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ABSTRACT
Exploring the intricate dynamics of Multimodal Interaction (MMI)
in Augmented Reality (AR), this study presents a novel conceptual
framework, crafted from a review of cognitive theories. Our re-
search delves into how input modalities, output modalities, and
their combinations uniquely influence user experiences in AR en-
vironments. Recognizing a gap in the existing MMI literature,
especially within the AR context, we propose a conceptual frame-
work to understand these complex relationships. Our framework
pinpoints three critical factors: the choice of input modality, the
verbal processing code of outputs, and the synergistic effects of
input-output combinations. These elements are hypothesized to
significantly impact user interaction and performance in AR sys-
tems. This work-in-progress not only contributes to the theoretical
discourse in HCI but also sets the stage for future empirical inves-
tigations, aiming to enhance user-centered design in the evolving
field of AR technology.
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(HCI); Interaction paradigms; Mixed / augmented reality; Human
computer interaction (HCI); HCI theory, concepts and models.
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1 INTRODUCTION
As we navigate through an era where the boundaries between the
digital and physical worlds are increasingly blurred, Augmented
Reality (AR) has emerged as a transformative force. This technol-
ogy not only reshapes our digital experiences but also redefines
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Human-Computer Interaction (HCI). AR’s capability to overlay digi-
tal information onto our physical environment positions it uniquely
within the spectrum of eXtended Reality (XR). In contrast to Vir-
tual Reality (VR), which creates a wholly digital environment, the
intrinsic dependence of AR on the variabilities of the real-world
significantly increases the complexity of its interaction design. Cen-
tral to this evolution is the exploration of interaction modalities,
particularly Multimodal Interaction (MMI). While MMI is known
to enhance the efficiency and naturalness of human-system inter-
actions, a significant gap remains in understanding the optimal
integration of various interaction modalities within AR systems
[6]. This gap is critical, as it directly impacts the effectiveness of
AR systems in real-world applications.

The positive influence of MMI on user performance and im-
mersive experiences in XR environments is well-documented
[10, 13, 14, 17, 18, 26, 32]. However, the efficacy of MMI is not uni-
versally consistent. Some studies suggest that MMI may not always
outperform unimodal interactions [32, 33] and may even increase
workload or the likelihood of error if not properly implemented
[7, 19, 20]. These findings underscore the inherent complexity of
MMI, yet there is still a notable gap in efforts to understand the
underlying factors that influence its effects.

In this paper, we delve into the cognitive aspects of MMI, propos-
ing that a successful multimodal system should align with the user’s
cognitive capabilities and limitations. We begin by presenting an
overview of cognitive theories relevant to MMI, highlighting their
implications for designing AR interactions. Subsequently, we intro-
duce a conceptual framework for MMI in AR, which is informed
by a comprehensive review of these theories. The proposed frame-
work elucidates the interplay of various input and output modalities
during human-system interaction, with a particular focus on the
cognitive processes underlying information processing.

Through this study we were able to come up with several hy-
potheses on how the combination of different interaction modalities
might work and what are the factors that we might need to con-
sider during its implementation. While these hypotheses were not
empirically tested within the scope of this study, they lay a founda-
tional groundwork for advancing our comprehension of MMI. This
work-in-progress sets the stage for future research to test and build
upon these initial insights.

Our goal is to offer insights that not only possibly enhance the
effectiveness of MMI but also contribute to the broader discourse
in HCI, particularly in creating more intuitive and user-friendly
AR systems. This investigation is particularly pertinent to the CHI
community, extending discussions about MMI within the context of
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emerging AR technologies. By examining the cognitive underpin-
nings of MMI, we aim to contribute to a more nuanced understand-
ing of AR interactions, offering practical insights for designers and
developers in optimizing next-generation AR experiences.

2 THEORETICAL REVIEW
2.1 Overview of cognitive theories
Humans are naturally inclined to interact with the world through
multiple modalities. In natural human interaction, people instinc-
tively use different ways to transmit and perceive information.
Literature in biology, experimental psychology, and cognitive sci-
ence has consistently shown that human information processing
basically involves multisensory perception and integration [9]. In
fact, the human brain contains multimodal neurons and specialized
multisensory convergence regions that support multimodal process-
ing [21]. With this, several studies assert that multimodal interface
systems are advantageous and superior since they support natu-
ral human information processing. This assertion is mostly based
on the number of theories in cognitive psychology that discuss
multiple, modality-specific processing resources [3, 4, 25, 34].

During human-computer interaction, the users’ information pro-
cessing can be broadly divided into three stages: input, processing,
and output. These three stages are sometimes referred to as stim-
ulus (or perception), cognition, and response (or action) in some
studies [31]. However, it is important to note that these terms can
be confusing as the terminology used in this research is interaction
focused. In this study, input refers to the stage where users actively
participate and transmit information to the system (i.e., user in-
put). Hence, the input stage in this study can be translated into
the response stage discussed in most cognitive theories. On the
other hand, in this study, output refers to the information produced
by the system for the users to perceive (i.e., system output). This
then refers to the stimulus or perceptual encoding stage discussed
in other cognitive theories. The processing stage, however, refers
to the same concept as discussed in most information processing-
related theories, which basically means the stage where cognition
takes place. There are several psychological theories that have
influenced contemporary views of multimodal interaction and in-
terface design. The most relevant ones are working memory theory,
dual-coding theory, multiple resource theory, cognitive load theory,
and sensory-motor modality compatibility theory. In the following
subsections, we provide detailed explanations of each theory.

2.1.1 Working memory theory. Baddeley’s working memory hy-
pothesis states that various forms of information correspond to
distinct cognitive resources [1]. Working memory refers to the
type of memory that humans use to temporarily store information
needed for processing, which is usually of limited capacity [1]. Ac-
cording to Baddeley’s initially proposed model, a human’s working
memory is made up of three main components: the central execu-
tive, visuo-spatial sketchpad, and phonological loop. The central
executive acts as the supervisory system, wherein the overall pro-
cessing and integration of information take place. The visuo-spatial
sketchpad is used for short-term storage of visual-spatial informa-
tion, while the phonological loop is used for short-term storage of
auditory-verbal data. However, it must be noted that according to

this theory, in cases where visual information is presented verbally
(e.g., printed text), the information is stored in the phonological
loop as sub-vocal articulated information. Although the visuo-
spatial sketchpad and phonological loop are generally controlled
by the central executive, these two components operate mostly
independently in terms of lower-level modality processing. After
several years, Baddeley [2] updated his model after conducting sev-
eral empirical investigations. He then added the fourth component
which is the episodic buffer, which represents the path between
the long-term and working memory. As an implication for MMI,
this model posits that human performance can be improved when
the interaction involves using multiple modalities from different
components (visuo-spatial sketchpad and phonological loop).

2.1.2 Dual coding theory. Another relevant theory for MMI is the
dual coding theory proposed by Paivio [24]. In his theory, he sug-
gested that human cognition is mainly composed of two processing
systems: the visual (sometimes referred to as the non-verbal sys-
tem), and the verbal system. The visual system is concerned with
storing and processing graphical information, whereas the verbal
system deals with storing and processing linguistic information.
By its conceptual definitions, the two components are somewhat
similar to Baddeley’s concept of the visuo-spatial sketchpad and
the phonological loop. Paivio [25] asserted that although written
text and graphical pictures are both presented as visual stimuli, it is
coded and processed in different ways. For example, written text is
coded more verbally than visually, whereas pictures can be coded
both visually and verbally due to subconscious labeling. According
to Paivio [25], these assumptions are widely supported by studies
in neuropsychology. It was shown that processing different types
of information (verbal and non-verbal) activates different areas of
the brain, and the presentation of both types leads to more brain
stimulation. Moreover, this theory posits that the processing of
verbal stimuli prompts a verbal response, and the processing of
nonverbal stimuli prompts a nonverbal response.

2.1.3 Multiple Resource Theory. Multiple resource theory (MRT)
proposed by Wickens [34] suggests that humans have a limited
set of resources available to mentally process information. These
resources are regarded as a pool of energy that can be consumed to
perform different mental operations, ranging from sensory-level
processing to semantic-level processing [5]. In this model, informa-
tion processing is divided into three stages: perception, cognition,
and responding. The information to be processed is further divided
into two different perceptual modalities (visual and auditory), two
different processing codes (verbal and spatial), and two different
response modalities (manual and vocal). In addition, visual infor-
mation can also be further classified into two categories: focal and
ambient. An illustration of the multiple resource model is presented
in Figure 1(c). In contrast with the other theories discussed, Wick-
ens [34] distinguished modalities not only in the processing stage
but also in the sensory and response stages. It is assumed that at
each stage, different cognitive resources are being used. MRT was
initially proposed to predict human performance while executing
different types of tasks that involve coordination between the user
input and system output modes. According to this theory, tasks
that require the same set of resources may be difficult to perform in
parallel and can lead to performance deterioration. On the contrary,
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Figure 1: Illustration of theories reviewed. (a) working memory theory diagram adapted from [2], (b) dual coding theory
diagram adapted from [25], (c) multiple resource theorymodel adapted from [33], and (d) sensory-motor modality compatibility
theory diagram adapted from [27].

tasks that require accessing different types of cognitive resources
(e.g., visual and auditory) can be processed simultaneously with
less interference. In summary, MRT proposes that information pro-
cessing dimensions and components should be taken into account
when designing multimodal interfaces, reinforcing coordination
and timesharing, and minimizing interference.

2.1.4 Cognitive Load Theory. Cognitive load theory (CLT) is first
introduced by Sweller [30]. The main assumption of this theory
is that working memory is only able to hold a limited amount of
information at a time, therefore in order to maximize learning and
performance, the cognitive load (the amount of information that
can be stored and processed) must not exceed its limits. When
unnecessary demands are imposed on the users, the processing
of information becomes overly complex which often leads to loss
of information and impaired performance. Cognitive load can be
classified into three types: germane, intrinsic, and extraneous load.
Germane load refers to the natural demands imposed when con-
structing schemas and connections that are critical to the learning
process. On the other hand, intrinsic load refers to the internal
demands brought by the inherent complexity of the task, and ex-
traneous load refers to the non-task-related factors contributing
to increasing task complexity (e.g., inappropriate use of modality).

According to Sweller [30], there are a lot of factors that influence
cognitive load, such as modality and schemata. In addition, sev-
eral studies have also shown that task demands and complexity,
extraneous noise, decision-making, etc. also have a huge impact
on cognitive load [12, 16]. Therefore, these factors should also be
considered in the investigation of MMI.

2.1.5 Sensory motor modality compatibility theory. The term
‘sensory-motor modality compatibility’ or sometimes referred to as
‘modality compatibility’ describes the relationship between input
and output modalities and how well they work together [11]. It is
believed that when the stimulus and response are mapped under the
same modality, it will more likely lead to more compatible and effi-
cient information processing. For example, auditory stimuli paired
with a vocal response, or visual stimuli pairedwithmanual response,
are regarded as compatible since themotor response leads to the sen-
sory feedback that corresponds to the previously presented stimuli.
On the contrary, input-output combinations such as visual stimuli
and vocal response, or auditory stimuli and manual response, are re-
garded as incompatible due to the lack of correspondence between
the modalities. This belief is rooted based on the classical ideomo-
tor principle which asserts that actions are selected and initiated
based on their expectations of the effects [15]. This means that even
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Table 1: Summary of findings from theoretical review

Relevant MMI
component

Implications on MMI Reference theory

Input Extraneous loads induced by additional decision-making processes (e.g.,
provision of alternative input choices) can unnecessarily increase task load,
which could lead to adverse effects on performance.

Cognitive load theory

Output The verbal characteristics of the output (verbal or non-verbal) are processed
differently, and the presentation of both types of information can lead to higher
brain stimulation.

Dual coding theory

Input and Output The use of different modalities from different processing components
(visuo-spatial sketchpad and phonological loop) can lead to improved task
performance.

Working memory theory

Input and Output The use of inputs (manual-spatial, vocal-verbal) and the processing of output
modalities (visual and auditory) from different resources can lead to increased
efficiency due to parallel processing and time-sharing.

Multiple resource theory

Input-output
combination

Information processing would be more efficient when the stimulus and
response are mapped under the same modality (e.g., auditory-vocal,
visual-manual)

Sensory-motor modality
compatibility theory

Input-output
combination

Processing of information and response execution could be influenced by the
demands and complexity of the task.

Cognitive load theory

though they are processed in different stages, both sensory input
and motor output prime each other leading to a combined effect.

2.2 Summary and insights
In summary, based on the cognitive theories reviewed, it can be
assumed that efficiency in information processing can depend on
the modalities and type of cognitive resources used. More specifi-
cally, several factors underlying each specific component of MMI
are presumed to influence performance during interactions. The
summary of the implications derived based on the assumptions of
each cognitive theory on MMI is presented in Table 1.

In terms of input modality, several theories suggest that the type
of input modality (whether it is vocal or manual) and the availability
of alternative choices (whether it is fixed unimodal or alternate mul-
timodal) can have an impact on the overall task efficiency. Deriving
from the assumptions of the cognitive load theory, the increased
level of modality choices or freedom during the interaction may
actually lead to higher cognitive load and poor performance [28].
From this, it can be deduced that simply incorporating various in-
teraction modalities into a multimodal system does not inherently
enhance user performance and experience. Instead, these modal-
ities should be carefully selected and implemented according to
appropriate modality mappings.

On the other hand, in terms of output modality, multiple cog-
nitive theories postulate that external information is processed
mostly based on its verbal characteristics. This becomes partic-
ularly pertinent in AR environments, where digital and physical
worlds converge, often resulting in an overlay of multimodal infor-
mation. Thus, as an implication, it could also be assumed that aside
from output modality, the verbal features of the system output could
have a significant influence on MMI in AR. Hence, further investiga-
tion into the effects of the combined verbal features of multimodal
system output may be necessary to confirm these assumptions.

Various cognitive theories also indicate that certain combina-
tions of input-output modalities can lead to better performance,
whereas some may lead to interference. Based on multiple resource
theory, multimodal systems can lead to inferior performance than
unimodal systems if the combinations of input and output modali-
ties and their corresponding dimensions interfere with each other
[34]. For example, when presenting identical information using
two different modalities (e.g., reading and listening to the same text
simultaneously), even though it uses different modality resources,
it can lead to decreased performance due to problems with synchro-
nizing information with the same processing code [29]. Therefore,
it is crucial to investigate the possible effects of combining differ-
ent input and output modalities in order to fully understand the
implications of MMI.

In most cases, empirical findings support the assumption that
multimodal interfaces result in more natural, efficient, reliable, and
robust interaction [8, 22, 23]. However, it is important to note
that these advantages are not inherent in all multimodal systems.
It can be seen through this review that the advantages of MMI
are mediated by multiple factors such as the combination of input
and output conditions. Apart from this, according to cognitive load
theory, the type of task, task complexity, and task setting (single task
vs task switching) can also increase cognitive load and influence
the performance gain from MMI. It is possible that the combination
of some interaction modalities may cause interference due to the
nature of some tasks with which concurrent information processing
is rather difficult [35]. Thus, investigating MMI components in
different task scenarios with varying complexities and demands is
also essential.

3 PROPOSED FRAMEWORK
With reference to the general model of the human-computer com-
munication process previously established by Schomaker [28], a
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Figure 2: Proposed framework for MMI in AR

conceptual framework for MMI in AR is developed. The original
model presents a functional and cognitive parallel between the
human and the system. In the proposed model, information is
transmitted either through the input flow (user input to system
recognition) or the output flow (system output to the user percep-
tion). The original framework was further extended by including
framework components from the reviewed cognitive theories re-
lated to MMI and AR system-related factors.

Human information processing components derived from the
original model of human information processing and multiple re-
source theory [35], such as perception, working memory cognition,
long-term memory, response selection, and response execution,
were included in the conceptual framework to demonstrate how the
users process and produce multimodal information. Furthermore,
in alignment with the dual coding theory and the sensory-motor
modality compatibility theory: verbal and non-verbal processing.
Additionally, the proposed conceptual framework highlights the
role of the sensory response effects during multimodal interaction.
It is postulated that the feedback produced by the execution of the
user input (e.g., vocal input produces an auditory sensory response
effect) affects the users’ perception.

AR system-related factors such as user input recognition, AR
system processing, augmented output, and input modality choice
were integrated into the conceptual framework. Augmented output
refers to the stimuli produced by the AR system, which is presented
on top of the real-world output. Real-world output encompasses all
the stimuli from the real-world environment, whether task-related
(e.g., tactile feedback from physical objects) or non-task-related
(e.g., environmental noise, ambient lighting). In addition to the
primary response types (vocal and manual), implicit user input was

included as part of the user input modalities. Implicit user input
refers to the involuntary or subconscious responses of the users that
are detected and processed by the AR system (e.g., biosignals, facial
expressions, and implicit gaze). Input modality choice, on the other
hand, refers to the input conditions and restrictions implemented
within the AR system (e.g., equivalent multi-input options, assigned
multi-input, unimodal input). In this conceptual framework, input
modality choice in the AR environment is expected to affect the
response selection process of the users.

Lastly, in addition to the main framework components, based
on the evidence gathered, the effects of the identified components
are heavily influenced by factors related to the nature of the task
and environment. It is quite known in the vast literature that task
characteristics and environmental factors strongly influence human
performance in amyriad of ways. Hence, it is not surprising that the
effectiveness and efficiency of MMI can also depend on the number
and the type of tasks being performed. Since different tasks and
task sets require different forms of interaction, the implementation
of different input or output modalities may have distinctive effects
depending on the task and environmental factors.

The resulting framework is presented in Figure 2. The diagram
illustrates the exchange of information between the user and the
AR system using multiple modalities along with the factors that
could influence the interaction.

4 DISCUSSION AND CONCLUSION
In this study, we unveil a pioneering conceptual framework forMMI
in AR systems, crafted from an in-depth exploration of cognitive
theories. Our framework underscores the interplay between vari-
ous factors in MMI within AR settings, proposing that the combined
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effects of input and output modalities, along with the context of use,
could significantly impact user experience and performance. More-
over, the framework suggests that aside from interaction modalities,
specific factors including the choice of input modality, the verbal
processing code of outputs, and their integrated mappings—shaped
by task requirements and environmental contexts—are also crucial
in determining the effectiveness of MMI in AR.

Using the proposed framework, numerous hypotheses can be
derived and tested. For instance, to reduce cognitive load during
complex tasks, offering a limited selection of input methods (such
as hand gestures and voice commands) could foster more effective
interactions than providing a wide array of suboptimal options
(like hand gestures, head gestures, voice commands, eye gaze, and
tangible devices). Another potential hypothesis is that restricting
verbal outputs to a single modality (for example, combining visual
text with ambient sound) may lead to better user performance than
presenting multimodal outputs that share the same processing code
(such as combining visual text with verbal sound). This hypothesis
suggests that designing AR interactions aligned with the ideal com-
bination of interaction modalities, considering its specific attributes,
could optimize and enhance both user performance and experience.

Researchers can utilize this framework to design studies that
systematically manipulate these variables—input modalities, output
processing codes, and environmental conditions—to observe their
collective impact on user performance and satisfaction in AR. By
creating scenarios that vary these factors, such as comparing user
experiences in quiet museum settings versus bustling city tours,
researchers can identify patterns and best practices for MMI design
in AR, catering to diverse applications and user needs. Observed
effects from various variable combinations and contexts could be
synthesized to generate more systematic guidelines that could help
AR designers and developers in the future. This holistic approach
not only broadens our understanding of MMI’s complexities in AR
but also guides the development of more adaptive, user-centric AR
technologies.

Despite the valuable insights offered, our study acknowledges
its limitations. The framework’s development was based on a se-
lective review of cognitive theories, which may not cover the full
scope of relevant literature, potentially resulting in gaps in our
insights. Notably, one significant oversight is the omission of spa-
tial cognition—a crucial element in AR. Integrating insights from
theories on spatial perception could greatly enrich our framework,
as understanding spatial relationships is fundamental to AR envi-
ronment design and significantly affects user cognition during in-
teraction. Furthermore, the qualitative nature of our analysis, along
with the reliance on a theoretical foundation for our framework,
could introduce biases and narrow the range of our conclusions.

Nevertheless, this work-in-progress lays a critical foundation for
understanding the cognitive underpinnings of MMI in AR systems.
Our study not only enriches the discourse in HCI but also provides
a structured approach to examining multimodal interactions in AR.
Moving forward, we aim to expand our framework through com-
prehensive reviews of additional cognitive theories and empirical
research. Furthermore, we intend to empirically test and refine the
hypotheses generated from our framework, thereby contributing to
the optimization of MMI in AR systems. We are excited to further

explore these hypotheses through rigorous testing, aiming to refine
and validate our framework.

In conclusion, this study marks a significant step towards unrav-
eling the complexities of MMI in AR. By bridging cognitive theory
with practical HCI design, we offer a nuanced perspective that
promises to guide future research and innovation in AR technology.
As we continue to explore these dynamics, our work aims to foster
more intuitive, effective, and user-friendly AR systems, pushing
the boundaries of how we interact with technology and shaping
the future of AR experiences.
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