skip to main content
10.1145/3623053.3623365acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Geometry Processing with Neural Fields

Published:28 November 2023Publication History
First page image

References

  1. Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. 1984. Pyramid methods in image processing. RCA engineer 29, 6 (1984), 33–41.Google ScholarGoogle Scholar
  2. Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and Mathieu Desbrun. 2003. Anisotropic polygonal remeshing. ACM SIGGRAPH 2003 Papers (2003).Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Pierre Alliez, Mark Meyer, and Mathieu Desbrun. 2002. Interactive geometry remeshing. ACM Transactions on Graphics (TOG) 21, 3 (2002), 347–354.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Matan Atzmon and Yaron Lipman. 2020. SAL: Sign agnostic learning of shapes from raw data. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  5. Jens Behrmann, D. Duvenaud, and J. Jacobsen. 2019. Invertible Residual Networks. In ICML.Google ScholarGoogle Scholar
  6. J. Bloomenthal and B. Wyvill. 1997. Introduction to Implicit Surfaces.Google ScholarGoogle Scholar
  7. Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon mesh processing. CRC press.Google ScholarGoogle Scholar
  8. Peter J Burt and Edward H Adelson. 1987. The Laplacian pyramid as a compact image code. In Readings in computer vision. Elsevier, 671–679.Google ScholarGoogle Scholar
  9. Edwin Catmull. 1972. A system for computer generated movies. In Proceedings of the ACM annual conference-Volume 1. 422–431.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural ordinary differential equations. In NeurIPS.Google ScholarGoogle Scholar
  11. Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning continuous image representation with local implicit image function. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8628–8638.Google ScholarGoogle ScholarCross RefCross Ref
  12. Zhiqin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5939–5948.Google ScholarGoogle ScholarCross RefCross Ref
  13. Grigorios Chrysos, Stylianos Moschoglou, Yannis Panagakis, and Stefanos Zafeiriou. 2019. PolyGAN: High-Order Polynomial Generators. arXiv preprint arXiv:1908.06571 (2019).Google ScholarGoogle Scholar
  14. B. Curless and M. Levoy. 1996. A volumetric method for building complex models from range images. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques (1996).Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Davies, Derek Nowrouzezahrai, and A. Jacobson. 2020. On the Effectiveness of Weight-Encoded Neural Implicit 3D Shapes.Google ScholarGoogle Scholar
  16. Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet. 2021. Coin: Compression with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021).Google ScholarGoogle Scholar
  17. S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos, Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor, 2018. Neural scene representation and rendering. Science 360, 6394 (2018), 1204–1210.Google ScholarGoogle Scholar
  18. Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J. Zico Kolter. 2021. Multiplicative Filter Networks. In ICLR.Google ScholarGoogle Scholar
  19. Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. 2019. FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. In ICLR.Google ScholarGoogle Scholar
  20. Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei Huang, Matthias Nießner, and Thomas Funkhouser. 2020. Local implicit grid representations for 3D scenes, In Proc. CVPR. arXiv preprint arXiv:2003.08981.Google ScholarGoogle ScholarCross RefCross Ref
  21. M. W. Jones, J. A. Bærentzen, and M. Srámek. 2006. 3D distance fields: a survey of techniques and applications. IEEE Transactions on Visualization and Computer Graphics 12 (2006), 581–599.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Diederik P Kingma and Max Welling. 2014. Auto-encoding variational bayes. In ICLR.Google ScholarGoogle Scholar
  23. David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. BACON: Band-limited Coordinate Networks for Multiscale Scene Representation. CVPR (2022).Google ScholarGoogle Scholar
  24. Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene Representation. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 58 (2021), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lars M. Mescheder, Michael Oechsle, M. Niemeyer, S. Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), 4455–4465.Google ScholarGoogle ScholarCross RefCross Ref
  26. Mateusz Michalkiewicz, Jhony K Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders Eriksson. 2019. Deep level sets: Implicit surface representations for 3d shape inference. arXiv preprint arXiv:1901.06802 (2019).Google ScholarGoogle Scholar
  27. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In Proc. ECCV.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4 (Aug. 2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. K. Museth, D. Breen, R. Whitaker, and A. Barr. 2002. Level set surface editing operators. Proceedings of the 29th annual conference on Computer graphics and interactive techniques (2002).Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Martin E Newell. 1975. The utilization of procedure models in digital image synthesis. Technical Report. UTAH UNIV SALT LAKE CITY SCHOOL OF COMPUTING.Google ScholarGoogle Scholar
  31. Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020. Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision. In Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  32. Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. 2019. Texture Fields: Learning Texture Representations in Function Space. In Proc. ICCV.Google ScholarGoogle ScholarCross RefCross Ref
  33. S. Osher and Ronald Fedkiw. 2003. Level set methods and dynamic implicit surfaces. In Applied mathematical sciences.Google ScholarGoogle Scholar
  34. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019a. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation, In Proc. CVPR. Proc. CVPR.Google ScholarGoogle ScholarCross RefCross Ref
  35. Jeong Joon Park, Peter R. Florence, J. Straub, Richard A. Newcombe, and S. Lovegrove. 2019b. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), 165–174.Google ScholarGoogle Scholar
  36. Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional occupancy networks, In Proc. ECCV. arXiv preprint arXiv:2003.04618.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 378 (2019), 686–707.Google ScholarGoogle ScholarCross RefCross Ref
  38. Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing Flows. In ICML.Google ScholarGoogle Scholar
  39. A. Rosenfeld and J. Pfaltz. 1966. Sequential Operations in Digital Picture Processing. J. ACM 13 (1966), 471–494.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. S. Saito, Zeng Huang, R. Natsume, S. Morishima, Angjoo Kanazawa, and Hao Li. 2019. PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2019), 2304–2314.Google ScholarGoogle Scholar
  41. Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G Baraniuk, and Ashok Veeraraghavan. 2022. MINER: Multiscale Implicit Neural Representations. arXiv preprint arXiv:2202.03532 (2022).Google ScholarGoogle Scholar
  42. Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing. ACM Trans. Graph. 39, 4 (Aug. 2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions. (Feb. 2023). arxiv:2302.11815 [cs.GR]Google ScholarGoogle Scholar
  44. Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-Free Monte Carlo for PDEs with Spatially Varying Coefficients. (Jan. 2022). arxiv:2201.13240 [cs.GR]Google ScholarGoogle Scholar
  45. Eero P Simoncelli and William T Freeman. 1995. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proceedings., International Conference on Image Processing, Vol. 3. IEEE, 444–447.Google ScholarGoogle ScholarCross RefCross Ref
  46. Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. 2020a. Implicit Neural Representations with Periodic Activation Functions. In Proc. NeurIPS.Google ScholarGoogle Scholar
  47. V. Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and G. Wetzstein. 2020b. Implicit Neural Representations with Periodic Activation Functions. ArXiv abs/2006.09661 (2020).Google ScholarGoogle Scholar
  48. Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. 2019. Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations. In Proc. NeurIPS.Google ScholarGoogle Scholar
  49. O. Sorkine-Hornung and M. Alexa. 2007. As-rigid-as-possible surface modeling. In Symposium on Geometry Processing.Google ScholarGoogle Scholar
  50. Towaki Takikawa, Joey Litalien, K. Yin, K. Kreis, Charles T. Loop, Derek Nowrouzezahrai, A. Jacobson, M. McGuire, and S. Fidler. 2021. Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. ArXiv abs/2101.10994 (2021).Google ScholarGoogle Scholar
  51. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020a. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. In Proc. NeurIPS.Google ScholarGoogle Scholar
  52. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, R. Ramamoorthi, J. T. Barron, and Ren Ng. 2020b. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. ArXiv abs/2006.10739 (2020).Google ScholarGoogle Scholar
  53. G. Taubin. 1995. A signal processing approach to fair surface design. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (1995).Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Jason Torchinsky. 2013. The First Real Object Ever 3D Scanned And Rendered Was A VW Beetle. Jalopnik (2013). https://jalopnik.com/the-first-real-object-ever-3d-scanned-and-rendered-was-494241353.Google ScholarGoogle Scholar
  55. Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41. Wiley Online Library, 641–676.Google ScholarGoogle Scholar
  56. Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan Atzmon, Ronen Basri, and Yaron Lipman. 2020. Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance. In Proc. NeurIPS.Google ScholarGoogle Scholar

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SA '23: SIGGRAPH Asia 2023 Doctoral Consortium
    November 2023
    50 pages
    ISBN:9798400703928
    DOI:10.1145/3623053

    Copyright © 2023 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 28 November 2023

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
    • Research
    • Refereed limited

    Acceptance Rates

    Overall Acceptance Rate178of869submissions,20%
  • Article Metrics

    • Downloads (Last 12 months)51
    • Downloads (Last 6 weeks)8

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format .

View HTML Format