skip to main content
research-article

High-efficiency TRNG Design Based on Multi-bit Dual-ring Oscillator

Authors Info & Claims
Published:05 December 2023Publication History
Skip Abstract Section

Abstract

Unpredictable true random numbers are required in security technology fields such as information encryption, key generation, mask generation for anti-side-channel analysis, algorithm initialization, and so on. At present, the true random number generator (TRNG) is not enough to provide fast random bits by low-speed bits generation. Therefore, it is necessary to design a faster TRNG. This work presents an ultra-compact TRNG with high throughput based on a novel extendable dual-ring oscillator (DRO). Owing to multiple bits output per cycle in DRO can be used to obtain the original random sequence, the proposed DRO achieves a maximum resource utilization to build a more efficient TRNG, compared with the conventional TRNG system based on ring oscillator (RO), which only has a single output and needs to build multiple groups of ring oscillators. TRNG based on the 2-bit DRO and its 8-bit derivative structure has been verified on Xilinx Artix-7 and Kintex-7 FPGA under the automatic layout and routing and has achieved a throughput of 550 Mbps and 1,100 Mbps, respectively. Moreover, in terms of throughput performance over operating frequency, hardware consumption, and entropy, the proposed scheme has obvious advantages. Finally, the generated sequences show good randomness in the test of NIST SP800-22 and Dieharder test suite and pass the entropy estimation test kit NIST SP800-90B and AIS-31.

REFERENCES

  1. [1] Arciuolo T. and Elleithy K. M.. 2021. Parallel, true random number generator (P-TRNG): Using parallelism for fast true random number generation in hardware. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). 09870992. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Syafalni I., Jonatan G., Sutisna N., Mulyawan R., and Adiono T.. 2022. Efficient homomorphic encryption accelerator with integrated PRNG using low-cost FPGA. IEEE Access 10 (2022), 77537771. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Han D., Lee J., and Yoo H. -J.. 2021. DF-LNPU: A pipelined direct feedback alignment-based deep neural network learning processor for fast online learning. IEEE Journal of Solid-State Circuits 56, 5 (2021), 16301640. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Maksutov A. A., Goryushkin P. N., Gerasimov A. A., and Orlov A. A.. 2018. PRNG assessment tests based on neural networks. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 339341. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Jing-Yang Liu, Xing-Yu Zhou, Chun-Hui Zhang, Hua-Jian Ding, Yi-Peng Chen, Jian Li, and Qin Wang. 2021. Boosting the performance of reference-frame-independent measurement-device-independent quantum key distribution. Journal of Lightwave Technology 39, 17 (2021), 54865493. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] De Meyer L.. 2020. Cryptography in the Presence of Physical Attacks: Design, Implementation and Analysis. Ph.D. dissertation, Dept. Eng. Sci., Dept. Elect. Eng., KU Leuven, Leuven, Belgium.Google ScholarGoogle Scholar
  7. [7] Hasan R. S., Tawfeeq S. K., Mohammed N. Q., and Khaleel A. I.. 2018. A true random number generator based on the photon arrival time registered in a coincidence window between two single-photon counting modules. Chinese Journal of Physics 56, 1 (2018), 385391. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Abutaleb M. M.. 2018. A novel true random number generator based on QCA nanocomputing. Nano Communication Networks 17 (2018), 1420. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Cao Y., Liu W., Qin L., Liu B., Chen S., Ye J., Xia X., and Wang C.. 2022. Entropy sources based on silicon chips: True random number generator and physical unclonable function. Entropy 24, 11 (2022), 1566. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Sala R. D., Bellizia D., and Scotti G.. 2022. High-throughput FPGA-compatible TRNG architecture exploiting multistimuli metastable cells. IEEE Transactions on Circuits and Systems I: Regular Papers 69, 12 (2022), 48864897. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David Banks, N. Heckert, James Dray, San Vo, and Lawrence Bassham (NIST). 2010. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications. Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Turan Meltem Sönmez, Barker Elaine, Kelsey John, McKay Kerry A., Baish Mary L., and Boyle Mike. 2018. Recommendation for the Entropy Sources Used for Random Bit Generation. Technical Report. NIST, Gaithersburg, MD.Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] NIST. 2001. Security Requirements for Cryptographic Modules. Technical Report. NIST, Washington, DC.Google ScholarGoogle Scholar
  14. [14] Killmann Wolfgang and Schindler Werner. 2011. A proposal for: Functionality classes for random number generators. Retrieved May 22, 2019 from https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/15ss/15ss-taoc/01_AIS31_Functionality_classes_for_random_number_generators.pdfGoogle ScholarGoogle Scholar
  15. [15] Grujić M. and Verbauwhede I.. 2022. TROT: A three-edge ring oscillator based true random number generator with time-to-digital conversion. IEEE Transactions on Circuits and Systems I: Regular Papers 69, 6 (2022), 24352448. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Nalla Anandakumar N., Sanadhya S. K., and Hashmi M. S.. 2020. FPGA-based true random number generation using programmable delays in oscillator-rings. IEEE Transactions on Circuits and Systems II: Express Briefs 67, 3 (2020), 570574. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Jianguo Cui, Maoxiang Yi, Di Cao, Liang Yao, Xinyu Wang, Huaguo Liang, Zhengfeng Huang, Haochen Qi, Tianming Ni, and Yingchun Lu. 2022. Design of true random number generator based on multi-stage feedback ring oscillator. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 3 (2022), 17521756. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Fujieda N., Takeda M., and Ichikawa S.. 2020. An analysis of DCM-based true random number generator. IEEE Transactions on Circuits and Systems II: Express Briefs 67, 6 (2020), 11091113. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Johnson A. P., Chakraborty R. S., and Mukhopadyay D.. 2017. An improved DCM-based tunable true random number generator for Xilinx FPGA. IEEE Transactions on Circuits and Systems II: Express Briefs 64, 4 (2017), 452456. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Frustaci F., Spagnolo F., Perri S., and Corsonello P.. 2023. A high-speed FPGA-based true random number generator using metastability with clock managers. IEEE Transactions on Circuits and Systems II: Express Briefs 70, 2 (2023), 756760. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Nannipieri P., Di Matteo S., Baldanzi L., Crocetti L., Belli J., Fanucci L., and Saponarara S.. 2021. True random number generator based on Fibonacci-Galois ring oscillators for FPGA. Applied Sciences 11, 8 (2021), 3330. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Demir K. and Ergun S.. 2019. Random number generators based on irregular sampling and Fibonacci–Galois ring oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs 66, 10 (2019), 17181722. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Gong L., Zhang J., Sang L., Liu H., and Wang Y.. 2020. The unpredictability analysis of Boolean chaos. IEEE Transactions on Circuits and Systems II: Express Briefs 67, 10 (2020), 18541858. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Luo Y., Wang W., Best S., Wang Y., and Xu X.. 2020. A high-performance and secure TRNG based on chaotic cellular automata topology. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 12 (2020), 49704983. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Sunar B., Martin W. J., and Stinson D. R.. 2007. A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers 56, 1 (2007), 109119. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Xu X. and Wang Y.. 2016. High speed true random number generator based on FPGA. In Proceedings of the 2016 International Conference on Information Systems Engineering (ICISE). 1821. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Golic J. D. J.. 2006. New methods for digital generation and postprocessing of random data. IEEE Transactions on Computers 55, 10 (2006), 12171229. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Lin J., Wang Y., Zhao Z., Hui C., and Song Z.. 2020. A new method of true random number generation based on Galois ring oscillator with event sampling architecture in FPGA. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Michael Ghil, Ilya Zaliapin, and Barbara Coluzzi. 2008. Boolean delay equations: A simple way of looking at complex systems. Physica D: Nonlinear Phenomena 237, 23 (2008), 29672986. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Sheng Zhòu and Xie Shiqian. 2020. Probability Theory and Mathematical Statistics. Higher Education Press.Google ScholarGoogle Scholar
  31. [31] L. Bassham, A. Rukhin, J. Soto, J. Nechvatal, M. Smid, S. Leigh, M. Levenson, M. Vangel, N. Heckert, and D. Banks. 2010. A statistical test suite for random and pseudorandom number generators for cryptographic applications, special publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, [online]. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762Google ScholarGoogle Scholar
  32. [32] Siwan Dong, Yarong Wang, Xin Xin, and Xingyuan Tong. 2021. A chaos-based true random number generator based on OTA sharing and non-flipped folded Bernoulli mapping for high-precision ADC calibration. Microelectronics Journal 116, 2021 (2021), 105259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. [33] Robert G. Brown, Dirk Eddelbuettel, and David Bauer. 2011. Dieharder: A Random Number Test Suite, published by Duke University Physics Department Durham, NC 27708-0305, 2011, [online], Robert G. Brown's General Tools Page (duke.edu).Google ScholarGoogle Scholar
  34. [34] McKay K.. 2016. Users Guide to Running the Draft NIST SP 800-90B Entropy Estimation Suite. NIST, Gaithersburg, MD, USA, Technical Report. SP 800–90B, 2016.Google ScholarGoogle Scholar
  35. [35] Killmann W. and Schindler W.. 2011. A proposal for: Functionality classes for random number generators, version 2.0. In Proceedings of the Bundesamt für Sicher-heit Informationstechnik. 1133.Google ScholarGoogle Scholar
  36. [36] Liu Y., Cheung R. C. C., and Wong H.. 2017. A bias-bounded digital true random number generator architecture. IEEE Transactions on Circuits and Systems I: Regular Papers 64, 1 (2017), 133144. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Cao Y., Zhao X., Zheng W., Zheng Y., and Chang C. -H.. 2022. A new energy-efficient and high throughput two-phase multi-bit per cycle ring oscillator-based true random number generator. IEEE Transactions on Circuits and Systems I: Regular Papers 69, 1 (2022), 272283. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Martin H., Peris-Lopez P., Tapiador J. E., and San Millan E.. 2016. A new TRNG based on coherent sampling with self-timed rings. IEEE Transactions on Industrial Informatics 12, 1 (2016), 91100. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Peetermans Adriaan, Rožić Vladimir, and Verbauwhede Ingrid. 2021. Design and analysis of configurable ring oscillators for true random number generation based on coherent sampling. ACM Transactions on Reconfigurable Technology and Systems 14, 2 (2021), 20 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Park J., Kim B., and Sim J. -Y.. 2022. A PVT-tolerant oscillation-collapse-based true random number generator with an odd number of inverter stages. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 10 (2022), 40584062. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Bayon P., Bossuet L., Aubert A., and Fischer V.. 2016. Fault model of electromagnetic attacks targeting ring oscillator-based true random number generators. Journal of Cryptographic Engineering 6, 1 (2016), 6174. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Bahadur V., Selvakumar D., Vijendran, and Sobha P. M.. 2016. Reconfigurable side channel attack resistant true random number generator. In Proceedings of the 2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA). 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Addabbo T., Fort A., Moretti R., Mugnaini M., Takaloo H., and Vignoli V.. 2020. A new class of digital circuits for the design of entropy sources in programmable logic. IEEE Transactions on Circuits and Systems I: Regular Papers 67, 7 (2020), 24192430. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Xinyu Wang, Huaguo Liang, Yanjie Wang, Liang Yao, Yang Guo, Maoxiang Yi, Zhengfeng Huang, Haochen Qi, and Yingchun Lu. 2021. High-throughput portable true random number generator based on jitter-latch structure. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 2 (2021), 741750. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Frustaci F., Spagnolo F., Perri S.. 2023. A high-speed FPGA-based true random number generator using metastability with clock managers. IEEE Transactions on Circuits and Systems II: Express Briefs 70, 2 (2023), 756760. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Sala R. Della, Bellizia D., and Scotti G.. 2022. A novel ultra-compact FPGA-compatible TRNG architecture exploiting latched ring oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs 69, 3 (2022), 16721676. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Pratihar K., Chatterjee U., Alam M., Chakraborty R. S., and Mukhopadhyay D.. 2023. Birds of the same feather flock together: A dual-mode circuit candidate for strong PUF-TRNG functionalities. IEEE Transactions on Computers 72, 6 (2023), 16361651. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Li Xiang, Stanwicks Peter, Provelengios George, Tessier Russell, and Holcomb Daniel. 2023. Jitter-based adaptive true random number generation circuits for FPGAs in the cloud. ACM Transactions on Reconfigurable Technology and Systems 16, 1, (2023), 20 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [49] Yang Bohan, Rožić Vladimir, and Grujić Miloš. 2018. ES-TRNG: A high-throughput, low-area true random number generator based on edge sampling. IACR Transactions on Cryptographic Hardware and Embedded Systems 2018, 3 (Aug. 2018), 267292. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. High-efficiency TRNG Design Based on Multi-bit Dual-ring Oscillator

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Reconfigurable Technology and Systems
      ACM Transactions on Reconfigurable Technology and Systems  Volume 16, Issue 4
      December 2023
      343 pages
      ISSN:1936-7406
      EISSN:1936-7414
      DOI:10.1145/3615981
      • Editor:
      • Deming Chen
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 December 2023
      • Online AM: 21 September 2023
      • Accepted: 8 September 2023
      • Revised: 31 July 2023
      • Received: 25 March 2023
      Published in trets Volume 16, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)318
      • Downloads (Last 6 weeks)49

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text