, frameworks and devices to make hardware program-
ming more approachable for novices but have not used LLMs [2,
3, 10, 23, 37]. Other systems have focused on generating hardware
description language (HDL) code for field programmable gate ar-
rays (FPGAs), from higher-level languages or design representa-
tions [17, 29, 30]. Although some tools [42] exist for LLM-based
embedded code generation, and a handful of blog posts have used
LLMs for embedded development [40, 52], these resources do not
conduct a rigorous systematic evaluation of state of the art language
models for embedded development and debugging or methods of
interfacing directly with hardware.

3 USER STUDY
We conduct an exploratory user study to understand how devel-
opers of different skill levels interact with LLMs during embedded
development. We also investigate changes in productivity and their
impressions of the technology.

3.1 Methods
Participants. We recruit 15 users (age 𝑀 = 23.3 years, 𝑆𝐷 =

2.93 years) comprised of undergraduates and PhD students, faculty,
and professional software engineers. While all participants had
an electrical engineering or computer science background, their
embedded systems experience was evenly distributed from 0 to 4+
years as seen in Fig. 2a.
Setup. Studies were conducted in a quiet lab environment. Partici-
pants were given a laptop with the Arduino IDE and all necessary
device drivers installed. A web browser with ChatGPT using the
GPT-4 0314 model was open by default, and participants were
told they could open additional tabs and use a search engine of
their choice. Participants were also provided a kit of components
with microcontrollers, sensors, actuators, wireless transceivers and
jumper wires. The specific components are enumerated as part of
the procedure.
Procedure.We ask participants demographic questions to gauge
their experience with programming, C/C++, and embedded systems.
Participants were assigned a unique ID number, used to select a
row in a counter-balanced partial Latin square to determine the
order of the tasks and conditions. Each participant completed a
simple warmup task and four graded tasks. We recorded the laptop
screen, a top-down video of participants’ interactions with the hard-
ware components, their chat history with ChatGPT, and their final
submitted code. After completion, we conducted semi-structured
interviews with quantitative questions based on the NASA Task
Load Index (TLX) [18] and SPACE Framework [14]. Participants
were encouraged to elaborate on their responses to the quantitative
questionnaires.
Study Design. The study was a 5𝑥2 between-subjects design. Par-
ticipants were timed and completed all four tasks in a random order
and with varying levels of GPT-4: no access, access to GPT-4, and
access to GPT-4 with some preliminary workflow suggestions based

on our initial experience using GPT-4 for programming tasks. The
suggestions provided to participants included guidelines to write
detailed prompts and instructions to provide information about
errors in follow-up prompts if the initial code did not function
correctly. The guidelines can be found in Appendix A. We used a
subset of the Latin square such that participants never had access to
GPT-4 with our workflow guidelines before having access to GPT-4
alone. We designed the tasks to be similar to assignments from an
introduction to embedded systems class, and they included:
(1) Warm-Up (untimed and ungraded, ∼5 minutes): Print “Hello,

World!” to the Serial console and blink an LED.
(2) Environmental Sensor (40 minutes): Connect the BME280 en-

vironmental sensor to the Arduino Uno (with already attached
RFM9x LoRa radio) and transmit sensor readings to a second
Arduino Uno with LoRa radio.

(3) Heart Rate Monitor (40 minutes): Connect the analog pho-
toplethysmography (PPG) sensor to the nRF52 (Arduino Nano
33 BLE) and transmit sensor readings to a second nRF52 over
Bluetooth Low Energy.

(4) Timer Interrupt (20minutes): Connect the piezoelectric buzzer
to the Arduino Uno and generate a tone of 440 Hz using built-in
hardware timers.

(5) RTC Wakeup (20 minutes): Configure a PCF8523 RTC (real-
time clock) to wake an Arduino Uno from sleep mode to flash
the LED before going back to sleep.

Analysis. We reviewed users’ code and graded it using the rubric
shown in Appendix B to award partial credit for completing each
sub-task. This rubric was not provided to participants. We summa-
rized users’ experience with the study through descriptive statistics
derived from these scores and participants’ responses to the survey
instruments, using a Student’s t-test to determine significance. We
reviewed interview transcripts for thematic analysis and extracted
quotes to substantiate those themes.
Ethics. Participants were recruited through fliers placed around a
university campus and through word-of-mouth. Participants were
offered a $20 USD gift card for participation. Prior to recording,
participants were given an information sheet explaining the types
of tasks they would perform and the types of data to be collected,
including overhead video, screen recording of the development
computer, and transcripts of post-study interviews. The protocol
was approved by our Institutional Review Board.

3.2 Task Performance Results
Participants scored highest on the Timer Interrupt task (𝑀 = 66.67%,
𝑆𝐷 = 43.46), and worst on the Heart Rate Monitor task (𝑀 = 36.67%,
𝑆𝐷 = 23.92); the variance suggests the Heart Rate Monitor task
was difficult across experience levels, while the Timer task was
easier for experienced users. The Heart Rate Monitor task required
multiple components that added points of failure. P10 cited how
this complexity made it challenging to work with GPT: “The first
task [Bluetooth]... I’m not sure if it would have been easier with GPT
or not... I had trouble like with everything on that... it was hard to
explain the system... that you’re building here to GPT.”

Participants performed best with access to GPT-4 and our work-
flow guidelines, significantly better than without GPT-4 (𝑀 = 65.48
vs 𝑀 = 34.21, 𝑡 (38) = 2.73, 𝑝 << 0.01), and better than using
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Figure 2: Left: Distribution of user study participants’ experience with embedded systems. Middle: Mean scores obtained by
participants on each task. Right: Mean scores obtained by participants on each task split by condition.

only access to GPT-4 with no significance, as seen in Fig 2c. In the
Environmental Sensor task all 5 participants with GPT-4 and our
workflow scored 100%, and half had little to no embedded systems
experience. Participants without GPT-4 scored 25% on average. We
attribute much of this success to our tutorial. For example, using
clues from P7’s detailed description of the Arduino output, Chat-
GPT explained Arduino’s sprintf() does not support formatting
floats. ChatGPT then corrected its code, using dtostrf(), enabling
P7 to complete the task when otherwise “I don’t think I would have
been able to do the LoRa sensor in 40 minutes.”

3.3 Interaction Observations
(1) Many participants commented on how GPT-4 was useful
for generating starter code. Similar online examples as P9 put
it, “Instead of searching for example code and then modifying that...
you know it’ll generate this code [that’s] more customized to what
you want.” From an efficiency standpoint, P6 suggested that, “...the
one good thing about ChatGPT – because when you search on google
there are a lot of things you cannot use, and you have to click on them
one by one, and you don’t know what you want – maybe he [chatgpt]
provides failing code, but you know itś what you want, and you can
modify it based on that.” The ability to get programmers started, and
especially those that are inexperienced, with bootstrapped code is
extremely powerful and motivating.
(2) Detailed error feedback improved LLM self-correction.
While code generated by GPT-4 often compiled successfully, the
system behavior was often incorrect correct on the first attempt. For
example, on the buzzer task, P11 observed that the initial program
produced a tone at a lower frequency than desired. They relayed
this information back to GPT-4, inputting ”The tone desired is "A
440Hz", the tone given [in the program] resulted in a lower tone”.
GPT-4 then identified an error in the prescalar configuration for the
hardware timer used to generate the frequency signal, and updated
the program to produce the correct tone. We notice a pattern where
clearly stating difference between the current system behavior and
the expected result enables more effective model self-correction,
even when the participant may not be aware of the exact source of
the issue in the software.
(3) Experienced programmers asked GPT-4 for smaller code
segments. For example, a function to read a sensor, a function to
send wireless transmissions, and then synthesized them together.
P7, an experienced programmer with zero hardware experience,
provided this context: “Hello Chatgpt I want help writing code for

a big task, we will break it down to two tasks. Let’s first do the first
task then we will do the next task which I will ask you to incorporate
the first task along with the results of the second. Does this sound
good? ... so our first task will be to read the pressure, temperature and
humidity data from our BME280 sensor which is connected to our
arduino uno board... great the first task is done and we have correctly
got the output we wanted now lets start the second task which we
will use the first task to get started. For this second task we are going
to have another arduino uno board which has a LoRa radio RFM9x
which has the corresponding ports...” By working with smaller tasks,
GPT-4 was able to more effectively debug and iterate.
(4) GPT-4 offered specific and actionable hardware debugging
advice. This included checking pin connections and wiring and
was helpful to all participants, especially those with no hardware
experience that struggled to interpret advice found online: “I saw a
lot of the words [online] like, you have to connect to a ground I didn’t
really know what that meant... I figured I’m assuming that the colors
of the cables don’t mean anything” (P7).

In one particular case, ChatGPT went beyond the suggestion
to simply check the connections and even provided a custom de-
bugging script to scan for I2C addresses and verify that the sensor
could be found.
Person:“I tried to run the code with both 0x76 and 0x77, but both
print "Could not find a valid BME280 sensor, check wiring!"”
ChatGPT:“If your Arduino says it cannot find a valid BME280
sensor, it might be due to one of the following reasons:
(1) Wiring issue: Double-check your wiring connections as ex-

plained previously. Make sure the SDA and SCL connections are
correct. The SDA pin should connect to A4 and the SCL pin to A5
on the Arduino Uno. Also, ensure the sensor is correctly powered
with 3.3V and its ground is connected to the Arduino’s ground.

(2) Incorrect I2C address: The I2C address of the sensor can typically
be 0x76 or 0x77. If neither of these addresses is working, your
sensor might have a different address. You can use an "I2C
scanner" sketch to find out the exact address of your sensor. Here
is an example of an I2C scanner code: [I2C scanner program]”

(5) Context switching between code editor and LLM. Context
switching is an inherently significant portion of any workflow,
and it is certainly a large part of coding: programmers will very
frequently switch between their code editor and resources on the
Internet, such as documentation or forum discussions. Our study
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was designed to mimic the workflow of a programmer switching be-
tween their code editor and their Internet resource. LLM integration
into code editors is an active area of research and development [39];
however, switching between windows currently remains a common
practice.

3.4 Exit Interview Feedback
We evaluate participants’ responses to our subjective questions.
Through our TLX questionnaire, we learned about participants’
perceived load versus GPT-4 access condition. The average per-
ceived load with access to GPT-4 and our workflow was lower
than the perceived load with GPT-4 only (mean load 3.25 vs 3.83,
𝑡 (38) = 1.49, 𝑝 = 0.1), and also lower than no GPT-4 (mean load
3.25 vs 4.67, 𝑡 (35) = 4.35, 𝑝 << 0.01). Responses to the SPACE
framework questionnaire also sparked interesting open-ended dis-
cussions. Users were largely split: some suggested that ChatGPT
could aid learning, while others hinted that it could hinder learning.
P4 did not feel very fulfilled “...because, like, I feel like I didn’t [do
any] work. You know, like it wasn’t something that I did. It’s some-
thing that ChatGPT did for me... it was cool to see that it was working,
but not nearly as cool as if I had done it personally.“ On the other
hand, P8 pointed out “...it’s fulfilling in different ways: ...instead of
understanding the domain, you become more fulfilled in that you get
the task to work... GPT handles some tedious things really well, and
allows you to better understand some of the other aspects of the task.”

4 TOWARD AN AUTOMATED PHYSICAL
TESTBENCH

The first step toward developing robust AI assistants for physical
computing is a method to interface the physical hardware and devel-
opment environments with LLM models and evaluate their outputs.
We develop an evaluation framework for benchmarking LLM per-
formance on hardware-in-the-loop embedded systems development
tasks and implement an end-to-end pipeline for physical verifica-
tion and fully automated, real-world testing of LLM embedded code
generation. This is crucial because it enables programmatic testing
of specific development tasks to identify the limits of what these
models are capable of and presents a platform for iterative design.
Experiment Setup. To develop an interface with LLMswe leverage
the key observation that given an example format within prompts,
all 3 of these language models can very reliably generate code
to print data over serial. This capability allows us to create pro-
grams that produce text debugging output we can verify. We per-
form initial tests on a number of prompts and find this method
works consistently. To verify the code, we compare these serial
outputs to outputs from a separate device running verified human-
written programs. We construct physical hardware with sensor-
actuator pairs described in detail below and physically attach two
sensors next to each other. We evaluate quality by uploading hu-
man code on both boards characterize noise and inter-device vari-
ance. We compute the Euclidean distance 𝑑 between the signals:
𝑑 =

√︃∑𝑛
𝑖=1 (𝑥2𝑖 − 𝑥1𝑖 )2. We perform N=1000 measurements to de-

termine a threshold for “correct” outputs (e.g. within 10% of the

reference). We use dynamic time warping (DTW) [1], a signal pro-
cessing technique that corrects for time shifts, to account for vari-
ability in serial timing.

Our fully automated testing script is compatible with the Google
Vertex and OpenAI APIs and uses them to automatically prompt
models and parse the code output by removing explanatory text
and merging code blocks into a single file. The script then attempts
to compile the generated code, logs failures, and uploads it to the
microcontroller. It then samples both the human and LLM code out-
put over a serial connection and compares the signals as described
above.

We run 450 experiments on three LLMs. We note automated test-
ing is critical for fine-tuning models. This system can be extended
to new devices and generalized using a logic analyzer or oscil-
loscope to analyze waveforms. This hardware-in-the-loop setup
also extends the idea of LLMs using virtual tools and API calls [5]
to physical tools for future cyberphysical systems where LLMs to
query the real world through sensors. We describe our specific
hardware configurations and discuss results below. In these experi-
ments we provide zero additional context other than the prompt
and used GPT-4 version 0314. The specific prompts and hardware
configurations used can be found in Appendix C.
Benchmark Results. In the simple photodiode task PaLM 2 pro-
duces many compile errors, while the GPT models produce code
that compiles on every iteration as seen in Fig. 3a. All programs
that compiled were fully functional and correct. As the complexity
of tasks increases, we see a steady drop off in the performance of
all three LLMs, with all models failing to always produce correct
code for the ultrasonic rangefinder task in 3b and GPT-4 producing
fully functional code only 16% of the time on the 6-axis IMU task
as shown in Fig. 3c.

5 DISCUSSION AND CONCLUSION
We demonstrate LLMs have capabilities far beyond code auto-
complete utilities - they show a promising ability to work across
hardware and software domains as well as rationalizing how code
effects the physical behavior of real-world systems. We summarize
key takeaways below and outline directions for future work.
LLMs enhance human developer productivity. Our bench-
marks show current LLMs cannot reliably generate code for end-
to-end systems on their own. However, LLMs can significantly
increase productivity and satisfaction by providing automation
and a level of abstraction for experienced developers who provide
context-rich prompts. These tools can also empower novice de-
velopers and consistently assisted users in debugging across both
hardware and software. In particular, GPT-4 provided useful hard-
ware related debugging steps and identified sources of incorrect
behavior (e.g. incorrect physical connections, packet structure, or
I2C addresses) for errors not caught at compile time. These results
highlight the potential of LLMs to dramatically reduce the barriers
to physical computing through specific debugging advice. In our
teaching experiences many embedded systems students with only
software experience struggle to apply their programming skills to
hardware. Future work to develop these findings into a teaching
tool has significant potential to increase accessibility to physical
computing and fabrication research.
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Figure 3: Evaluation of sensing tasks with our hardware-in-the-loop testing pipeline, 𝑁 = 50 iterations on PaLM-2, GPT-3.5, and
GPT-4.
Prompting is critical. Our user study and exploration of LLM ca-
pabilities confirm that effective prompting is crucial. Prompts must
unambiguously encapsulate key system information forLLMs to en-
gage with the technical nuances of both the physical hardware and
the intended behaviors. There remains much room for future work
optimize collaboration between human developers and LLMs on
embedded development tasks. Fine-tuning Large Language Models
(LLMs) on specialized embedded repositories, datasets, and specific
Software Development Kits (SDKs) could improve performance. Ad-
ditionally, developing new ways of encoding the full system state to
provide context to the model could improve performance. We see
our framework for automated hardware-in-the-loop testing that
would allow the models to query the system state like a software
plugin as a powerful tool to support future work in these areas.
Benefits of hardware-in-the-loop. In this work, we consider the
case of a human developer interacting with an LLM through a text
interface. However, there are other interface techniques that could
be explored. By integrating LLMs into future Integrated Develop-
ment Environments (IDEs) and leveraging hardware-in-the-loop
test benches, LLMs could programmatically overcome the limita-
tions highlighted earlier. This integration could allow for automated
and iterative design enhancements in real-time during development.
By harnessing recent advancements in visual [57] and sensor [15]
embeddings, upcoming research could unveil methods to represent
hardware configurations and setups through consistent and unam-
biguous embeddings. Such developments would enable language
models to generate more informed software solutions grounded in
specific hardware requirements.
Role of humans and responsible development. Our user-study
feedback regarding fulfillment, though generally positive, was at
times ambiguous. Some participants expressed that LLM assistance
made them feel less responsible for the results. As the capabilities
of LLM based tools continue to grow, it will be critical to define
the role of human developers. This is particularly important when
embedded systems are in mission-critical subsystems, where own-
ership and extensive verification has significant safety implications.

Large language models have the potential to re-imagine how em-
bedded system development and debugging function, but creating
direct interfaces between these systems and the physical world si-
multaneously introduce profound risks. It is imperative that future
work proceeds responsibly to address these concerns and does not
lose sight of our responsibility to build ethical and safe systems.
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A LLM USAGE SUGGESTIONS
A.1 Detailed GPT Prompt
Providing GPTwith ample context is important to generating useful
code. Make sure to provide a complete scope of what you are trying
to accomplish. If you have example code snippets, include them. If
you know what libraries to use, specify them. If you have a multi-
device system, explain what the other devices will be doing and/or
provide GPT with their code.

Bad prompt: “Make the LED blink and print hello world”
Good prompt: “I have an Arduino Uno with an LED attached to Pin

13. I want to print the message “Hello World” over serial and blink the
LED on and off every second. First explain how an expert programmer
would approach this task and then provide a program to accomplish
it.”

A.2 Copy error message to GPT
If compilation fails and you don’t understand what is wrong with
the generated code, copy and paste the error message back into
GPT.

Prompt: “When I try to compile this code, I get the following error:
***copied error here***”

A.3 Flash and observe behavior
Just because code compiles and uploads does not mean that it does
exactly what you want. Observe the behavior of the board and
identify what aspects of the behavior are correct and incorrect. If
everything is correct, you are done!

A.4 Describe incorrect behavior and ask for fix
Provide gpt with a detailed explanation of what exactly is wrong
with the behavior of the system and ask it to fix the code.

Bad prompt: “This doesn’t work”
Good prompt: “This code compiles and uploads, and I see the

correct serial prints on my computer every second. The LED should be
flashing once a second, but right now once it turns off it never turns
back on again. Please identify the problem and suggest how to fix
this.”

A.5 Other tips
GPT often struggles with numbers. If there are calculations in the
code, it can often be more efficient to manually fix numerical errors
instead of prompting GPT to fix them.

Don’t forget that you are a programmer too! If you find a bug
that you know how to fix, fix it yourself. If you know what is wrong
but don’t know exactly how to fix it, use this to provide a more
precise explanation to GPT. For example: You notice that you asked
to flash an LED on Pin 13, but GPT responded with a program that
flashes Pin 12. Manually update the pin number instead of going
straight back to GPT.

“I asked to use the Sparkfun IMU library for this, but I see there
are some calls to the Adafruit IMU library in the setup() function.
Please rewrite this to use only the Sparkfun library to interface with
the IMU.”

Keep the context up-to-date: If you make changes to the code,
copy back your updated code to GPT so future responses can in-
corporate your changes. For longer programs, you can just copy
the segments of the code that you updated.

Start with example code and explain what you want changed.
Just like a human programmer, GPT can often be more successful
when you give example code that is *close* to what you want. Make
sure you are explicit about what you want changed and what you
want to stay the same, otherwise GPT is prone to make unprompted
changes to other parts of the program as well. For example:

“I have a program for the Arduino Uno that reads data from a
LSM6DSO IMU using the Adafruit IMU library and prints the data
over serial. Instead of printing to serial, I want to analyze this data and
flash an LED on Pin 13 every time the total magnitude of acceleration
is higher than 2 Gs. Please replace the portion of code that is printing
data to serial with code to do this calculation, leaving as much of the
original program unchanged as possible”

If GPT fails multiple times to fix an issue, it is often best to start
over with a new chat. Break things down into modules. GPT is
best at generating short to medium length programs. If GPT fails
multiple times to generate complete working code, ask it to develop
modular functions individually and integrate them into a complete
program yourself.

B GRADING RUBRIC
B.1 Timer Interrupt
Criteria Points
Speaker on digital pin and ground 25
Made sound 25
Made sound with timer 25
Right sound or close to it (within 15 Hz) 25

B.2 RTC
Criteria Points
Doesn’t work 0
Makes RTC generate square wave 25
Blinks from RTC interrupt 25
Blinks from interrupt at 1s 25
Sleep mode + square wave interrupt 25

B.3 Heart Rate Sensor
Criteria Points
Reads from analog HR sensor 25
Bluetooth connection made 25
Transmits some data over BLE 25
Visible waveform 25
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B.4 Environmental Sensor
Criteria Points
Reads BME sensor 25
Connection between RX and TX (any string is
fine)

25

Sends some amount of BME data from RX to
TX

25

Pressure, temp, and humidity are all visible on
RX side

25

C PHYSICAL TESTBENCH SETUP
C.1 Photoresistor
Our first benchmark asks the model to read a photoresistor with
the Arduino’s onboard ADC.

Prompt: I have an Arduino Uno with a photoresistor attached to
pin A0. Write a program that reads the value on pin attached to the
photoresistor and prints it on a new line to Serial at a baud rate of
9600 every 100ms. Example serial output: 233\n512\n555\n
We connect a photoresistor and pull-up resistor to eachmicrocon-

troller and orient them toward a blinking LED inside an enclosed
box without external light. Figure 3a shows the results of these
experiments.

We observe PaLM-2 produces many compile errors, while the
GPT models produce code that compiles on every iteration. The
most common compilation errors result from an incorrect program
format lacking setup() and loop() functions. We found that all
programs that compiled were also fully functional and correct.
This shows that LLMs can repeatably produce the correct program
structure and generate functional code with a single prompt. We
note the high success rate on this task is likely due to a combination
of its simplicity and many similar open-source code examples.

C.2 Ultrasonic Rangefinder
Next we ask the LLMs to continuously read distance from an ultra-
sonic rangefinder.

Prompt:Write me an Arduino Uno program for the HC-SRO4 ul-
trasonic ranging module that prints out the measured distance in
cm without units every 100ms over Serial on a new line at baud rate
9600. The ’trig’ output is connected to pin 12 and the ’echo’ output
is connected to pin 11. Do not use any external libraries. Example
serial output: 23.273\n23.419\n23.366\n

This sensor is more complex than a photoresistor and must
be queried by setting the trigger pin high. The sensor sends an
ultrasonic burst and sets the echo pin high until remains high until
the sensor receives an echo. The code must read how long the echo
pin is high, calculate the time difference, and then perform unit
conversion using the speed of sound.

To test the sensor, we use a lead screw driven linear actuator
(Phidget Wantai Mini Stepper) to continuously move a platform
back and forth across 5 cm as shown in Fig 3b. We mount two
ultrasonic distance sensors (Sparkfun HC-SR04) and place a screen
at the end of the moving platform to reflect the sensor’s transmitted
waves at a consistent distance. One of the sensors is programmed
with human code and the other is running on code generated by
the LLM.

C.3 6-axis IMU
For our most complex task we test the ability of the three LLMs to
generate code for a 6-axis IMU (LSM6DSO).

Our physical testbench consists of a 3D-printed servo horn that
holds the two sensors side by side at an angle of 55° to the vertical
axis. This angle ensures that when the servo (goBILDA 2000 Series
Dual Mode Servo 25-3, Speed) moves through a set of positions, the
IMU produces non-zero outputs on all axes. We perform verification
experiments by using a third Arduino to control the servo. The
testing script sends commands to move the servo to 3 angles (0, 90,
and 180 degrees). At each angle the testing script logs data from the
X, Y, and Z axes from LLM and user-written code for a 10s duration
and checks they are within 10%. The test script proceeds to the next
angle on a correct output and only considers the code fully correct
if all three tests pass.

Prompt:Write me a program for the Arduino Uno that interfaces
with an LSM6DSO over I2C using only the Wire library. In my
hardware implementation, the SDO/SA0 pin of the LSM6DSO is
connected to GND (ground). Print the acceleration readings in gs
every 100ms over Serial at baud rate 9600. Example serial output:
A_X = -0.426 \n A_Y = -0.023 \n A_Z = 0.913 \n
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