skip to main content
research-article
Open Access

A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena

Published:05 December 2023Publication History
Skip Abstract Section

Abstract

Boundary layer flow plays a very important role in shaping the entire flow feature near and behind obstacles inside fluids. Thus, boundary treatment methods are crucial for a physically consistent fluid simulation, especially when turbulence occurs at a high Reynolds number, in which accurately handling thin boundary layer becomes quite challenging. Traditional Navier-Stokes solvers usually construct multi-resolution body-fitted meshes to achieve high accuracy, often together with near-wall and sub-grid turbulence modeling. However, this could be time-consuming and computationally intensive even with GPU accelerations. An alternative and much faster approach is to switch to a kinetic solver, such as the lattice Boltzmann model, but boundary treatment has to be done in a cut-cell manner, sacrificing accuracy unless grid resolution is much increased. In this paper, we focus on simulating the boundary-dominated turbulent flow phenomena with an efficient kinetic solver. In order to significantly improve the cut-cell-based boundary treatment for higher accuracy without excessively increasing the simulation resolution, we propose a novel parametric boundary treatment model, including a semi-Lagrangian scheme at the wall for non-equilibrium distribution functions, together with a purely link-based near-wall analytical mesoscopic model by analogy with the macroscopic wall modeling approach, which is yet simple to compute. Such a new method is further extended to handle moving boundaries, showing increased accuracy. Comprehensive analyses are conducted, with a variety of simulation results that are both qualitatively and quantitatively validated with experiments and real life scenarios, and compared to existing methods, to indicate superiority of our method. We highlight that our method not only provides a more accurate way for boundary treatment, but also a valuable tool to control boundary layer behaviors. This has not been achieved and demonstrated before in computer graphics, which we believe will be very useful in practical engineering.

Skip Supplemental Material Section

Supplemental Material

papers_171s4-file3.mp4

mp4

376.5 MB

References

  1. R. Adhikari and S. Succi. 2008. Duality in matrix lattice Boltzmann models. Phys. Rev. E 78 (Dec 2008), 066701. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  2. J.D. Anderson. 2010. Fundamentals of Aerodynamics. McGraw-Hill Education.Google ScholarGoogle Scholar
  3. S. Ansumali, I. V. Karlin, and H. C. Öttinger. 2003. Minimal entropic kinetic models for hydrodynamics. Europhysics Letters 63, 6 (Sep 2003), 798.Google ScholarGoogle ScholarCross RefCross Ref
  4. Thomas Astoul, Gauthier Wissocq, Jean-François Boussuge, Alois Sengissen, and Pierre Sagaut. 2021. Lattice Boltzmann Method for Computational Aeroacoustics on Nonuniform Meshes: a direct grid coupling approach. J. Comput. Phys. 447 (2021), 110667.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving Geometry and Topology for Fluid Flows with Thin Obstacles and Narrow Gaps. ACM Trans. Graph. 35, 4, Article 97 (Jul 2016), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dinshaw S. Balsara, Sudip Garain, Vladimir Florinski, and Walter Boscheri. 2020. An efficient class of WENO schemes with adaptive order for unstructured meshes. J. Comput. Phys. 404 (2020), 109062.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Reza Barati, Seyed Ali Akbar Salehi Neyshabouri, and Goodarz Ahmadi. 2014. Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere: An evolutionary approach. Powder Technology 257 (2014), 11--19.Google ScholarGoogle ScholarCross RefCross Ref
  8. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational Framework for Accurate Solid-Fluid Coupling. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH '07). Association for Computing Machinery, New York, NY, USA, 100--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Sanjeeb T. Bose and George Ilhwan Park. 2018. Wall-Modeled Large-Eddy Simulation for Complex Turbulent Flows. Annual Review of Fluid Mechanics 50, 1 (2018), 535--561.Google ScholarGoogle ScholarCross RefCross Ref
  10. M'hamed Bouzidi, Mouaouia Firdaouss, and Pierre Lallemand. 2001. Momentum Transfer of a Lattice-Boltzmann Fluid with Boundaries. Physics of Fluids 13, 11 (2001), 3452--3459.Google ScholarGoogle ScholarCross RefCross Ref
  11. P.T. Brady and D. Livescu. 2021. Foundations for high-order, conservative cut-cell methods: Stable discretizations on degenerate meshes. J. Comput. Phys. 426 (2021), 109794.Google ScholarGoogle ScholarCross RefCross Ref
  12. Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-Time Smoke Animation with Vortex Sheet Meshes. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. The Eurographics Association.Google ScholarGoogle Scholar
  13. A Caiazzo. 2008. Analysis of lattice Boltzmann nodes initialisation in moving boundary problems. Progress in Computational Fluid Dynamics, an International Journal 8, 1--4 (2008), 3--10.Google ScholarGoogle Scholar
  14. John R. Chawner and Nigel J. Taylor. 2019. Progress in Geometry Modeling and Mesh Generation Toward the CFD Vision 2030. 2945.Google ScholarGoogle Scholar
  15. Hudong Chen, Pradeep Gopalakrishnan, and Raoyang Zhang. 2014a. Recovery of Galilean Ivariance in Thermal Lattice Boltzmann Models for Arbitrary Prandtl Number. International Journal of Modern Physics C 25, 10 (2014), 1450046.Google ScholarGoogle ScholarCross RefCross Ref
  16. Li Chen, Yang Yu, Jianhua Lu, and Guoxiang Hou. 2014b. A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems. International Journal for Numerical Methods in Fluids 74, 6 (2014), 439--467.Google ScholarGoogle ScholarCross RefCross Ref
  17. Y. Chen, W. Li, R. Fan, and X. Liu. 2022. GPU Optimization for High-Quality Kinetic Fluid Simulation. IEEE Transactions on Visualization & Computer Graphics 28, 09 (Sep 2022), 3235--3251.Google ScholarGoogle ScholarCross RefCross Ref
  18. B. Chun and A. J. C. Ladd. 2007. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E 75 (Jun 2007), 066705. Issue 6.Google ScholarGoogle Scholar
  19. Alessandro De Rosis. 2017. Nonorthogonal central-moments-based lattice Boltzmann scheme in three dimensions. Phys. Rev. E 95 (Jan 2017), 013310. Issue 1.Google ScholarGoogle Scholar
  20. Dominique D'Humières. 1992. Generalized Lattice-Boltzmann Equations. In Rarefied Gas Dynamics: Theory and Simulations. 450--458.Google ScholarGoogle Scholar
  21. Dominique D'Humières, Irina Ginzburg, Manfred Krafczyk, Pierre Lallemand, and Li-Shi Luo. 2002. Multiple-relaxation-time Lattice Boltzmann Models in Three Dimensions. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 360, 1792 (2002), 437--451.Google ScholarGoogle ScholarCross RefCross Ref
  22. Todd F. Dupont and Yingjie Liu. 2003. Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J. Comput. Phys. 190, 1 (2003), 311--324.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Alexandre Dupuis and Bastien Chopard. 2003. Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys. Rev. E 67 (Jun 2003), 066707. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  24. Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. 2000. Finite volume methods. In Solution of Equation in Rn (Part 3), Techniques of Scientific Computing (Part 3). Handbook of Numerical Analysis, Vol. 7. Elsevier, 713--1018.Google ScholarGoogle Scholar
  25. Ehsan Kian Far, Martin Geier, and Manfred Krafczyk. 2020. Simulation of rotating objects in fluids with the cumulant lattice Boltzmann model on sliding meshes. Computers & Mathematics with Applications 79, 1 (2020), 3--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). Association for Computing Machinery, New York, NY, USA, 15--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. 1999. A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method). J. Comput. Phys. 152, 2 (1999), 457--492.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Olga Filippova and Dieter Hänel. 1998. Grid Refinement for Lattice-BGK Models. J. Comput. Phys. 147, 1 (1998), 219--228.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A Polynomial Particle-in-Cell Method. ACM Trans. Graph. 36, 6, Article 222 (Nov 2017), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Martin Geier, Andreas Greiner, and Jan G. Korvink. 2006. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys. Rev. E 73 (Jun 2006), 066705. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  31. Martin Geier, Andreas Greiner, and Jan G. Korvink. 2009. A Factorized Central Moment Lattice Boltzmann Method. The European Physical Journal Special Topics 171, 1 (2009), 55--61.Google ScholarGoogle ScholarCross RefCross Ref
  32. Martin Geier, Andrea Pasquali, and Martin Schönherr. 2017. Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation and validation. J. Comput. Phys. 348 (2017), 862--888.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk. 2015. The Cumulant Lattice Boltzmann Equation in Three Dimensions: theory and validation. Computers & Mathematics with Applications 70, 4 (2015), 507--547.Google ScholarGoogle ScholarCross RefCross Ref
  34. Félix Gendre, Denis Ricot, Guillaume Fritz, and Pierre Sagaut. 2017. Grid refinement for aeroacoustics in the lattice Boltzmann method: A directional splitting approach. Phys. Rev. E 96 (Aug 2017), 023311. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  35. Richard A Gentry, Robert E Martin, and Bart J Daly. 1966. An Eulerian differencing method for unsteady compressible flow problems. J. Comput. Phys. 1, 1 (1966), 87--118.Google ScholarGoogle ScholarCross RefCross Ref
  36. Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A Second-Order-Accurate Symmetric Discretization of the Poisson Equation on Irregular Domains. J. Comput. Phys. 176, 1 (2002), 205--227.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Irina Ginzburg and Dominique d'Humières. 2003. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68 (Dec 2003), 066614. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  38. J. Favier P. Sagaut H. Yoo, M. L. Bahlali. 2021. A hybrid recursive regularized lattice Boltzmann model with overset grids for rotating geometries. Physics of Fluids 33, 5 (May 2021), 057113.Google ScholarGoogle ScholarCross RefCross Ref
  39. Francis H Harlow. 1964. The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3 (1964), 319--343.Google ScholarGoogle Scholar
  40. Angelina Heft, Thomas Indinger, and Nikolaus Adams. 2011. Investigation of Unsteady Flow Structures in the Wake of a Realistic Generic Car Model.Google ScholarGoogle Scholar
  41. Angelina I. Heft, Thomas Indinger, and Nikolaus A. Adams. 2012. Experimental and Numerical Investigation of the DrivAer Model (Fluids Engineering Division Summer Meeting, Vol. Volume 1: Symposia, Parts A and B). 41--51.Google ScholarGoogle Scholar
  42. Jérôme Jacob, Orestis Malaspinas, and Pierre Sagaut. 2018. A New Hybrid Recursive Regularised Bhatnagar-Gross-Krook Collision Model for Lattice Boltzmann Method-based Large Eddy Simulation. Journal of Turbulence 19, 11--12 (2018), 1051--1076.Google ScholarGoogle ScholarCross RefCross Ref
  43. Hrvoje Jasak and Tessa Uroić. 2020. Practical computational fluid dynamics with the finite volume method. In Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids. Springer, 103--161.Google ScholarGoogle Scholar
  44. Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The Affine Particle-in-Cell Method. ACM Trans. Graph. 34, 4, Article 51 (Jul 2015), 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Chen Jiang, Jian-Yao Yao, Zhi-Qian Zhang, Guang-Jun Gao, and G.R. Liu. 2018. A sharp-interface immersed smoothed finite element method for interactions between incompressible flows and large deformation solids. Computer Methods in Applied Mechanics and Engineering 340 (2018), 24--53.Google ScholarGoogle ScholarCross RefCross Ref
  46. I. V. Karlin, F. Bösch, and S. S. Chikatamarla. 2014. Gibbs' principle for the lattice-kinetic theory of fluid dynamics. Phys. Rev. E 90 (Sep 2014), 031302. Issue 3.Google ScholarGoogle ScholarCross RefCross Ref
  47. I. V. Karlin, A. Ferrante, and H. C. Öttinger. 1999. Perfect entropy functions of the Lattice Boltzmann method. Europhysics Letters 47, 2 (Jul 1999), 182.Google ScholarGoogle ScholarCross RefCross Ref
  48. Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008. Wavelet Turbulence for Fluid Simulation. ACM Trans. Graph. 27, 3 (Aug 2008), 1--6.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Andreas Krämer, Dominik Wilde, Knut Küllmer, Dirk Reith, and Holger Foysi. 2019. Pseudoentropic derivation of the regularized lattice Boltzmann method. Phys. Rev. E 100 (Aug 2019), 023302. Issue 2.Google ScholarGoogle ScholarCross RefCross Ref
  50. Siddharth Krithivasan, Siddhant Wahal, and Santosh Ansumali. 2014. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method. Phys. Rev. E 89 (Mar 2014), 033313. Issue 3.Google ScholarGoogle Scholar
  51. Anthony J. C. Ladd. 1994. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics 271 (1994), 285--309.Google ScholarGoogle ScholarCross RefCross Ref
  52. D. Lagrava. 2012. Revisiting grid refinement algorithms for the lattice Boltzmann method. Ph. D. Dissertation. Université de Genève.Google ScholarGoogle Scholar
  53. D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard. 2012. Advances in multi-domain lattice Boltzmann grid refinement. J. Comput. Phys. 231, 14 (2012), 4808--4822.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Pierre Lallemand and Li-Shi Luo. 2000. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (Jun 2000), 6546--6562. Issue 6.Google ScholarGoogle ScholarCross RefCross Ref
  55. Pierre Lallemand and Li-Shi Luo. 2003. Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 2 (2003), 406--421.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Pierre Lallemand and Li-Shi Luo. 2020. Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows. J. Comput. Phys. 407 (2020), 109223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Jing Li, Makoto Tsubokura, and Masaya Tsunoda. 2017. Numerical Investigation of the Flow Past a Rotating Golf Ball and Its Comparison with a Rotating Smooth Sphere. Flow, Turbulence and Combustion 99, 3 (2017), 837--864.Google ScholarGoogle ScholarCross RefCross Ref
  58. W. Li, K. Bai, and X. Liu. 2019. Continuous-Scale Kinetic Fluid Simulation. IEEE Transactions on Visualization & Computer Graphics 25, 09 (Sep 2019), 2694--2709.Google ScholarGoogle ScholarCross RefCross Ref
  59. Wei Li, Yixin Chen, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2020. Fast and Scalable Turbulent Flow Simulation with Two-Way Coupling. ACM Trans. Graph. 39, 4, Article 47 (Aug 2020), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wei Li and Mathieu Desbrun. 2023. Fluid-Solid Coupling in Kinetic Two-Phase Flow Simulation. 42, 4, Article 123 (Jul 2023), 14 pages.Google ScholarGoogle Scholar
  61. Wei Li, Daoming Liu, Mathieu Desbrun, Jin Huang, and Xiaopei Liu. 2021. Kinetic-Based Multiphase Flow Simulation. IEEE Transactions on Visualization & Computer Graphics 27, 7 (2021), 3318--3334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wei Li, Yihui Ma, Xiaopei Liu, and Mathieu Desbrun. 2022. Efficient Kinetic Simulation of Two-Phase Flows. ACM Trans. Graph. 41, 4, Article 114 (Jul 2022), 17 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Daniel S. Lo. 2014. Finite element mesh generation. CRC Press.Google ScholarGoogle Scholar
  64. Jianhua Lu, Haifeng Han, Baochang Shi, and Zhaoli Guo. 2012. Immersed boundary lattice Boltzmann model based on multiple relaxation times. Phys. Rev. E 85 (Jan 2012), 016711. Issue 1.Google ScholarGoogle Scholar
  65. Chaoyang Lyu, Kai Bai, Yiheng Wu, Mathieu Desbrun, Changxi Zheng, and Xiaopei Liu. 2023. Building a Virtual Weakly-Compressible Wind Tunnel Testing Facility. ACM Trans. Graph. 42, 4, Article 125 (Jul 2023), 20 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Chaoyang Lyu, Wei Li, Mathieu Desbrun, and Xiaopei Liu. 2021. Fast and Versatile Fluid-Solid Coupling for Turbulent Flow Simulation. ACM Trans. Graph. 40, 6, Article 201 (Dec 2021), 18 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Robert W MacCormack. 1969. The effect of viscosity in hypervelocity impact cratering. AIAA paper 69--354 (1969).Google ScholarGoogle Scholar
  68. O. Malaspinas and P. Sagaut. 2014. Wall model for large-eddy simulation based on the lattice Boltzmann method. J. Comput. Phys. 275 (2014), 25--40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Francesco Marson, Yann Thorimbert, Bastien Chopard, Irina Ginzburg, and Jonas Latt. 2021. Enhanced single-node lattice Boltzmann boundary condition for fluid flows. Phys. Rev. E 103 (May 2021), 053308. Issue 5.Google ScholarGoogle ScholarCross RefCross Ref
  70. Keijo K. Mattila, Paulo C. Philippi, and Luiz A. Hegele. 2017. High-order Regularization in Lattice-Boltzmann Equations. Physics of Fluids 29, 4 (2017), 046103.Google ScholarGoogle ScholarCross RefCross Ref
  71. Maxon. 2023. Redshift renderer. (2023).Google ScholarGoogle Scholar
  72. Chohong Min, Frédéric Gibou, and Hector D. Ceniceros. 2006. A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids. J. Comput. Phys. 218, 1 (2006), 123--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, and A. von Loebbecke. 2008. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227, 10 (2008), 4825--4852.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Parviz Moin and Krishnan Mahesh. 1998. Direct Numerical Simulation: A Tool in Turbulence Research. Annual Review of Fluid Mechanics 30, 1 (1998), 539--578.Google ScholarGoogle ScholarCross RefCross Ref
  75. Faith A. Morrison. 2013. An introduction to fluid mechanics. Cambridge University Press.Google ScholarGoogle Scholar
  76. Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun. 2009. Energy-Preserving Integrators for Fluid Animation. ACM Trans. Graph. 28, 3, Article 38 (Jul 2009), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Mohammad Sina Nabizadeh, Stephanie Wang, Ravi Ramamoorthi, and Albert Chern. 2022. Covector Fluids. ACM Trans. Graph. 41, 4, Article 113 (Jul 2022), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Zhisong Ou, Cheng Chi, Liejin Guo, and Dominique Thévenin. 2022. A directional ghost-cell immersed boundary method for low Mach number reacting flows with interphase heat and mass transfer. J. Comput. Phys. 468 (2022), 111447.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Jitendra Kumar Patel and Ganesh Natarajan. 2018. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies. J. Comput. Phys. 360 (2018), 202--228.Google ScholarGoogle ScholarCross RefCross Ref
  80. Charles S Peskin. 1972. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10, 2 (1972), 252--271.Google ScholarGoogle ScholarCross RefCross Ref
  81. Tobias Pfaff, Nils Thuerey, Jonathan Cohen, Sarah Tariq, and Markus Gross. 2010. Scalable Fluid Simulation Using Anisotropic Turbulence Particles. ACM Trans. Graph. 29, 6, Article 174 (Dec 2010), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian Vortex Sheets for Animating Fluids. ACM Trans. Graph. 31, 4, Article 112 (Jul 2012), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Yue-Hong Qian, Dominique d'Humières, and Pierre Lallemand. 1992. Lattice BGK models for Navier-Stokes equation. Europhysics letters 17, 6 (1992), 479.Google ScholarGoogle Scholar
  84. Ziyin Qu, Xinxin Zhang, Ming Gao, Chenfanfu Jiang, and Baoquan Chen. 2019. Efficient and Conservative Fluids Using Bidirectional Mapping. ACM Trans. Graph. 38, 4, Article 128 (Jul 2019), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Karthik Raveendran, Chris Wojtan, and Greg Turk. 2011. Hybrid Smoothed Particle Hydrodynamics. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vancouver, British Columbia, Canada) (SCA '11). Association for Computing Machinery, New York, NY, USA, 33--42.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Yu-Xin Ren, Miao'er Liu, and Hanxin Zhang. 2003. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 192, 2 (2003), 365--386.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Hamed Sahranavard, Ali Mohtashami, Ehsan Mohtashami, and Abolfazl Akbarpour. 2022. Inverse modeling application for aquifer parameters estimation using a precise simulation-optimization model. Applied Water Science 13, 2 (2022), 58.Google ScholarGoogle ScholarCross RefCross Ref
  88. Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008. An unconditionally stable MacCormack method. Journal of Scientific Computing 35, 2 (2008), 350--371.Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Jung Hee Seo and Rajat Mittal. 2011. A sharp-interface immersed boundary method with improved mass conservation and reduced spurious pressure oscillations. J. Comput. Phys. 230, 19 (2011), 7347--7363.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Xiaowen Shan. 2019. Central-moment-based Galilean-invariant multiple-relaxation-time collision model. Phys. Rev. E 100 (Oct 2019), 043308. Issue 4.Google ScholarGoogle ScholarCross RefCross Ref
  91. Xiaowen Shan and Hudong Chen. 2007. A General Multiple-relaxation-time Boltzmann Collision Model. International Journal of Modern Physics C 18, 4 (2007), 635--643.Google ScholarGoogle ScholarCross RefCross Ref
  92. Chi-Wang Shu. 2003. High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. International Journal of Computational Fluid Dynamics 17, 2 (2003), 107--118.Google ScholarGoogle ScholarCross RefCross Ref
  93. Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., USA, 121--128.Google ScholarGoogle Scholar
  94. John C. Strikwerda. 2004. Finite Difference Schemes and Partial Differential Equations, Second Edition. SIAM.Google ScholarGoogle Scholar
  95. Michael Tao, Christopher Batty, Mirela Ben-Chen, Eugene Fiume, and David I. W. Levin. 2022. VEMPIC: Particle-in-Polyhedron Fluid Simulation for Intricate Solid Boundaries. ACM Trans. Graph. 41, 4, Article 115 (Jul 2022), 22 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Shi Tao, Qing He, Baiman Chen, Xiaoping Yang, and Simin Huang. 2018. One-point Second-order Curved Boundary Condition for Lattice Boltzmann Simulation of Suspended Particles. Computers & Mathematics with Applications 76, 7 (2018), 1593--1607.Google ScholarGoogle ScholarCross RefCross Ref
  97. Shi Tao, Junjie Hu, and Zhaoli Guo. 2016. An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows. Computers & Fluids 133 (2016), 1--14.Google ScholarGoogle ScholarCross RefCross Ref
  98. A. Tiwari and S. P. Vanka. 2012. A ghost fluid Lattice Boltzmann method for complex geometries. International Journal for Numerical Methods in Fluids 69, 2 (2012), 481--498.Google ScholarGoogle ScholarCross RefCross Ref
  99. Shashank S. Tiwari, Eshita Pal, Shivkumar Bale, Nitin Minocha, Ashwin W. Patwardhan, Krishnaswamy Nandakumar, and Jyeshtharaj B. Joshi. 2020. Flow past a single stationary sphere, 2. Regime mapping and effect of external disturbances. Powder Technology 365 (2020), 215--243. SI: In honor of LS Fan.Google ScholarGoogle ScholarCross RefCross Ref
  100. Yu-Heng Tseng and Joel H. Ferziger. 2003. A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys. 192, 2 (2003), 593--623.Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. M. Van Dyke. 1982. An Album of Fluid Motion. Parabolic Press.Google ScholarGoogle Scholar
  102. Bakić Vukman, Schmid Martin, and Stanković Branislav. 2006. Experimental investigation of turbulent structures of flow around a sphere. Thermal Science 10 (2006), 97--112.Google ScholarGoogle ScholarCross RefCross Ref
  103. Steffen Weißmann and Ulrich Pinkall. 2010. Filament-Based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4, Article 115 (Jul 2010), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. Binghai Wen, Chaoying Zhang, Yusong Tu, Chunlei Wang, and Haiping Fang. 2014. Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. J. Comput. Phys. 266 (2014), 161--170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. S. Wilhelm, J. Jacob, and P. Sagaut. 2018. An explicit power-law-based wall model for lattice Boltzmann method-Reynolds-averaged numerical simulations of the flow around airfoils. Physics of Fluids 30, 6 (Jun 2018), 065111.Google ScholarGoogle ScholarCross RefCross Ref
  106. Kui Wu, Nghia Truong, Cem Yuksel, and Rama Hoetzlein. 2018. Fast Fluid Simulations with Sparse Volumes on the GPU. Computer Graphics Forum 37, 2, 157--167.Google ScholarGoogle ScholarCross RefCross Ref
  107. T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. 1999. An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries. J. Comput. Phys. 156, 2 (1999), 209--240.Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. Dazhi Yu, Renwei Mei, and Wei Shyy. 2003. A Unified Boundary Treatment in Lattice Boltzmann Method. In Aerospace Sciences Meeting and Exhibit. 953.Google ScholarGoogle ScholarCross RefCross Ref
  109. Omar Zarifi and Christopher Batty. 2017. A Positive-Definite Cut-Cell Method for Strong Two-Way Coupling between Fluids and Deformable Bodies. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 7, 11 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An Advection-Reflection Solver for Detail-Preserving Fluid Simulation. ACM Trans. Graph. 37, 4, Article 85 (Jul 2018), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the Missing Vorticity in Advection-Projection Fluid Solvers. ACM Trans. Graph. 34, 4, Article 52 (Jul 2015), 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. Zheyan Zhang, Yongxing Wang, Peter K Jimack, and He Wang. 2020. MeshingNet: A new mesh generation method based on deep learning. In International Conference on Computational Science. Springer, 186--198.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. Weifeng Zhao, Juntao Huang, and Wen-An Yong. 2019. Boundary Conditions for Kinetic Theory Based Models I: Lattice Boltzmann Models. Multiscale Modeling & Simulation 17, 2 (2019), 854--872.Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Weifeng Zhao and Wen-An Yong. 2017. Single-node second-order boundary schemes for the lattice Boltzmann method. J. Comput. Phys. 329 (2017), 1--15.Google ScholarGoogle ScholarCross RefCross Ref
  115. Olgierd C. Zienkiewicz, Robert L. Taylor, and J.Z. Zhu. 2013. The Finite Element Method: its Basis and Fundamentals. Butterworth-Heinemann.Google ScholarGoogle Scholar

Index Terms

  1. A Parametric Kinetic Solver for Simulating Boundary-Dominated Turbulent Flow Phenomena

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 6
      December 2023
      1565 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3632123
      Issue’s Table of Contents

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 December 2023
      Published in tog Volume 42, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader