skip to main content
10.1145/3620666.3651367acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections

ProxiML: Building Machine Learning Classifiers for Photonic Quantum Computing

Published:27 April 2024Publication History

ABSTRACT

Quantum machine learning has shown early promise and potential for productivity improvements for machine learning classification tasks, but has not been systematically explored on photonics quantum computing platforms. Therefore, this paper presents the design and implementation of ProxiML - a novel quantum machine learning classifier for photonic quantum computing devices with multiple noise-aware design elements for effective model training and inference. Our extensive evaluation on a photonic device (Xanadu's X8 machine) demonstrates the effectiveness of ProxiML machine learning classifier (over 90% accuracy on a real machine for challenging four-class classification tasks), and competitive classification accuracy compared to prior reported machine learning classifier accuracy on other quantum platforms - revealing the previously unexplored potential of Xanadu's X8 machine.

References

  1. U.L. Andersen, G. Leuchs, and C. Silberhorn. Continuous-variable quantum information processing. Laser & Photonics Reviews, 4(3):337--354, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  2. J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, D. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, and Y. Zhang. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 591(7848):54--60, Mar 2021.Google ScholarGoogle ScholarCross RefCross Ref
  3. Leonardo Banchi, Mark Fingerhuth, Tomas Babej, Christopher Ing, and Juan Miguel Arrazola. Molecular docking with gaussian boson sampling. Science Advances, 6(23):eaax1950, 2020.Google ScholarGoogle Scholar
  4. Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195--202, September 2017.Google ScholarGoogle ScholarCross RefCross Ref
  5. Thomas R Bromley, Juan Miguel Arrazola, Soran Jahangiri, Josh Izaac, Nicolás Quesada, Alain Delgado Gran, Maria Schuld, Jeremy Swinarton, Zeid Zabaneh, and Nathan Killoran. Applications of near-term photonic quantum computers: software and algorithms. Quantum Science and Technology, 5(3):034010, May 2020.Google ScholarGoogle ScholarCross RefCross Ref
  6. Samantha Buck, Robin Coleman, and Hayk Sargsyan. Continuous variable quantum algorithms: an introduction, 2021.Google ScholarGoogle Scholar
  7. Davide Castelvecchi. The AI-quantum computing mash-up: will it revolutionize science? Nature, January 2024.Google ScholarGoogle Scholar
  8. Tianlong Chen. Chasing sparsity : from model, to algorithm, to science. PhD thesis, Texas U., U. Texas, Austin (main), 2023.Google ScholarGoogle Scholar
  9. Benjamin A Cordier, Nicolas PD Sawaya, Gian Giacomo Guerreschi, and Shannon K McWeeney. Biology and medicine in the landscape of quantum advantages. Journal of the Royal Society Interface, 19(196):20220541, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  10. Michiel de Goede, Henk Snijders, Pim Venderbosch, Ben Kassenberg, Narasimhan Kannan, Devin H. Smith, Caterina Taballione, Jörn P. Epping, Hans van den Vlekkert, and Jelmer J. Renema. High fidelity 12-mode quantum photonic processor operating at ingaas quantum dot wavelength, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  11. Riccardo Di Sipio, Jia-Hong Huang, Samuel Yen-Chi Chen, Stefano Mangini, and Marcel Worring. The dawn of quantum natural language processing. In ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8612--8616, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  12. Beng Yee Gan, Daniel Leykam, and Dimitris G. Angelakis. Fock state-enhanced expressivity of quantum machine learning models. EPJ Quantum Technology, 9(1), June 2022.Google ScholarGoogle Scholar
  13. Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4(1):65, 2018.Google ScholarGoogle Scholar
  14. Wen Guan, Gabriel Perdue, Arthur Pesah, Maria Schuld, Koji Terashi, Sofia Vallecorsa, and Jean-Roch Vlimant. Quantum machine learning in high energy physics. Machine Learning: Science and Technology, 2(1):011003, Mar 2021.Google ScholarGoogle ScholarCross RefCross Ref
  15. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. He-Liang Huang, Yuxuan Du, Ming Gong, Youwei Zhao, Yulin Wu, Chaoyue Wang, Shaowei Li, Futian Liang, Jin Lin, Yu Xu, Rui Yang, Tongliang Liu, Min-Hsiu Hsieh, Hui Deng, Hao Rong, Cheng-Zhi Peng, Chao-Yang Lu, Yu-Ao Chen, Dacheng Tao, Xiaobo Zhu, and Jian-Wei Pan. Experimental quantum generative adversarial networks for image generation. Physical Review Applied, 16(2), August 2021.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kaixuan Huang, Zheng-An Wang, Chao Song, Kai Xu, Hekang Li, Zhen Wang, Qiujiang Guo, Zixuan Song, Zhi-Bo Liu, Dongning Zheng, Dong-Ling Deng, H. Wang, Jian-Guo Tian, and Heng Fan. Quantum generative adversarial networks with multiple superconducting qubits. npj Quantum Information, 7(1):165, Dec 2021.Google ScholarGoogle Scholar
  18. Sonika Johri, Shantanu Debnath, Avinash Mocherla, Alexandros Singh, Anupam Prakash, Jungsang Kim, and Iordanis Kerenidis. Nearest centroid classification on a trapped ion quantum computer. npj Quantum Information, 7, 2020.Google ScholarGoogle Scholar
  19. Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weedbrook. Strawberry fields: A software platform for photonic quantum computing. Quantum, 3:129, March 2019.Google ScholarGoogle ScholarCross RefCross Ref
  20. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  21. Guangxi Li, Zhixin Song, and Xin Wang. Vsql: Variational shadow quantum learning for classification. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 8357--8365, 2021.Google ScholarGoogle ScholarCross RefCross Ref
  22. Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie. Quantum computational advantage with a programmable photonic processor. Nature, 606(7912):75--81, Jun 2022.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ilya Sinayskiy Maria Schuld and Francesco Petruccione. An introduction to quantum machine learning. Contemporary Physics, 56(2):172--185, 2015.Google ScholarGoogle ScholarCross RefCross Ref
  24. Nicolas Maring, Andreas Fyrillas, Mathias Pont, Edouard Ivanov, Petr Stepanov, Nico Margaria, William Hease, Anton Pishchagin, Thi Huong Au, Sébastien Boissier, Eric Bertasi, Aurélien Baert, Mario Valdivia, Marie Billard, Ozan Acar, Alexandre Brieussel, Rawad Mezher, Stephen C. Wein, Alexia Salavrakos, Patrick Sinnott, Dario A. Fioretto, Pierre-Emmanuel Emeriau, Nadia Belabas, Shane Mansfield, Pascale Senellart, Jean Senellart, and Niccolo Somaschi. A general-purpose single-photon-based quantum computing platform, 2023.Google ScholarGoogle Scholar
  25. Ilya Piatrenka and Marian Rusek. Quantum variational multi-class classifier for the iris data set. In International Conference on Computational Science, pages 247--260. Springer, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Xiaogang Qiang, Yizhi Wang, Shichuan Xue, Renyou Ge, Lifeng Chen, Yingwen Liu, Anqi Huang, Xiang Fu, Ping Xu, Teng Yi, Fufang Xu, Mingtang Deng, Jingbo B. Wang, Jasmin D. A. Meinecke, Jonathan C. F. Matthews, Xinlun Cai, Xuejun Yang, and Junjie Wu. Implementing graph-theoretic quantum algorithms on a silicon photonic quantum walk processor. Science Advances, 7(9):eabb8375, 2021.Google ScholarGoogle Scholar
  27. Ruiyang Qin, Zhiding Liang, Jinglei Cheng, Peter Kogge, and Yiyu Shi. Improving quantum classifier performance in nisq computers by voting strategy from ensemble learning, 2022.Google ScholarGoogle Scholar
  28. Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73:58--61, Jul 1994.Google ScholarGoogle ScholarCross RefCross Ref
  29. Diego Ristè, Marcus P. da Silva, Colm A. Ryan, Andrew W. Cross, Antonio D. Córcoles, John A. Smolin, Jay M. Gambetta, Jerry M. Chow, and Blake R. Johnson. Demonstration of quantum advantage in machine learning. npj Quantum Information, 3(1):16, Apr 2017.Google ScholarGoogle Scholar
  30. Nicholas Rivera, Jamison Sloan, Yannick Salamin, John D. Joannopoulos, and Marin Soljačić. Creating large fock states and massively squeezed states in optics using systems with nonlinear bound states in the continuum. Proceedings of the National Academy of Sciences, 120(9):e2219208120, 2023.Google ScholarGoogle ScholarCross RefCross Ref
  31. Manuel S. Rudolph, Ntwali Bashige Toussaint, Amara Katabarwa, Sonika Johri, Borja Peropadre, and Alejandro Perdomo-Ortiz. Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev. X, 12:031010, Jul 2022.Google ScholarGoogle Scholar
  32. Manas Sajjan, Junxu Li, Raja Selvarajan, Shree Hari Sureshbabu, Sumit Suresh Kale, Rishabh Gupta, Vinit Singh, and Sabre Kais. Quantum machine learning for chemistry and physics. Chem. Soc. Rev., 51:6475--6573, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  33. Maria Schuld, Alex Bocharov, Krysta M. Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. Phys. Rev. A, 101:032308, Mar 2020.Google ScholarGoogle ScholarCross RefCross Ref
  34. Maria Schuld, Kamil Brádler, Robert Israel, Daiqin Su, and Brajesh Gupt. Measuring the similarity of graphs with a gaussian boson sampler. Phys. Rev. A, 101:032314, Mar 2020.Google ScholarGoogle ScholarCross RefCross Ref
  35. P. J. Shadbolt, M. R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O'Brien. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics, 6(1):45--49, December 2011.Google ScholarGoogle ScholarCross RefCross Ref
  36. Daniel Silver, Tirthak Patel, and Devesh Tiwari. Quilt: Effective multi-class classification on quantum computers using an ensemble of diverse quantum classifiers. Proceedings of the AAAI Conference on Artificial Intelligence, 36(8):8324--8332, Jun. 2022.Google ScholarGoogle ScholarCross RefCross Ref
  37. Caterina Taballione, Malaquias Correa Anguita, Michiel de Goede, Pim Venderbosch, Ben Kassenberg, Henk Snijders, Narasimhan Kannan, Ward L. Vleeshouwers, Devin Smith, Jörn P. Epping, Reinier van der Meer, Pepijn W. H. Pinkse, Hans van den Vlekkert, and Jelmer J. Renema. 20-Mode Universal Quantum Photonic Processor. Quantum, 7:1071, August 2023.Google ScholarGoogle ScholarCross RefCross Ref
  38. Max Tillmann, Borivoje Dakić, René Heilmann, Stefan Nolte, Alexander Szameit, and Philip Walther. Experimental boson sampling. Nature Photonics, 7(7):540--544, May 2013.Google ScholarGoogle ScholarCross RefCross Ref
  39. V. D. Vaidya, B. Morrison, L. G. Helt, R. Shahrokshahi, D. H. Mahler, M. J. Collins, K. Tan, J. Lavoie, A. Repingon, M. Menotti, N. Quesada, R. C. Pooser, A. E. Lita, T. Gerrits, S. W. Nam, and Z. Vernon. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Science Advances, 6(39):eaba9186, 2020.Google ScholarGoogle Scholar
  40. David J. Wales and Jonathan P. K. Doye. Global optimization by basin-hopping and the lowest energy structures of lennard-jones clusters containing up to 110 atoms. The Journal of Physical Chemistry A, 101(28):5111--5116, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  41. H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, F. T. Chong, and S. Han. Quantumnas: Noise-adaptive search for robust quantum circuits. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 692--708, Los Alamitos, CA, USA, apr 2022. IEEE Computer Society.Google ScholarGoogle ScholarCross RefCross Ref
  42. Hanrui Wang, Jiaqi Gu, Yongshan Ding, Zirui Li, Frederic T. Chong, David Z. Pan, and Song Han. Quantumnat: Quantum noise-aware training with noise injection, quantization and normalization. In Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC '22, page 1--6, New York, NY, USA, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Hanrui Wang, Zirui Li, Jiaqi Gu, Yongshan Ding, David Z. Pan, and Song Han. Qoc: quantum on-chip training with parameter shift and gradient pruning. In Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC '22, page 655--660, New York, NY, USA, 2022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Kunkun Wang, Lei Xiao, Wei Yi, Shi-Ju Ran, and Peng Xue. Experimental realization of a quantum image classifier via tensor-network-based machine learning. Photon. Res., 9(12):2332--2340, Dec 2021.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    ASPLOS '24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3
    April 2024
    1106 pages
    ISBN:9798400703867
    DOI:10.1145/3620666

    Copyright © 2024 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 27 April 2024

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    Overall Acceptance Rate535of2,713submissions,20%
  • Article Metrics

    • Downloads (Last 12 months)45
    • Downloads (Last 6 weeks)45

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader