skip to main content
research-article

Slippage-Preserving Reshaping of Human-Made 3D Content

Published:05 December 2023Publication History
Skip Abstract Section

Abstract

Artists often need to reshape 3D models of human-made objects by changing the relative proportions or scales of different model parts or elements while preserving the look and structure of the inputs. Manually reshaping inputs to satisfy these criteria is highly time-consuming; the edit in our teaser took an artist 5 hours to complete. However, existing methods for 3D shape editing are largely designed for other tasks and produce undesirable outputs when repurposed for reshaping. Prior work on 2D curve network reshaping suggests that in 2D settings the user-expected outcome is achieved when the reshaping edit keeps the orientations of the different model elements and when these elements scale as-locally-uniformly-as-possible (ALUP). However, our observations suggest that in 3D viewers are tolerant of non-uniform tangential scaling if and when this scaling preserves slippage and reduces changes in element size, or scale, relative to the input. Slippage preservation requires surfaces which are locally slippable with respect to a given rigid motion to retain this property post-reshaping (a motion is slippable if when applied to the surface, it slides the surface along itself without gaps). We build on these observations by first extending the 2D ALUP framework to 3D and then modifying it to allow non-uniform scaling while promoting slippage and scale preservation. Our 3D ALUP extension produces reshaped outputs better aligned with viewer expectations than prior alternatives; our slippage-aware method further improves the outcome producing results on par with manual reshaping ones. Our method does not require any user input beyond specifying control handles and their target locations. We validate our method by applying it to over one hundred diverse inputs and by comparing our results to those generated by alternative approaches and manually. Comparative study participants preferred our outputs over the best performing traditional deformation method by a 65% margin and over our 3D ALUP extension by a 61% margin; they judged our outputs as at least on par with manually produced ones.

References

  1. 2023. SketchFab. https://www.sketchfab.com. Accessed 2023-01-12.Google ScholarGoogle Scholar
  2. 2023. TurboSquid by ShutterStock. https://www.turbosquid.com. Accessed 2023-01-12.Google ScholarGoogle Scholar
  3. Marc Alexa. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2 (2003), 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chrystiano Araújo, Nicholas Vining, Enrique Rosales, Giorgio Gori, and Alla Sheffer. 2022. As-Locally-Uniform-As-Possible Reshaping of Vector Clip-Art. ACM Transaction on Graphics 41, 4 (2022).Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. A. Artusi, F. Banterle, T.O. Aydın, D. Panozzo, and O. Sorkine-Hornung. 2016. Image Content Retargeting: Maintaining Color, Tone, and Spatial Consistency. CRC Press.Google ScholarGoogle Scholar
  6. Gilbert Louis Bernstein and Wilmot Li. 2015. Lillicon: Using Transient Widgets to Create Scale Variations of Icons. ACM Trans. Graph. 34, 4 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Martin Bokeloh, Michael Wand, Vladlen Koltun, and Hans-Peter Seidel. 2011. Pattern-Aware Shape Deformation Using Sliding Dockers. ACM Trans. Graph. 30, 6 (2011), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Francesco Buonamici, Monica Carfagni, Rocco Furferi, Lapo Governi, Alessandro Lapini, and Yary Volpe. 2018. Reverse engineering modeling methods and tools: a survey. Computer-Aided Design and Applications 15, 3 (2018), 443--464.Google ScholarGoogle ScholarCross RefCross Ref
  9. Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Drettakis. 2009. Structure Preserving Reshape for Textured Architectural Scenes. Computer Graphics Forum (Proceedings of the Eurographics conference) (2009).Google ScholarGoogle Scholar
  10. Dan Cascaval, Mira Shalah, Phillip Quinn, Rastislav Bodik, Maneesh Agrawala, and Adriana Schulz. 2022. Differentiable 3D CAD Programs for Bidirectional Editing. Computer Graphics Forum 41, 2 (2022), 309--323.Google ScholarGoogle ScholarCross RefCross Ref
  11. Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR].Google ScholarGoogle Scholar
  12. Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric Model for Elastic Deformations. ACM Trans. Graph. 29, 4, Article 38 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen Koltun. 2011. Probabilistic Reasoning for Assembly-Based 3D Modeling. In ACM SIGGRAPH 2011 Papers. Article 35, 10 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Daniel Cohen-Or, Chen Greif, Tao Ju, Niloy J. Mitra, Ariel Shamir, Olga Sorkine-Hornung, and Hao (Richard) Zhang. 2015. A Sampler of Useful Computational Tools for Applied Geometry, Computer Graphics, and Image Processing (1st ed.). A. K. Peters, Ltd., USA.Google ScholarGoogle Scholar
  15. Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30 (2011). Issue 4.Google ScholarGoogle Scholar
  16. Manfredo P. do Carmo. 1976. Differential geometry of curves and surfaces. Prentice Hall.Google ScholarGoogle Scholar
  17. Pierre Dragicevic, Stéphane Chatty, David Thevenin, and Jean-Luc Vinot. 2005. Artistic resizing: A technique for rich scale-sensitive vector graphics. ACM SIGGRAPH 2006, 201--210.Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by Example. ACM Trans. Graph. 23, 3 (aug 2004), 652--663.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. James Gain and Dominique Bechmann. 2008. A Survey of Spatial Deformation from a User-Centered Perspective. ACM Trans. Graph. 27, 4 (2008).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ran Gal, Olga Sorkine, and Daniel Cohen-Or. 2006. Feature-Aware Texturing. Rendering Techniques 11, 297--303.Google ScholarGoogle Scholar
  21. Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. 2009. IWIRES: An Analyze-and-Edit Approach to Shape Manipulation. In Proc. SIGGRAPH 2009. ACM.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Natasha Gelfand and Leonidas J Guibas. 2004. Shape segmentation using local slippage analysis. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing. 214--223.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Michael Gleicher. 1992. Briar: A Constraint-Based Drawing Program. In Proc. SIGCHI 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Giorgio Gori, Alla Sheffer, Nicholas Vining, Enrique Rosales, Nathan Carr, and Tao Ju. 2017. FlowRep: Descriptive Curve Networks for Free-Form Design Shapes. ACM Transaction on Graphics 36, 4 (2017). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google ScholarGoogle Scholar
  26. Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2022a. Mesh Draping: Parametrization-Free Neural Mesh Transfer. Computer Graphics Forum (2022).Google ScholarGoogle Scholar
  27. Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung, and Daniel Cohen-Or. 2022b. Spaghetti: Editing implicit shapes through part aware generation. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Hsu, Irene H. H. Lee, and N. Wiseman. 1993. Skeletal strokes. In UIST '93.Google ScholarGoogle Scholar
  29. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-Rigid-as-Possible Shape Manipulation. ACM Trans. Graph. 24, 3 (2005).Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Alec Jacobson, Ilya Baran, Ladislav Kavan, Jovan Popović, and Olga Sorkine. 2012. Fast Automatic Skinning Transformations. ACM Trans. Graph. 31, 4 (2012).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic Weights for Real-Time Deformation. In Proc. SIGGRAPH 2011. Association for Computing Machinery.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io/.Google ScholarGoogle Scholar
  34. Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas Guibas. 2020. Shape-Flow: Learnable Deformations Among 3D Shapes. In Neural Information Processing Systems (NeurIPS).Google ScholarGoogle Scholar
  35. Pushkar Joshi, Mark Meyer, Tony DeRose, Brian Green, and Tom Sanocki. 2007. Harmonic coordinates for character articulation. ACM Transactions on Graphics (TOG) 26, 3 (2007), 71--es.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tom Kelly, Peter Wonka, and Pascal Müller. 2015. Interactive dimensioning of parametric models. In Computer Graphics Forum, Vol. 34. 117--129.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and Daniel Cohen-Or. 2008. Non-Homogeneous Resizing of Complex Models. ACM Transactions on Graphics (TOG) 27, 5 (2008), 1--9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. C. Kurz, X. Wu, M. Wand, T. Thormählen, P. Kohli, and H.-P. Seidel. 2014. Symmetry-Aware Template Deformation and Fitting. Computer Graphics Forum 33, 6 (2014), 205--219.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Xian-Ying Li and Shi-Min Hu. 2012. Poisson coordinates. IEEE Transactions on visualization and computer graphics 19, 2 (2012), 344--352.Google ScholarGoogle Scholar
  40. Connor Lin, Niloy Mitra, Gordon Wetzstein, Leonidas J Guibas, and Paul Guerrero. 2022. NeuForm: Adaptive Overfitting for Neural Shape Editing. Advances in Neural Information Processing Systems 35 (2022), 15217--15229.Google ScholarGoogle Scholar
  41. Yaron Lipman, David Levin, and Daniel Cohen-Or. 2008. Green coordinates. ACM Trans. Graph. 27, 3 (2008), 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. 2015. Elements of Style: Learning Perceptual Shape Style Similarity. ACM Trans. Graph. 34, 4, Article 84 (jul 2015), 14 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Chongyang Ma, Haibin Huang, Alla Sheffer, Evangelos Kalogerakis, and Rui Wang. 2014. Analogy-driven 3D style transfer. In Computer Graphics Forum, Vol. 33. 175--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Elie Michel and Tamy Boubekeur. 2021. DAG Amendment for Inverse Control of Parametric Shapes. ACM Transactions on Graphics 40, 4 (2021), 173:1--173:14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Patrick Mullen, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2008. Spectral conformal parameterization. In Computer Graphics Forum, Vol. 27. Wiley Online Library, 1487--1494.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Matthias Nieser, Jonathan Palacios, Konrad Polthier, and Eugene Zhang. 2012. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Transactions on Visualization and Computer Graphics 18, 6 (2012), 865--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jesús R Nieto and Antonio Susín. 2013. Cage based deformations: a survey. In Deformation models. Springer, 75--99.Google ScholarGoogle Scholar
  48. Daniele Panozzo, Enrico Puppo, and Luigi Rocca. 2010. Efficient multi-scale curvature and crease estimation. Proceedings of Computer Graphics, Computer Vision and Mathematics (Brno, Czech Rapubic 1, 6 (2010).Google ScholarGoogle Scholar
  49. Daniele Panozzo, Ofir Weber, and Olga Sorkine. 2012. Robust image retargeting via axis-aligned deformation. In Computer Graphics Forum, Vol. 31. 229--236.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15--36.Google ScholarGoogle Scholar
  51. Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik. 2017. Interactive Design Space Exploration and Optimization for CAD Models. ACM Transactions on Graphics 36, 4 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and Their Applications. Foundations and Trends in Computer Graphics and Vision 2, 2 (2006), 105--171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. 2006. A Fast Multigrid Algorithm for Mesh Deformation. ACM Trans. Graph. 25, 3 (2006), 1108--1117.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. H. Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Software 41, 2 (2015), 11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. 2011. As-Killing-As-Possible Vector Fields for Planar Deformation. Computer Graph. Forum 30 (2011), 1543--1552.Google ScholarGoogle ScholarCross RefCross Ref
  56. Olga Sorkine and Marc Alexa. 2007. As-Rigid-As-Possible Surface Modeling. In Proc. EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing. 109--116.Google ScholarGoogle Scholar
  57. O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel. 2004. Laplacian Surface Editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP '04). 175--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans. Graph. 23, 3 (2004), 399--405.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Robert W. Sumner, Johannes Schmid, and Mark Pauly. 2007. Embedded Deformation for Shape Manipulation. In ACM SIGGRAPH 2007 Papers. 80--es.Google ScholarGoogle Scholar
  60. Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J Mitra, and Leonidas J Guibas. 2020. DeformSyncNet: Deformation transfer via synchronized shape deformation spaces. arXiv preprint arXiv:2009.01456 (2020).Google ScholarGoogle Scholar
  61. Ivan E. Sutherland. 1964. Sketchpad: a Man-Machine Graphical Communication System. Simulation 2, 5, R-3.Google ScholarGoogle Scholar
  62. Jiapeng Tang, Markhasin Lev, Wang Bi, Thies Justus, and Matthias Nießner. 2022. Neural Shape Deformation Priors. In Advances in Neural Information Processing Systems.Google ScholarGoogle Scholar
  63. Jean-Marc Thiery and Tamy Boubekeur. 2022. Green Coordinates for Triquad Cages in 3D. In SIGGRAPH Asia 2022 Conference Papers. Article 38, 8 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Jean-Marc Thiery, Pooran Memari, and Tamy Boubekeur. 2018. Mean value coordinates for quad cages in 3D. ACM Transactions on Graphics (Proc. SIGGRAPH 2018) (2018).Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Amir Vaxman, Christian Müller, and Ofir Weber. 2015. Conformal Mesh Deformations with Möbius Transformations. ACM Trans. Graph. 34, 4 (2015), 55:1--55:11.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Yu-Shuen Wang, Chiew-Lan Tai, Olga Sorkine, and Tong-Yee Lee. 2008. Optimized Scale-and-Stretch for Image Resizing. ACM Trans. Graph. (2008).Google ScholarGoogle Scholar
  67. Ofir Weber and Craig Gotsman. 2010. Controllable Conformal Maps for Shape Deformation and Interpolation. ACM Trans. Graph. 29, 4, Article 78 (2010).Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Lior Wolf, Moshe Guttmann, and Daniel Cohen-Or. 2007. Non-homogeneous content-driven video-retargeting. In Proc. IEEE 11th International Conference on Computer Vision. IEEE, 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  69. Xiaokun Wu, Michael Wand, Klaus Hildebrandt, Pushmeet Kohli, and Hans-Peter Seidel. 2014. Real-Time Symmetry-Preserving Deformation. Computer Graphics Forum 33, 7 (2014), 229--238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. Chunxia Xiao, Liqiang Jin, Yongwei Nie, Renfang Wang, Hanqiu Sun, and Kwan-Liu Ma. 2014. Content-aware model resizing with symmetry-preservation. The Visual Computer 31 (2014), 155--167.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-Hornung. 2020. Neural cages for detail-preserving 3d deformations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 75--83.Google ScholarGoogle ScholarCross RefCross Ref
  72. Jerry Yin, Chenxi Liu, Rebecca Lin, Nicholas Vining, Helge Rhodin, and Alla Sheffer. 2022. Detecting Viewer-Perceived Intended Vector Sketch Connectivity. ACM Transactions on Graphics 41 (2022). Issue 4.Google ScholarGoogle Scholar
  73. Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2004. Mesh Editing with Poisson-Based Gradient Field Manipulation. ACM Trans. Graph. 23, 3 (2004), 644--651.Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Yu-Jie Yuan, Yu-Kun Lai, Tong Wu, Lin Gao, and Ligang Liu. 2021. A Revisit of Shape Editing Techniques: from the Geometric to the Neural Viewpoint. CoRR (2021). https://arxiv.org/abs/2103.01694Google ScholarGoogle Scholar
  75. Guo-Xin Zhang, Ming-Ming Cheng, Shi-Min Hu, and Ralph R. Martin. 2009. A Shape-Preserving Approach to Image Resizing. Computer Graphics Forum (2009).Google ScholarGoogle Scholar
  76. Juyong Zhang, Bailin Deng, Zishun Liu, Giuseppe Patanè, Sofien Bouaziz, Kai Hormann, and Ligang Liu. 2014. Local Barycentric Coordinates. ACM Trans. Graph. 33, 6 (2014).Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and Heung-Yeung Shum. 2005. Large Mesh Deformation Using the Volumetric Graph Laplacian. ACM Trans. Graph. 24, 3 (2005), 496--503.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Slippage-Preserving Reshaping of Human-Made 3D Content

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 42, Issue 6
      December 2023
      1565 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3632123
      Issue’s Table of Contents

      Copyright © 2023 Owner/Author

      This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 December 2023
      Published in tog Volume 42, Issue 6

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)66
      • Downloads (Last 6 weeks)15

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader