skip to main content
10.1145/3615834.3615855acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiwoarConference Proceedingsconference-collections
poster

Assessment of Quality of Gyrocardiograms Based on Features Derived from Symmetric Projection Attractor Reconstruction

Authors Info & Claims
Published:11 October 2023Publication History

ABSTRACT

Signal quality assessment is essential for biomedical signal processing, analysis, and interpretation. Various methods exist, including averaged numerical values, thresholding, time- or frequency-domain analysis, and nonlinear approaches. This study evaluated the quality of gyrocardiographic signals (GCG) using symmetric projection attractor reconstruction (SPAR) analysis. Two classifiers, random forest and bagged trees, were used to assess the performance of the SPAR-based approach. Eleven features were extracted from the variables v and w, calculated on the basis of the signal delay. These features included minimum and maximum values, mean, standard deviation (SD), median, and Euclidean distance. The results showed that the SPAR-based approach achieved high accuracy, precision, and recall. The random forest classifier achieved 0.729 accuracy, 0.726 precision, and 0.729 recall, while the bagged trees classifier achieved 0.792 accuracy, 0.804 precision, and 0.792 recall. These findings suggest that the SPAR-based approach is a promising method to accurately assess the quality of GCG signals.

References

  1. Philip J Aston, Mark I Christie, Ying H Huang, and Manasi Nandi. 2018. Beyond HRV: attractor reconstruction using the entire cardiovascular waveform data for novel feature extraction. Physiological Measurement 39, 2 (Mar 2018), 024001. https://doi.org/10.1088/1361-6579/aaa93dGoogle ScholarGoogle ScholarCross RefCross Ref
  2. Philip J Aston, Manasi Nandi, Mark I Christie, and Ying H Huang. 2014. Comparison of attractor reconstruction and HRV methods for analysing blood pressure data. In Computing in Cardiology 2014. IEEE Press, Cambridge, MA, USA, 437–440.Google ScholarGoogle Scholar
  3. P.H. Charlton, L. Camporota, J. Smith, M. Nandi, M. Christie, P.J. Aston, and R. Beale. 2015. Measurement of cardiovascular state using attractor reconstruction analysis. In 2015 23rd European Signal Processing Conference (EUSIPCO). IEEE, Nice, France, 444–448. https://doi.org/10.1109/eusipco.2015.7362422Google ScholarGoogle ScholarCross RefCross Ref
  4. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Int. Res. 16, 1 (jun 2002), 321–357.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Javier de Pedro-Carracedo, David Fuentes-Jimenez, Ana María Ugena, and Ana Pilar Gonzalez-Marcos. 2020. Phase Space Reconstruction from a Biological Time Series: A Photoplethysmographic Signal Case Study. Applied Sciences 10, 4 (Feb 2020), 1430. https://doi.org/10.3390/app10041430Google ScholarGoogle ScholarCross RefCross Ref
  6. Parastoo Dehkordi, Kouhyar Tavakolian, Mojtaba Jafari Tadi, Vahid Zakeri, and Farzad Khosrow-khavar. 2020. Investigating the estimation of cardiac time intervals using gyrocardiography. Physiological Measurement 41, 5 (Jun 2020), 055004. https://doi.org/10.1088/1361-6579/ab87b2Google ScholarGoogle ScholarCross RefCross Ref
  7. Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array programming with NumPy. Nature 585, 7825 (Sep 2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2Google ScholarGoogle ScholarCross RefCross Ref
  8. Ying H. Huang, Jane V. Lyle, Anisa Shahira Ab Razak, Manasi Nandi, Celia M. Marr, Christopher L.-H. Huang, Philip J. Aston, and Kamalan Jeevaratnam. 2022. Detecting paroxysmal atrial fibrillation from normal sinus rhythm in equine athletes using Symmetric Projection Attractor Reconstruction and machine learning. Cardiovascular Digital Health Journal 3, 2 (Apr 2022), 96–106. https://doi.org/10.1016/j.cvdhj.2022.02.001Google ScholarGoogle ScholarCross RefCross Ref
  9. Jussi Jaakkola, Samuli Jaakkola, Olli Lahdenoja, Tero Hurnanen, Tero Koivisto, Mikko Pänkäälä, Timo Knuutila, Tuomas O. Kiviniemi, Tuija Vasankari, and K.E. Juhani Airaksinen. 2018. Mobile Phone Detection of Atrial Fibrillation With Mechanocardiography. Circulation 137, 14 (2018), 1524–1527. https://doi.org/10.1161/CIRCULATIONAHA.117.032804Google ScholarGoogle ScholarCross RefCross Ref
  10. Matti Kaisti, Mojtaba Jafari Tadi, Olli Lahdenoja, Tero Hurnanen, Mikko Pänkäälä, and Tero Koivisto. 2018. Mechanocardiograms with ECG reference. IEEE DataPort. https://doi.org/10.21227/vfcs-k196 DOI: 10.21227/vfcs-k196.Google ScholarGoogle ScholarCross RefCross Ref
  11. Matti Kaisti, Mojtaba Jafari Tadi, Olli Lahdenoja, Tero Hurnanen, Antti Saraste, Mikko Pankaala, and Tero Koivisto. 2019. Stand-Alone Heartbeat Detection in Multidimensional Mechanocardiograms. IEEE Sensors Journal 19, 1 (Jan 2019), 234–242. https://doi.org/10.1109/jsen.2018.2874706Google ScholarGoogle ScholarCross RefCross Ref
  12. Olli Lahdenoja, Tero Hurnanen, Mojtaba Jafari Tadi, Mikko Pänkäälä, and Tero Koivisto. 2016. Heart Rate Variability Estimation with Joint Accelerometer and Gyroscope Sensing. In Computing in Cardiology, Vol. 43. IEEE Press, Vancouver, BC, Canada, 717–720.Google ScholarGoogle Scholar
  13. Jane V Lyle, Manasi Nandi, and Philip J Aston. 2019. Investigating the Response to Dofetilide with Symmetric Projection Attractor Reconstruction of the Electrocardiogram. In 2019 Computing in Cardiology (CinC). IEEE Press, Singapore, Page 1–Page 4. https://doi.org/10.22489/CinC.2019.073Google ScholarGoogle ScholarCross RefCross Ref
  14. S. Mehrang, M. Jafari Tadi, M. Kaisti, O. Lahdenoja, T. Vasankari, T. Kiviniemi, J. Airaksinen, T. Koivisto, and M. Pänkäälä. 2018. Machine Learning Based Classification of Myocardial Infarction Conditions Using Smartphone-Derived Seismo- and Gyrocardiography. In 2018 Computing in Cardiology Conference (CinC), Vol. 45. IEEE Press, Maastricht, Netherlands, 1–4. https://doi.org/10.22489/CinC.2018.110Google ScholarGoogle ScholarCross RefCross Ref
  15. Manasi Nandi and Philip J. Aston. 2020. Extracting new information from old waveforms: Symmetric projection attractor reconstruction: Where maths meets medicine. Experimental Physiology 105, 9 (May 2020), 1444–1451. https://doi.org/10.1113/ep087873Google ScholarGoogle ScholarCross RefCross Ref
  16. Manasi Nandi, Jenny Venton, and Philip J Aston. 2018. A novel method to quantify arterial pulse waveform morphology: attractor reconstruction for physiologists and clinicians. Physiological Measurement 39, 10 (Oct 2018), 104008. https://doi.org/10.1088/1361-6579/aae46aGoogle ScholarGoogle ScholarCross RefCross Ref
  17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Penzel, B. Kemp, G. Klosch, A. Schlogl, J. Hasan, A. Varri, and I. Korhonen. 2001. Acquisition of biomedical signals databases. IEEE Engineering in Medicine and Biology Magazine 20, 3 (May 2001), 25–32. https://doi.org/10.1109/51.932721Google ScholarGoogle ScholarCross RefCross Ref
  19. Deepak Rai, Hiren Kumar Thakkar, Shyam Singh Rajput, Jose Santamaria, Chintan Bhatt, and Francisco Roca. 2021. A Comprehensive Review on Seismocardiogram: Current Advancements on Acquisition, Annotation, and Applications. Mathematics 9, 18 (Sep 2021), 2243. https://doi.org/10.3390/math9182243Google ScholarGoogle ScholarCross RefCross Ref
  20. Francesca Santucci, Daniela Lo Presti, Carlo Massaroni, Emiliano Schena, and Roberto Setola. 2022. Precordial Vibrations: A Review of Wearable Systems, Signal Processing Techniques, and Main Applications. Sensors 22, 15 (Aug 2022), 5805. https://doi.org/10.3390/s22155805Google ScholarGoogle ScholarCross RefCross Ref
  21. Udit Satija, Barathram Ramkumar, and M. Sabarimalai Manikandan. 2018. A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Reviews in Biomedical Engineering 11 (2018), 36–52. https://doi.org/10.1109/rbme.2018.2810957Google ScholarGoogle ScholarCross RefCross Ref
  22. Arash Shokouhmand, Chenxi Yang, Nicole D. Aranoff, Elissa Driggin, Philip Green, and Negar Tavassolian. 2021. Mean Pressure Gradient Prediction Based on Chest Angular Movements and Heart Rate Variability Parameters. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). IEEE Press, Guadalajara, Mexico, 7170–7173. https://doi.org/10.1109/EMBC46164.2021.9630805Google ScholarGoogle ScholarCross RefCross Ref
  23. Szymon Sieciński, Paweł S. Kostka, and Ewaryst J. Tkacz. 2020. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms on Healthy Volunteers. Sensors 20, 16 (Aug 2020), 4522. https://doi.org/10.3390/s20164522Google ScholarGoogle ScholarCross RefCross Ref
  24. Szymon Sieciński, Ewaryst Janusz Tkacz, and Paweł Stanisław Kostka. 2023. Heart Rate Variability Analysis on Electrocardiograms, Seismocardiograms and Gyrocardiograms of Healthy Volunteers and Patients with Valvular Heart Diseases. Sensors 23, 4 (Feb 2023), 2152. https://doi.org/10.3390/s23042152Google ScholarGoogle ScholarCross RefCross Ref
  25. Szymon Sieciński, Paweł S. Kostka, and Ewaryst J. Tkacz. 2020. Gyrocardiography: A Review of the Definition, History, Waveform Description, and Applications. Sensors 20, 22 (Nov 2020), 6675. https://doi.org/10.3390/s20226675Google ScholarGoogle ScholarCross RefCross Ref
  26. M. J. Tadi, E. Lehtonen, T. Koivisto, M. Pänkäälä, A. Paasio, and M. Teräs. 2015. Seismocardiography: Toward heart rate variability (HRV) estimation. In 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings. IEEE Press, Turin, Italy, 261–266. https://doi.org/10.1109/MeMeA.2015.7145210Google ScholarGoogle ScholarCross RefCross Ref
  27. M. J. Tadi, E. Lehtonen, M. Pankäälä, A. Saraste, T. Vasankari, M. Terás, and T. Koivisto. 2016. Gyrocardiography: A new non-invasive approach in the study of mechanical motions of the heart. Concept, method and initial observations. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE Press, Orlando, FL, USA, 2034–2037. https://doi.org/10.1109/EMBC.2016.7591126Google ScholarGoogle ScholarCross RefCross Ref
  28. Mojtaba Jafari Tadi, Eero Lehtonen, Antti Saraste, Jarno Tuominen, Juho Koskinen, Mika Teräs, Juhani Airaksinen, Mikko Pänkäälä, and Tero Koivisto. 2017. Gyrocardiography: A New Non-invasive Monitoring Method for the Assessment of Cardiac Mechanics and the Estimation of Hemodynamic Variables. Scientific Reports 7, 1 (July 2017), 6823. https://doi.org/10.1038/s41598-017-07248-yGoogle ScholarGoogle ScholarCross RefCross Ref
  29. Floris Takens. 1981. Detecting strange attractors in turbulence. In Lecture Notes in Mathematics. Springer Berlin Heidelberg, Coventry, UK, 366–381. https://doi.org/10.1007/bfb0091924Google ScholarGoogle ScholarCross RefCross Ref
  30. Chenxi Yang, Banish Ojha, Nicole D. Aranoff, Philip Green, and Negar Tavassolian. 2020. Classification of Aortic Stenosis Before and After Transcatheter Aortic Valve Replacement Using Cardio-mechanical Modalities*. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC). IEEE Press, Montreal, QC, Canada, 2820–2823. https://doi.org/10.1109/EMBC44109.2020.9176321Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Assessment of Quality of Gyrocardiograms Based on Features Derived from Symmetric Projection Attractor Reconstruction

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Other conferences
            iWOAR '23: Proceedings of the 8th international Workshop on Sensor-Based Activity Recognition and Artificial Intelligence
            September 2023
            171 pages
            ISBN:9798400708169
            DOI:10.1145/3615834

            Copyright © 2023 Owner/Author

            Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 11 October 2023

            Check for updates

            Qualifiers

            • poster
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate46of73submissions,63%
          • Article Metrics

            • Downloads (Last 12 months)12
            • Downloads (Last 6 weeks)1

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format