skip to main content
10.1145/3618257.3624825acmconferencesArticle/Chapter ViewAbstractPublication PagesimcConference Proceedingsconference-collections
research-article

Characterizing and Modeling Session-Level Mobile Traffic Demands from Large-Scale Measurements

Published:24 October 2023Publication History

ABSTRACT

We analyze 4G and 5G transport-layer sessions generated by a wide range of mobile services at over 282,000 base stations (BSs) of an operational mobile network, and carry out a statistical characterization of their demand rates, associated traffic volume and temporal duration. Based on the gained insights, we model the arrival process of sessions at heterogeneously loaded BSs, the distribution of the session-level load and its relationship with the session duration, using simple yet effective mathematical approaches. Our models are fine-tuned to a variety of services, and complement existing tools that mimic packet-level statistics or aggregated spatiotemporal traffic demands at mobile network BSs. They thus offer an original angle to mobile traffic data generation, and support a more credible performance evaluation of solutions for network planning and management. We assess the utility of the models in practical application use cases, demonstrating how they enable a more trustworthy evaluation of solutions for the orchestration of sliced and virtualized networks.

References

  1. 3GPP Technical Specification Group Services and System Aspects. 2020. TR:28.812 - Study on scenarios for Intent driven management services for mobile networks, Telecommunication management.Google ScholarGoogle Scholar
  2. 3GPP TR 36.814 V9.2.0. 2017. 3rd Generation Partnership Project; technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9). (Mar. 2017).Google ScholarGoogle Scholar
  3. 3GPP TR 36.888 V12.0.0. 2013. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE (Release 12). (June 2013).Google ScholarGoogle Scholar
  4. 3GPP TS 23.288 v16.1.0. 2019. Architecture Enhancements for 5G System (5GS) to Support Network Data Analytics Services (Release 16). (June 2019).Google ScholarGoogle Scholar
  5. 3GPP TS 28.533 v16.0.0. 2019. Management and Orchestration of Networks and Network Slicing; Management and Orchestration Architecture (Release. (June 2019).Google ScholarGoogle Scholar
  6. 3GPP TSG-RAN1#48 R1-070674. 2007. LTE physical layer framework for performance verification. (Feb. 2007).Google ScholarGoogle Scholar
  7. Jose A. Ayala-Romero, Andres Garcia-Saavedra, Marco Gramaglia, Xavier Costa-Perez, Albert Banchs, and Juan J. Alcaraz. 2019. Vrain: a deep learning approach tailoring computing and radio resources in virtualized RANs. In ACM MobiCom '19. isbn: 9781450361699. https://doi.org/10.1145/3300061.3345431.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. G. Barlacchi et al. 2015. A multi-source dataset of urban life in the city of Milan and the province of Trentino. Scientific Data, 2.Google ScholarGoogle Scholar
  9. Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez. 2020. Aztec: anticipatory capacity allocation for zero-touch network slicing. In IEEE INFOCOM '20, 794--803.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Biljana Bojovic and Sandra Lagen. 2022. Enabling NGMN mixed traffic models for Ns-3. In Proc. Workshop on Ns-3. ACM WNS3 '22, Virtual Event, USA, 127--134. isbn: 9781450396516. doi: 10.1145/3532577.3532602.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Deezer Support. 2022. Deezer audio quality. https://support.deezer.com/hc/en-gb/articles/115003865685-Deezer-Audio-Quality. Accessed: 2022-05-31. (2022).Google ScholarGoogle Scholar
  12. ETSI. 2019. GS ZSM 001 V1.1.1 - Zero-touch network and Service Management (ZSM); Requirements based on documented scenarios.Google ScholarGoogle Scholar
  13. European Union. 2016. Eu general data protection regulation (gdpr): regulation (eu) 2016/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95/46/ec (general data protection regulation). Retrieved October 18, 2021 from https://g dpr-info.eu/.Google ScholarGoogle Scholar
  14. Marco Helbich, Jamal Jokar Arsanjani, and Michael Leitner, editors. 2015. Towards a comparative science of cities: using mobile traffic records in new york, london, and hong kong. Computational Approaches for Urban Environments. Springer International Publishing, Cham, 363--387. isbn: 978-3-319-11469-9. doi: 10.1007/978-3-319-11469-9_15.Google ScholarGoogle ScholarCross RefCross Ref
  15. Himank Gupta, Mehul Sharma, Antony Franklin A., and Bheemarjuna Reddy Tamma. 2020. Apt-ran: a flexible split-based 5g ran to minimize energy consumption and handovers. IEEE Transactions on Network and Service Management, 17, 1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Jin Huang and Ming Xiao. 2020. Mobile network traffic prediction based on seasonal adjacent windows sampling and conditional probability estimation. IEEE Transactions on Big Data, 1--1. doi: 10.1109/TBDATA.2020.3014049.Google ScholarGoogle ScholarCross RefCross Ref
  17. IEEE 802.16m-08/004r2. 2008. IEEE 802.16m evaluation methodology document (EMD). (July 2008).Google ScholarGoogle Scholar
  18. David Johnson. 1973. Near-optimal bin packing algorithms. PhD thesis.Google ScholarGoogle Scholar
  19. A. Karasaridis and D. Hatzinakos. 2001. Network heavy traffic modeling using /spl alpha/-stable self-similar processes. IEEE Transactions on Communications, 49, 7.Google ScholarGoogle ScholarCross RefCross Ref
  20. Hatem Khedher, Sahar Hoteit, Patrick Brown, Véronique Véque, Ruby Krishnaswamy, William Diego, and Makhlouf Hadji. 2020. Real traffic-aware scheduling of computing resources in cloud-ran. In ICNC '20, 422--427. doi: 10.1109/ICNC47757.2020.9049679.Google ScholarGoogle ScholarCross RefCross Ref
  21. Daegyeom Kim, Myeongjin Ko, Sunghyun Kim, Sungwoo Moon, Kyung-Yul Cheon, Seungkeun Park, Yunbae Kim, Hyungoo Yoon, and Yong-Hoon Choi. 2022. Design and implementation of traffic generation model and spectrum requirement calculator for private 5g network. IEEE Access, 10, 15978--15993. doi: 10.1109/ACCESS.2022.3149050.Google ScholarGoogle ScholarCross RefCross Ref
  22. Jinsung Lee et al. 2020. Perceive: deep learning-based cellular uplink prediction using real-time scheduling patterns. In ACM MobiSys '20, 377--390. isbn: 9781450379540.Google ScholarGoogle Scholar
  23. Rongpeng Li, Zhifeng Zhao, Chen Qi, Xuan Zhou, Yifan Zhou, and Hong-gang Zhang. 2015. Understanding the traffic nature of mobile instantaneous messaging in cellular networks: a revisiting to α-stable models. IEEE Access, 3.Google ScholarGoogle Scholar
  24. Rongpeng Li, Zhifeng Zhao, Jianchao Zheng, Chengli Mei, Yueming Cai, and Honggang Zhang. 2017. The learning and prediction of application-level traffic data in cellular networks. IEEE Transactions on Wireless Communications, 16, 6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Yu-Ting Lin, Thomas Bonald, and Salah Eddine Elayoubi. 2018. Flow-level traffic model for adaptive streaming services in mobile networks. Computer Networks, 137, 1--16. doi: https://doi.org/10.1016/j.comnet.2018.01.027.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using gans for sharing networked time series data: challenges, initial promise, and open questions. In ACM IMC '20. Virtual Event, USA, 464--483. isbn: 9781450381383. doi: 10.1145/3419394.3423643.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Cezary Ziemlicki, and Zbigniew Smoreda. 2017. Not all apps are created equal: analysis of spatiotemporal heterogeneity in nationwide mobile service usage. In ACM CoNEXT '17. Incheon, Republic of Korea, 180--186. isbn: 9781450354226. doi: 10.1145/3143361.3143369.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Florian Metzger, Albert Rafetseder, Peter Romirer-Maierhofer, and Kurt Tutschku. 2014. Exploratory analysis of a ggsn's pdp context signaling load. Journal of Computer Networks and Communications, 526231. doi: https://doi.org/10.1155 /2014/526231.Google ScholarGoogle Scholar
  29. Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, K.P. Naveen, and Carlos Sarraute. 2017. Mobile data traffic modeling: revealing temporal facets. Computer Networks, 112, 176--193. doi: https://doi.org/10.1016/j.comnet.2016.1 0.016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378.Google ScholarGoogle Scholar
  31. Jorge Navarro-Ortiz, Pablo Romero-Diaz, Sandra Sendra, Pablo Ameigeiras, Juan J. Ramos-Munoz, and Juan M. Lopez-Soler. 2020. A survey on 5g usage scenarios and traffic models. IEEE Communications Surveys & Tutorials, 22, 2, 905--929.Google ScholarGoogle ScholarCross RefCross Ref
  32. O-RAN.WG2.Non-RT-RIC-ARCH-TS-v01.00. 2021. O-RAN Non-RT RIC Architecture 1.0. (Oct. 2021).Google ScholarGoogle Scholar
  33. O-RAN.WG3.RICARCH-v02.01. 2022. O-RAN Near-RT RAN Intelligent Controller Near-RT RIC Architecture 2.01. (Mar. 2022).Google ScholarGoogle Scholar
  34. Michele Polese, Francesco Restuccia, and Tommaso Melodia. 2021. Deepbeam: deep waveform learning for coordination-free beam management in mmwave networks. In MobiHoc '21. ACM MobiHoc '21, Shanghai, China, 61--70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Aaditya Ramdas, Nicolás García Trillos, and Marco Cuturi. 2017. On wasserstein two-sample testing and related families of nonparametric tests. Entropy, 19, 2. doi: 10.3390/e19020047.Google ScholarGoogle ScholarCross RefCross Ref
  36. Soha Rawas. 2021. Energy, network, and application-aware virtual machine placement model in SDN-enabled large scale cloud data centers. Multimedia Tools and App., 80, 10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Peter J. Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53--65. doi: https://doi.org/10.1016/0377-0427(87)90125-7.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Abraham. Savitzky and M. J. E. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 8, 1627--1639. eprint: https://doi.org/10.1021/ac60214a047. doi: 10.1021/ac60214a047.Google ScholarGoogle ScholarCross RefCross Ref
  39. M. Zubair Shafiq, Lusheng Ji, Alex X. Liu, and Jia Wang. 2011. Characterizing and modeling internet traffic dynamics of cellular devices. In ACM SIGMETRICS '11. San Jose, California, USA, 305--316. isbn: 9781450308144. doi: 10.1145/1993 744.1993776.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rajkarn Singh, Cengis Hasan, Xenofon Foukas, Marco Fiore, Mahesh K. Marina, and Yue Wang. 2021. Energy-efficient orchestration of metro-scale 5G radio access networks. In IEEE INFOCOM '21, 1--10. doi: 10.1109/INFOCOM42981.20 21.9488786.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Chuanhao Sun, Kai Xu, Marco Fiore, Mahesh K. Marina, Yue Wang, and Cezary Ziemlicki. 2022. Appshot: a conditional deep generative model for synthesizing service-level mobile traffic snapshots at city scale. IEEE Transactions on Network and Service Management, 19, 4, 4136--4150. doi: 10.1109/TNSM.2022.3199458.Google ScholarGoogle ScholarCross RefCross Ref
  42. Ilias Tsompanidis, Ahmed H. Zahran, and Cormac J. Sreenan. 2014. Mobile network traffic: a user behaviour model. In 2014 7th IFIP Wireless and Mobile Networking Conference (WMNC), 1--8. doi: 10.1109/WMNC.2014.6878862.Google ScholarGoogle ScholarCross RefCross Ref
  43. X. Wang, Z. Zhou, F. Xiao, K. Xing, Z. Yang, Y. Liu, and C. Peng. 2019. Spatio-temporal analysis and prediction of cellular traffic in metropolis. IEEE Trans. Mobile Comput., 18, 09, (Sept. 2019), 2190--2202.Google ScholarGoogle ScholarCross RefCross Ref
  44. Jing Wu, Ming Zeng, Xinlei Chen, Yong Li, and Depeng Jin. 2018. Characterizing and predicting individual traffic usage of mobile application in cellular network. In ACM UbiComp '18. Association for Computing Machinery, Singapore, Singapore, 852--861. isbn: 9781450359665. doi: 10.1145/3267305.3274173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shangbin Wu, Yue Wang, and Lu Bai. 2020. Deep convolutional neural network assisted reinforcement learning based mobile network power saving. IEEE Access, 8, 93671-93681. doi: 10.1109/ACCESS.2020.2995057.Google ScholarGoogle ScholarCross RefCross Ref
  46. K. Xu, R. Singh, H. Bilen, M. Fiore, M. K. Marina, and Y. Wang. 2022. Cartagenie: context-driven synthesis of city-scale mobile network traffic snapshots. In IEEE PerCom '22. Los Alamitos, CA, USA, (Mar. 2022), 119--129. doi: 10.1109/PerCo m53586.2022.9762395.Google ScholarGoogle ScholarCross RefCross Ref
  47. Kai Xu, Rajkarn Singh, Marco Fiore, Mahesh K. Marina, Hakan Bilen, Muhammad Usama, Howard Benn, and Cezary Ziemlicki. 2021. Spectragan: spectrum based generation of city scale spatiotemporal mobile network traffic data. In ACM CoNEXT '21. Virtual Event, Germany, 243--258. isbn: 9781450390989. doi: 10.1145/3485983.3494844.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Qiang Xu, Alexandre Gerber, Zhuoqing Morley Mao, and Jeffrey Pang. 2011. Acculoc: practical localization of performance measurements in 3G networks. In ACM MobiSys '11. Bethesda, Maryland, USA, 183--196. isbn: 9781450306430. doi: 10.1145/1999995.2000013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. 2020. Microscope: mobile service traffic decomposition for network slicing as a service. ACM MobiCom '20, 14 pages. isbn: 9781450370851.Google ScholarGoogle Scholar

Index Terms

  1. Characterizing and Modeling Session-Level Mobile Traffic Demands from Large-Scale Measurements

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        IMC '23: Proceedings of the 2023 ACM on Internet Measurement Conference
        October 2023
        746 pages
        ISBN:9798400703829
        DOI:10.1145/3618257

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 24 October 2023

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate277of1,083submissions,26%

        Upcoming Conference

        IMC '24
        ACM Internet Measurement Conference
        November 4 - 6, 2024
        Madrid , AA , Spain
      • Article Metrics

        • Downloads (Last 12 months)176
        • Downloads (Last 6 weeks)20

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader