skip to main content
10.1145/3620666.3651361acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Free Access

SlimSLAM: An Adaptive Runtime for Visual-Inertial Simultaneous Localization and Mapping

Published:27 April 2024Publication History

ABSTRACT

Simultaneous localization and mapping (SLAM) algorithms track an agent's movements through an unknown environment. SLAM must be fast and accurate to avoid adverse effects such as motion sickness in AR/VR headsets and navigation errors in autonomous robots and drones. However, accurate SLAM is computationally expensive and target platforms are often highly constrained. Therefore, to maintain real-time functionality, designers must either pay a large up-front cost to design specialized accelerators or reduce the algorithm's functionality, resulting in poor pose estimation.

We find that most SLAM algorithms are statically configured for the worst-case input and mismanage their computation budget. Thus, we present SlimSLAM, a domain-specific runtime scheduler which adapts SLAM algorithmic parameters based on input needs, minimizing computation while maintaining accuracy. SlimSLAM exploits information from a SLAM algorithm's state to detect and adjust over-provisioned parameters in real-time. We demonstrate SlimSLAM on the state-of-the-art real-time visual-inertial SLAM algorithm: HybVIO. We show that SlimSLAM is able to provide speedups up to 5.4× on the EuRoC, TUM-VI Room, and Monado VR datasets and outperforms other adaptive approaches on average by 2.3×-1.3× with iso-accuracy. This enables more accurate SLAM on constrained computation platforms such as the Raspberry Pi 4 (RPi4) where SlimSLAM is faster and more accurate than both HybVIO's static RPi4 configuration as well as other SLAM algorithms.

References

  1. Islam Ali and Hong Zhang. Are we ready for robust and resilient slam? a framework for quantitative characterization of slam datasets. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2810--2816, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bahar Asgari, Ramyad Hadidi, Nima Shoghi Ghaleshahi, and Hyesoon Kim. Pisces: Power-aware implementation of slam by customizing efficient sparse algebra. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1--6, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  3. Antoine Billy, Sébastien Pouteau, Pascal Desbarats, Serge Chaumette, and Jean-Philippe Domenger. Adaptive slam with synthetic stereo dataset generation for real-time dense 3d reconstruction. In VISIGRAPP 2019: 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2019.Google ScholarGoogle Scholar
  4. Willem Bles, Jelte E Bos, Bernd De Graaf, Eric Groen, and Alexander H Wertheim. Motion sickness: only one provocative conflict? Brain research bulletin, 47(5):481--487, 1998.Google ScholarGoogle Scholar
  5. Jelte E Bos, Willem Bles, and Eric L Groen. A theory on visually induced motion sickness. Displays, 29(2):47--57, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  6. Tiancong Bu, Kaige Yan, and Jingweijia Tan. Towards fine-grained online adaptive approximation control for dense slam on embedded gpus. ACM Transactions on Design Automation of Electronic Systems (TODAES), 27(2):1--19, 2021.Google ScholarGoogle Scholar
  7. Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The euroc micro aerial vehicle datasets. The International Journal of Robotics Research, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, José Neira, Ian Reid, and John J. Leonard. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6):1309--1332, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and Juan D Tardós. Orb-slam3: An accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Transactions on Robotics, 37(6):1874--1890, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  10. Siddharth Choudhary, Vadim Indelman, Henrik I Christensen, and Frank Dellaert. Information-based reduced landmark slam. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4620--4627. IEEE, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  11. Andrew Courtney. Why is oculus quest 2 not charging while playing? (solved). https://vrlowdown.com/why-is-oculus-quest-2-not-charging-while-playing/.Google ScholarGoogle Scholar
  12. Mateo De Mayo. Monado slam datasets. https://huggingface.co/datasets/collabora/monado-slam-datasets, 2023.Google ScholarGoogle Scholar
  13. Guoguang Du, Kai Wang, Shiguo Lian, and Kaiyong Zhao. Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artificial Intelligence Review, 54(3):1677--1734, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Alejandro Fontan, Javier Civera, and Rudolph Triebel. Information-driven direct rgb-d odometry. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4929--4937, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  15. Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. On-manifold preintegration for real-time visual-inertial odometry. IEEE Transactions on Robotics, 33(1):1--21, 2016.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Andrei Frumusanu and Ryan Smith. The snapdragon 845 performance preview: Setting the stage for flagship android 2018. https://www.anandtech.com/show/12420/snapdragon-845-performance-preview/4.Google ScholarGoogle Scholar
  17. Yiming Gan, Yu Bo, Boyuan Tian, Leimeng Xu, Wei Hu, Shaoshan Liu, Qiang Liu, Yanjun Zhang, Jie Tang, and Yuhao Zhu. Eudoxus: Characterizing and accelerating localization in autonomous machines industry track paper. In 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 827--840. IEEE, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  18. Quentin Gautier, Alric Althoff, and Ryan Kastner. Fpga architectures for real-time dense slam. In 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP), volume 2160-052X, pages 83--90, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  19. Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang. Openvins: A research platform for visual-inertial estimation. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 4666--4672. IEEE, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  20. Maria Rafaela Gkeka, Alexandros Patras, Christos D. Antonopoulos, Spyros Lalis, and Nikolaos Bellas. Fpga architectures for approximate dense slam computing. In 2021 Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 828--833, 2021.Google ScholarGoogle Scholar
  21. Sandra Hernández, José Araujo, Patric Jensfelt, Ioannis Karagiannis, Ananya Muddukrishna, and Bryan Donyanavard. Cross-layer configuration optimization for localization on resource-constrained devices. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2282--2288. IEEE, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Joel Hesch, Anna Kozminski, and Oskar Linde. Powered by ai: Oculus insight. https://ai.meta.com/blog/powered-by-ai-oculus-insight/.Google ScholarGoogle Scholar
  23. Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In Computer Vision-ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I 11, pages 548--562. Springer, 2013.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Klaus Hinum. Qualcomm snapdragon 865. https://www.notebookcheck.net/Qualcomm-Snapdragon-865-SoC-Benchmarks-and-Specs.448194.0.html.Google ScholarGoogle Scholar
  25. Zheng Huai and Guoquan Huang. Robocentric visual-inertial odometry. The International Journal of Robotics Research, 41(7):667--689, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Muhammad Huzaifa, Rishi Desai, Samuel Grayson, Xutao Jiang, Ying Jing, Jae Lee, Fang Lu, Yihan Pang, Joseph Ravichandran, Finn Sinclair, et al. Illixr: Enabling end-to-end extended reality research. In 2021 IEEE International Symposium on Workload Characterization (IISWC), pages 24--38. IEEE, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  27. Abdullah Khalufa, Graham Riley, and Mikel Luján. A dynamic adaptation strategy for energy-efficient keyframe-based visual slam. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pages 3--10. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2019.Google ScholarGoogle Scholar
  28. Jouko Kinnari, Francesco Verdoja, and Ville Kyrki. Gnss-denied geolocalization of uavs by visual matching of onboard camera images with orthophotos. In 2021 20th International Conference on Advanced Robotics (ICAR), pages 555--562, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  29. Andreas Koch, Ingolf Cascorbi, Martin Westhofen, Manuel Dafotakis, Sebastian Klapa, and Johann Peter Kuhtz-Buschbeck. The neuro-physiology and treatment of motion sickness. Deutsches Ärzteblatt International, 115(41):687, 2018.Google ScholarGoogle Scholar
  30. Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. Journal of Field Robotics, 36(2):416--446, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  31. Stefan Leutenegger, Paul Furgale, Vincent Rabaud, Margarita Chli, Kurt Konolige, and Roland Siegwart. Keyframe-based visual-inertial slam using nonlinear optimization. Proceedings of Robotis Science and Systems (RSS) 2013, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  32. Stefan Leutenegger, Paul Furgale, Vincent Rabaud, Margarita Chli, Kurt Konolige, and Roland Siegwart. Keyframe-based visual-inertial slam using nonlinear optimization. Proceedings of Robotis Science and Systems (RSS) 2013, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  33. Qiang Liu, Yuhui Hao, Weizhuang Liu, Bo Yu, Yiming Gan, Jie Tang, Shao-Shan Liu, and Yuhao Zhu. An energy efficient and runtime reconfigurable accelerator for robotic localization. IEEE Transactions on Computers, 72(7):1943--1957, 2023.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Runze Liu, Jianlei Yang, Yiran Chen, and Weisheng Zhao. Eslam: An energy-efficient accelerator for real-time orb-slam on fpga platform. In Proceedings of the 56th Annual Design Automation Conference 2019, DAC '19, New York, NY, USA, 2019. Association for Computing Machinery.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Weizhuang Liu, Bo Yu, Yiming Gan, Qiang Liu, Jie Tang, Shaoshan Liu, and Yuhao Zhu. Archytas: A framework for synthesizing and dynamically optimizing accelerators for robotic localization. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '21, page 479--493, New York, NY, USA, 2021. Association for Computing Machinery.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Dipan Kumar Mandal, Srivatsava Jandhyala, Om J Omer, Gurpreet S Kalsi, Biji George, Gopi Neela, Santhosh Kumar Rethinagiri, Sreenivas Subramoney, Lance Hacking, Jim Radford, Eagle Jones, Belliappa Kuttanna, and Hong Wang. Visual inertial odometry at the edge: A hardware-software co-design approach for ultra-low latency and power. In 2019 Design, Automation and Test in Europe Conference and Exhibition (DATE), pages 960--963, 2019.Google ScholarGoogle Scholar
  37. Pranay Mathur, Nikhil Khedekar, and Kostas Alexis. Resource-aware online parameter adaptation for computationally-constrained visual-inertial navigation systems. In 2021 20th International Conference on Advanced Robotics (ICAR), pages 842--848. IEEE, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  38. Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a versatile and accurate monocular slam system. IEEE transactions on robotics, 31(5):1147--1163, 2015.Google ScholarGoogle Scholar
  39. Luigi Nardi, Bruno Bodin, Sajad Saeedi, Emanuele Vespa, Andrew J Davison, and Paul HJ Kelly. Algorithmic performance-accuracy trade-off in 3d vision applications using hypermapper. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1434--1443. IEEE, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  40. Jinwook Oh, Jungwook Choi, Guilherme C Januario, and Kailash Gopalakrishnan. Energy-efficient simultaneous localization and mapping via compounded approximate computing. In 2016 IEEE International Workshop on Signal Processing Systems (SiPS), pages 51--56. IEEE, 2016.Google ScholarGoogle ScholarCross RefCross Ref
  41. Oscar Palomar, Andy Nisbet, John Mawer, Graham Riley, and Mikel Lujan. Reduced precision applicability and trade-offs for slam algorithms. In Third Workshop on Approximate Computing (WACAS), 2017.Google ScholarGoogle Scholar
  42. Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon, and Scott Mahlke. Srtuner: Effective compiler optimization customization by exposing synergistic relations. In 2022 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages 118--130, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Yeonsoo Park and Soohyun Bae. Keeping less is more: Point sparsification for visual slam. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 7936--7943, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  44. Lina M. Paz, Pedro PiniÉs, Juan D. TardÓs, and JosÉ Neira. Large-scale 6-dof slam with stereo-in-hand. IEEE Transactions on Robotics, 24(5):946--957, 2008.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yan Pei, Swarnendu Biswas, Donald S Fussell, and Keshav Pingali. Slambooster: An application-aware online controller for approximation in dense slam. In 2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT), pages 296--310. IEEE, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  46. Yan Pei, Swarnendu Biswas, Donald S Fussell, and Keshav Pingali. A methodology for principled approximation in visual slam. In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques, pages 373--386, 2020.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Jin-Chun Piao and Shin-Dug Kim. Adaptive monocular visual-inertial slam for real-time augmented reality applications in mobile devices. Sensors, 17(11):2567, 2017.Google ScholarGoogle ScholarCross RefCross Ref
  48. Jin-Chun Piao and Shin-Dug Kim. Real-time visual-inertial slam based on adaptive keyframe selection for mobile ar applications. IEEE Transactions on Multimedia, 21(11):2827--2836, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  49. Tong Qin, Sankalp Dayal, Joydeep Biswas, Varada Gopalakrishnan, Adam Fineberg, and Rahul Bakshi. Low-precision arithmetic makes robot localization more efficient, 2023.Google ScholarGoogle Scholar
  50. Xiaochen QIU, Hai ZHANG, and Wenxing FU. Lightweight hybrid visual-inertial odometry with closed-form zero velocity update. Chinese Journal of Aeronautics, 33(12):3344--3359, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  51. Marco Recenti, Carlo Ricciardi, Romain Aubonnet, Ilaria Picone, Deborah Jacob, Halldór ÁR Svansson, Sólveig Agnarsdóttir, Gunnar H Karlsson, Valdís Baeringsdóttir, Hannes Petersen, et al. Toward predicting motion sickness using virtual reality and a moving platform assessing brain, muscles, and heart signals. Frontiers in Bioengineering and Biotechnology, 9:635661, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  52. Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an open-source library for real-time metric-semantic localization and mapping. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 1689--1696. IEEE, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  53. Sajad Saeedi, Luigi Nardi, Edward Johns, Bruno Bodin, Paul H. J. Kelly, and Andrew J. Davison. Application-oriented design space exploration for slam algorithms. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 5716--5723, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav Usenko, Jörg Stückler, and Daniel Cremers. The tum vi benchmark for evaluating visual-inertial odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1680--1687. IEEE, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Otto Seiskari, Pekka Rantalankila, Juho Kannala, Jerry Ylilammi, Esa Rahtu, and Arno Solin. Hybvio: Pushing the limits of real-time visual-inertial odometry. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 701--710, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  56. Tixiao Shan, Brendan Englot, Carlo Ratti, and Rus Daniela. Lvi-sam: Tightly-coupled lidar-visual-inertial odometry via smoothing and mapping. In IEEE International Conference on Robotics and Automation (ICRA), pages 5692--5698. IEEE, 2021.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Xuesong Shi, Dongjiang Li, Pengpeng Zhao, Qinbin Tian, Yuxin Tian, Qiwei Long, Chunhao Zhu, Jingwei Song, Fei Qiao, Le Song, Yangquan Guo, Zhigang Wang, Yimin Zhang, Baoxing Qin, Wei Yang, Fangshi Wang, Rosa H. M. Chan, and Qi She. Are we ready for service robots? the OpenLORIS-Scene datasets for lifelong SLAM. In 2020 International Conference on Robotics and Automation (ICRA), pages 3139--3145, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  58. Arno Solin, Santiago Cortes, Esa Rahtu, and Juho Kannala. Pivo: Probabilistic inertial-visual odometry for occlusion-robust navigation. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 616--625. IEEE, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  59. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.Google ScholarGoogle ScholarCross RefCross Ref
  60. Amr Suleiman, Zhengdong Zhang, Luca Carlone, Sertac Karaman, and Vivienne Sze. Navion: A 2-mw fully integrated real-time visual-inertial odometry accelerator for autonomous navigation of nano drones. IEEE Journal of Solid-State Circuits, 54(4):1106--1119, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  61. Vladyslav Usenko, Nikolaus Demmel, David Schubert, Jörg Stückler, and Daniel Cremers. Visual-inertial mapping with non-linear factor recovery. IEEE Robotics and Automation Letters, 5(2):422--429, 2019.Google ScholarGoogle ScholarCross RefCross Ref
  62. Lukas Von Stumberg and Daniel Cremers. Dm-vio: Delayed marginalization visual-inertial odometry. IEEE Robotics and Automation Letters, 7(2):1408--1415, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  63. Kejian J Wu, Tien Do, Luis C Carrillo-Arce, and Stergios I Roumeliotis. On the vins resource-allocation problem for a dual-camera, small-size quadrotor. In International Symposium on Experimental Robotics, pages 538--549. Springer, 2016.Google ScholarGoogle Scholar
  64. Tianguang Zhang, Xiaodong Liu, Kolja Kühnlenz, and Martin Buss. Visual odometry for the autonomous city explorer. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3513--3518, 2009.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Zhengdong Zhang, Amr AbdulZahir Suleiman, Luca Carlone, Vivienne Sze, and Sertac Karaman. Visual-inertial odometry on chip: An algorithm-and-hardware co-design approach. Tech. Rep., 2017.Google ScholarGoogle Scholar
  66. Yipu Zhao and Patricio A Vela. Good feature selection for least squares pose optimization in vo/vslam. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1183--1189. IEEE, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Yipu Zhao and Patricio A Vela. Good feature matching: Toward accurate, robust vo/vslam with low latency. IEEE Transactions on Robotics, 36(3):657--675, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  68. Danping Zou, Yuanxin Wu, Ling Pei, Haibin Ling, and Wenxian Yu. Structvio: Visual-inertial odometry with structural regularity of man-made environments. IEEE Transactions on Robotics, 35(4):999--1013, 2019.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. SlimSLAM: An Adaptive Runtime for Visual-Inertial Simultaneous Localization and Mapping

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          ASPLOS '24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3
          April 2024
          1106 pages
          ISBN:9798400703867
          DOI:10.1145/3620666

          Copyright © 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 27 April 2024

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          Overall Acceptance Rate535of2,713submissions,20%
        • Article Metrics

          • Downloads (Last 12 months)86
          • Downloads (Last 6 weeks)86

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader