skip to main content
research-article

GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators

Published:05 December 2023Publication History
Skip Abstract Section

Abstract

We study how to optimize the latent space of neural shape generators that map latent codes to 3D deformable shapes. The key focus is to look at a deformable shape generator from a differential geometry perspective. We define a Riemannian metric based on as-rigid-as-possible and as-conformal-as-possible deformation energies. Under this metric, we study two desired properties of the latent space: 1) straight-line interpolations in latent codes follow geodesic curves; 2) latent codes disentangle pose and shape variations at different scales. Strictly enforcing the geometric interpolation property, however, only applies if the metric matrix is a constant. We show how to achieve this property approximately by enforcing that geodesic interpolations are axis-aligned, i.e., interpolations along coordinate axis follow geodesic curves. In addition, we introduce a novel approach that decouples pose and shape variations via generalized eigendecomposition. We also study efficient regularization terms for learning deformable shape generators, e.g., that promote smooth interpolations. Experimental results on benchmark datasets show that our approach leads to interpretable latent codes, improves the generalizability of synthetic shapes, and enhances performance in geodesic interpolation and geodesic shooting.

References

  1. Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6--11 August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, Sydney, NSW, Australia, 214--223. http://proceedings.mlr.press/v70/arjovsky17a.htmlGoogle ScholarGoogle Scholar
  2. Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. 2018. Latent Space Oddity: on the Curvature of Deep Generative Models. In ICLR (Poster). OpenReview.net, Online, 15 pages.Google ScholarGoogle Scholar
  3. Georgios Arvanitidis, Søren Hauberg, and Bernhard Schölkopf. 2021. Geometrically Enriched Latent Spaces. In The 24th International Conference on Artificial Intelligence and Statistics, AISTATS 2021, April 13--15, 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 130), Arindam Banerjee and Kenji Fukumizu (Eds.). PMLR, Online, 631--639. http://proceedings.mlr.press/v130/arvanitidis21a.htmlGoogle ScholarGoogle Scholar
  4. Matan Atzmon and Yaron Lipman. 2021. SALD: Sign Agnostic Learning with Derivatives. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3--7, 2021. OpenReview.net. https://openreview.net/forum?id=7EDgLu9reQDGoogle ScholarGoogle Scholar
  5. Matan Atzmon, Koki Nagano, Sanja Fidler, Sameh Khamis, and Yaron Lipman. 2022. Frame Averaging for Equivariant Shape Space Learning. In CVPR. IEEE, Washington,DC, USA, 621--631.Google ScholarGoogle Scholar
  6. Matan Atzmon, David Novotný, Andrea Vedaldi, and Yaron Lipman. 2021. Augmenting Implicit Neural Shape Representations with Explicit Deformation Fields. arXiv:2108.08931 https://arxiv.org/abs/2108.08931Google ScholarGoogle Scholar
  7. Tristan Aumentado-Armstrong, Stavros Tsogkas, Sven J. Dickinson, and Allan D. Jepson. 2021. Disentangling Geometric Deformation Spaces in Generative Latent Shape Models.Google ScholarGoogle Scholar
  8. Tristan Aumentado-Armstrong, Stavros Tsogkas, Allan D. Jepson, and Sven J. Dickinson. 2019. Geometric Disentanglement for Generative Latent Shape Models. In ICCV. IEEE, Washington, DC, USA, 8180--8189.Google ScholarGoogle Scholar
  9. Elena Balashova, Vivek Singh, Jiangping Wang, Brian Teixeira, Terrence Chen, and Thomas A. Funkhouser. 2018. Structure-Aware Shape Synthesis. In 2018 International Conference on 3D Vision, 3DV 2018, Verona, Italy, September 5--8, 2018. IEEE Computer Society, Washington, DC, USA, 140--149. Google ScholarGoogle ScholarCross RefCross Ref
  10. Martin Bauer, Nicolas Charon, Philipp Harms, and Hsi-Wei Hsieh. 2021. A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation. Int. J. Comput. Vis. 129, 8 (2021), 2425--2444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Martin Bauer, Philipp Harms, and Peter W. Michor. 2011. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics 3, 4 (2011), 389--438. Google ScholarGoogle ScholarCross RefCross Ref
  12. Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2017. Dynamic FAUST: Registering Human Bodies in Motion. In CVPR. IEEE Computer Society, Washington, DC, USA, 5573--5582.Google ScholarGoogle Scholar
  13. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (2012), 1657--1667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis, Stefanos Zafeiriou, and Michael M. Bronstein. 2019. Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation. In ICCV. IEEE, Washington, DC, USA, 7212--7221.Google ScholarGoogle Scholar
  15. Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. 2009. Numerical Geometry of Non-Rigid Shapes. Springer, New York, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and Bharath Hariharan. 2020. Learning gradient fields for shape generation. In Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part III 16. Springer, Springer, New York, NY, USA, 364--381.Google ScholarGoogle Scholar
  17. Nutan Chen, Francesco Ferroni, Alexej Klushyn, Alexandros Paraschos, Justin Bayer, and Patrick van der Smagt. 2019. Fast Approximate Geodesics for Deep Generative Models. In Artificial Neural Networks and Machine Learning - ICANN 2019: Deep Learning - 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17--19, 2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11728), Igor V. Tetko, Vera Kurková, Pavel Karpov, and Fabian J. Theis (Eds.). Springer, New York, NY, USA, 554--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nutan Chen, Alexej Klushyn, Richard Kurle, Xueyan Jiang, Justin Bayer, and Patrick van der Smagt. 2018. Metrics for Deep Generative Models. In AISTATS (Proceedings of Machine Learning Research, Vol. 84). PMLR, Indio, CA, USA, 1540--1550.Google ScholarGoogle Scholar
  19. Zhixiang Chen and Tae-Kyun Kim. 2021. Learning Feature Aggregation for Deep 3D Morphable Models. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19--25, 2021. Computer Vision Foundation / IEEE, Washington, DC, USA, 13164--13173. Google ScholarGoogle ScholarCross RefCross Ref
  20. Luca Cosmo, Antonio Norelli, Oshri Halimi, Ron Kimmel, and Emanuele Rodolà. 2020. LIMP: Learning Latent Shape Representations with Metric Preservation Priors. In ECCV (3) (Lecture Notes in Computer Science, Vol. 12348). Springer, New York, NY, USA, 19--35.Google ScholarGoogle Scholar
  21. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, Article 104 (jul 2011), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Simone Foti, Bongjin Koo, Danail Stoyanov, and Matthew J. Clarkson. 2023. 3D Generative Model Latent Disentanglement via Local Eigenprojection. Google ScholarGoogle ScholarCross RefCross Ref
  23. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial Networks. Commun. ACM 63, 11 (oct 2020), 139--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Marc Habermann, Weipeng Xu, Michael Zollhöfer, Gerard Pons-Moll, and Christian Theobalt. 2020. DeepCap: Monocular Human Performance Capture Using Weak Supervision. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13--19, 2020. IEEE, Washington, DC, USA, 5051--5062. Google ScholarGoogle ScholarCross RefCross Ref
  25. Emmanuel Hartman, Yashil Sukurdeep, Eric Klassen, Nicolas Charon, and Martin Bauer. 2023. Elastic Shape Analysis of Surfaces with Second-Order Sobolev Metrics: A Comprehensive Numerical Framework. Int. J. Comput. Vis. 131, 5 (2023), 1183--1209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4--9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). Curran Associates Inc., Red Hook, NY, USA, 6626--6637. https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.htmlGoogle ScholarGoogle Scholar
  27. Qixing Huang, Xiangru Huang, Bo Sun, Zaiwei Zhang, Junfeng Jiang, and Chandrajit Bajaj. 2021. ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Computer Vision Foundation / IEEE, Virtual, 5815--5825.Google ScholarGoogle ScholarCross RefCross Ref
  28. Qixing Huang, Martin Wicke, Bart Adams, and Leonidas J. Guibas. 2009. Shape Decomposition using Modal Analysis. Comput. Graph. Forum 28, 2 (2009), 407--416. http://dblp.uni-trier.de/db/journals/cgf/cgf28.html#HuangWAG09Google ScholarGoogle ScholarCross RefCross Ref
  29. Dimitrios Kalatzis, David Eklund, Georgios Arvanitidis, and Søren Hauberg. 2020. Variational Autoencoders with Riemannian Brownian Motion Priors. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13--18 July 2020, Virtual Event (Proceedings of Machine Learning Research, Vol. 119). PMLR, Online, 5053--5066. http://proceedings.mlr.press/v119/kalatzis20a.htmlGoogle ScholarGoogle Scholar
  30. Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. 2018. End-to-End Recovery of Human Shape and Pose. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18--22, 2018.Google ScholarGoogle Scholar
  31. IEEE Computer Society, Washington, DC, USA, 7122--7131. Google ScholarGoogle ScholarCross RefCross Ref
  32. Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. In CVPR. Computer Vision Foundation / IEEE, Washington, DC, USA, 4401--4410.Google ScholarGoogle Scholar
  33. Michael Kass, Andrew P. Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour models. Int. J. Comput. Vis. 1, 4 (1988), 321--331.Google ScholarGoogle ScholarCross RefCross Ref
  34. Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. 2007. Geometric Modeling in Shape Space. ACM Trans. Graph. 26, 3 (July 2007), 64-es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7--9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://OpenReview.net, Online, 1--11. http://arxiv.org/abs/1412.6980Google ScholarGoogle Scholar
  36. Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. 2019. Convolutional Mesh Regression for Single-Image Human Shape Reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16--20, 2019. Computer Vision Foundation / IEEE, Washington, DC, USA, 4501--4510. Google ScholarGoogle ScholarCross RefCross Ref
  37. Line Kühnel, Tom Fletcher, Sarang C. Joshi, and Stefan Sommer. 2018. Latent Space Non-Linear Statistics. arXiv:1805.07632 http://arxiv.org/abs/1805.07632Google ScholarGoogle Scholar
  38. Jake Levinson, Avneesh Sud, and Ameesh Makadia. 2019. Latent feature disentanglement for 3D meshes.Google ScholarGoogle Scholar
  39. Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao (Richard) Zhang, and Leonidas J. Guibas. 2017. GRASS: generative recursive autoencoders for shape structures. ACM Trans. Graph. 36, 4 (2017), 52:1--52:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Xueting Li, Sifei Liu, Shalini De Mello, Kihwan Kim, Xiaolong Wang, Ming-Hsuan Yang, and Jan Kautz. 2020. Online Adaptation for Consistent Mesh Reconstruction in the Wild. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6--12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Curran Associates Inc., Red Hook, NY, USA, 10 pages. https://proceedings.neurips.cc/paper/2020/hash/aba3b6fd5d186d28e06ff97135cade7f-Abstract.htmlGoogle ScholarGoogle Scholar
  41. Or Litany, Alexander M. Bronstein, Michael M. Bronstein, and Ameesh Makadia. 2018. Deformable Shape Completion With Graph Convolutional Autoencoders. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18--22, 2018. IEEE Computer Society, Salt Lake City, UT, USA, 1886--1895. Google ScholarGoogle ScholarCross RefCross Ref
  42. Hsueh-Ti Derek Liu and Alec Jacobson. 2021. Normal-Driven Spherical Shape Analogies. Comput. Graph. Forum 40, 5 (2021), 45--55. Google ScholarGoogle ScholarCross RefCross Ref
  43. Shitong Luo and Wei Hu. 2021. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Washington, DC, USA, 2837--2845.Google ScholarGoogle ScholarCross RefCross Ref
  44. A. C.G. Mennucci, A. Yezzi, and G. Sundaramoorthi. 2008. Properties of Sobolev-type metrics in the space of curves. Interfaces and Free Boundaries 10, 4 (2008), 423--445. Google ScholarGoogle ScholarCross RefCross Ref
  45. Peter Michor and David Mumford. 2005. Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Mathematica 10 (2005), 217--245. http://eudml.org/doc/125727Google ScholarGoogle ScholarCross RefCross Ref
  46. Peter W. Michor and David Mumford. 2007. An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis 23, 1 (2007), 74--113.Google ScholarGoogle ScholarCross RefCross Ref
  47. Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and Leonidas J. Guibas. 2019. StructureNet: hierarchical graph networks for 3D shape generation. ACM Trans. Graph. 38, 6 (2019), 242:1--242:19.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Jiteng Mu, Weichao Qiu, Adam Kortylewski, Alan L. Yuille, Nuno Vasconcelos, and Xiaolong Wang. 2021. A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation. In ICCV. IEEE, Washington, DC, USA, 12981--12991.Google ScholarGoogle Scholar
  49. Sanjeev Muralikrishnan, Siddhartha Chaudhuri, Noam Aigerman, Vladimir G. Kim, Matthew Fisher, and Niloy J. Mitra. 2022. GLASS: Geometric Latent Augmentation for Shape Spaces. In CVPR. IEEE, Washington, DC, USA, 470--479.Google ScholarGoogle Scholar
  50. Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang. 2019. HoloGAN: Unsupervised Learning of 3D Representations From Natural Images. In ICCV. IEEE, Washington, DC, USA, 7587--7596.Google ScholarGoogle Scholar
  51. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE(CVF), Washington, DC, USA, 165--174.Google ScholarGoogle Scholar
  52. William S. Peebles, John Peebles, Jun-Yan Zhu, Alexei A. Efros, and Antonio Torralba. 2020. The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part VI (Lecture Notes in Computer Science, Vol. 12351), Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, New York, NY, USA, 581--597. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Peter Petersen. 2006. Riemannian Geometry. Springer Science & Business Media, New York, NY, USA.Google ScholarGoogle Scholar
  54. Henning Petzka, Ted Kronvall, and Cristian Sminchisescu. 2022. Discriminating Against Unrealistic Interpolations in Generative Adversarial Networks. arXiv:2203.01035 Google ScholarGoogle ScholarCross RefCross Ref
  55. Helmut Pottmann, Qixing Huang, Bailin Deng, Alexander Schiftner, Martin Kilian, Leonidas Guibas, and Johannes Wallner. 2010. Geodesic Patterns. ACM Trans. Graph. 29, 4, Article 43 (jul 2010), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Marie-Julie Rakotosaona and Maks Ovsjanikov. 2020. Intrinsic Point Cloud Interpolation via Dual Latent Space Navigation. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 12347), Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, Washington, DC, USA, 655--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. 2018. Generating 3D faces using convolutional mesh autoencoders. In Proceedings of the European Conference on Computer Vision (ECCV). Springer, New York, NY, USA, 704--720.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Hrittik Roy and Soren Hauberg. 2022. Optimal Latent Transport. In Symmetry and Geometry in Neural Representations. OpenReview.net, Online, 10 pages.Google ScholarGoogle Scholar
  59. Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. 2018. The Riemannian Geometry of Deep Generative Models. In 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2018, Salt Lake City, UT, USA, June 18--22,Google ScholarGoogle Scholar
  60. 2018. Computer Vision Foundation / IEEE Computer Society, Washington, DC, USA, 315--323. Google ScholarGoogle ScholarCross RefCross Ref
  61. Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (Barcelona, Spain) (SGP '07). Eurographics Association, Goslar, DEU, 109--116.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Jakob Stolberg-Larsen and Stefan Sommer. 2022. Atlas Generative Models and Geodesic Interpolation. Image Vision Comput. 122, C (jun 2022), 8 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Zhe Su, Martin Bauer, Stephen C. Preston, Hamid Laga, and Eric Klassen. 2020. Shape Analysis of Surfaces Using General Elastic Metrics. J. Math. Imaging Vis. 62, 8 (2020), 1087--1106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded Deformation for Shape Manipulation. ACM Trans. Graph. 26, 3 (jul 2007), 80--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. 2018. Variational Autoencoders for Deforming 3D Mesh Models. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18--22, 2018. IEEE Computer Society, Salt Lake City, UT, USA, 5841--5850. Google ScholarGoogle ScholarCross RefCross Ref
  66. N. Joseph Tatro, Stefan C. Schonsheck, and Rongjie Lai. 2020. Unsupervised Geometric Disentanglement for Surfaces via CFAN-VAE.Google ScholarGoogle Scholar
  67. Edgar Tretschk, Ayush Tewari, Michael Zollhöfer, Vladislav Golyanik, and Christian Theobalt. 2020. DEMEA: Deep Mesh Autoencoders for Non-rigidly Deforming Objects. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part IV (Lecture Notes in Computer Science, Vol. 12349), Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). Springer, Glasgow,UK, 601--617. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal mesh deformations with Möbius transformations. ACM Trans. Graph. 34, 4 (2015), 55:1--55:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Josh Vekhter, Jiacheng Zhuo, Luisa F Gil Fandino, Qixing Huang, and Etienne Vouga.Google ScholarGoogle Scholar
  70. 2019. Weaving Geodesic Foliations. ACM Trans. Graph. 38, 4, Article 34 (jul 2019), 22 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Nitika Verma, Edmond Boyer, and Jakob Verbeek. 2018. FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18--22, 2018. IEEE Computer Society, Salt Lake City, UT, USA, 2598--2606. Google ScholarGoogle ScholarCross RefCross Ref
  72. Michael Wand, Philipp Jenke, Qi-Xing Huang, Martin Bokeloh, Leonidas J. Guibas, and Andreas Schilling. 2007. Reconstruction of deforming geometry from time-varying point clouds. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Barcelona, Spain, July 4--6, 2007 (ACM International Conference Proceeding Series, Vol. 257), Alexander G. Belyaev and Michael Garland (Eds.). Eurographics Association, Avenue de Frontenex 32, 1207 Geneve, Switzerland, 49--58. Google ScholarGoogle ScholarCross RefCross Ref
  73. Binxu Wang and Carlos R. Ponce. 2021. A Geometric Analysis of Deep Generative Image Models and Its Applications. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3--7, 2021. OpenReview.net, Online, 11 pages. https://openreview.net/forum?id=GH7QRzUDdXGGoogle ScholarGoogle Scholar
  74. Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. 2018. Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images. In Computer Vision - ECCV 2018 - 15th European Conference, Munich, Germany, September 8--14, 2018, Proceedings, Part XI. Springer, New York, NY, USA, 55--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Jiajun Wu, Tianfan Xue, Joseph J. Lim, Yuandong Tian, Joshua B. Tenenbaum, Antonio Torralba, and William T. Freeman. 2018. 3D Interpreter Networks for Viewer-Centered Wireframe Modeling. Int. J. Comput. Vis. 126, 9 (2018), 1009--1026. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. Weiwei Xu, Kun Zhou, Yizhou Yu, Qifeng Tan, Qunsheng Peng, and Baining Guo. 2007. Gradient Domain Editing of Deforming Mesh Sequences. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH '07). Association for Computing Machinery, New York, NY, USA, 84--es. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the IEEE/CVF international conference on computer vision. IEEE, Washington, DC, USA, 4541--4550.Google ScholarGoogle ScholarCross RefCross Ref
  78. Haitao Yang, Xiangru Huang, Bo Sun, Chandrajit Bajaj, and Qixing Huang. 2023. Gen-Corres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models. arXiv:2304.10523 [cs.CV]Google ScholarGoogle Scholar
  79. Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, and Lin Gao. 2022. DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation. ACM Trans. Graph. 42, 1, Article 1 (aug 2022), 17 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Tao Yang, Georgios Arvanitidis, Dongmei Fu, Xiaogang Li, and Søren Hauberg. 2018. Geodesic Clustering in Deep Generative Models. arXiv:1809.04747 http://arxiv.org/abs/1809.04747Google ScholarGoogle Scholar
  81. Yusuke Yoshiyasu, Wan-Chun Ma, Eiichi Yoshida, and Fumio Kanehiro. 2014. As-Conformal-as-Possible Surface Registration. In Proceedings of the Symposium on Geometry Processing (Cardiff, United Kingdom) (SGP '14). Eurographics Association, Goslar, DEU, 257--267. Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Yu-Jie Yuan, Yu-Kun Lai, Jie Yang, Qi Duan, Hongbo Fu, and Lin Gao. 2020. Mesh Variational Autoencoders with Edge Contraction Pooling. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14--19, 2020. Computer Vision Foundation / IEEE, Washington, DC, USA, 1105--1112. Google ScholarGoogle ScholarCross RefCross Ref
  83. Amir Zadeh, Yao-Chong Lim, Paul Pu Liang, and Louis-Philippe Morency. 2019. Variational Auto-Decoder.Google ScholarGoogle Scholar
  84. Yexun Zhang, Ya Zhang, and Wenbin Cai. 2018. Separating Style and Content for Generalized Style Transfer. In CVPR. Computer Vision Foundation / IEEE Computer Society, Washington, DC, USA, 8447--8455.Google ScholarGoogle Scholar
  85. Keyang Zhou, Bharat Lal Bhatnagar, and Gerard Pons-Moll. 2020a. Unsupervised Shape and Pose Disentanglement for 3D Meshes. In ECCV (22) (Lecture Notes in Computer Science, Vol. 12367). Springer, New York, NY, USA, 341--357.Google ScholarGoogle Scholar
  86. Yi Zhou, Chenglei Wu, Zimo Li, Chen Cao, Yuting Ye, Jason Saragih, Hao Li, and Yaser Sheikh. 2020b. Fully Convolutional Mesh Autoencoder Using Efficient Spatially Varying Kernels. In Proceedings of the 34th International Conference on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS'20). Curran Associates Inc., Red Hook, NY, USA, Article 776, 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 2017. 3D menagerie: Modeling the 3D shape and pose of animals. In Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Washington, DC, USA, 6365--6373.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. GeoLatent: A Geometric Approach to Latent Space Design for Deformable Shape Generators

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 42, Issue 6
          December 2023
          1565 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/3632123
          Issue’s Table of Contents

          Copyright © 2023 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 December 2023
          Published in tog Volume 42, Issue 6

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
        • Article Metrics

          • Downloads (Last 12 months)263
          • Downloads (Last 6 weeks)51

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader