skip to main content
survey

A Survey on Collaborative Learning for Intelligent Autonomous Systems

Published:10 November 2023Publication History
Skip Abstract Section

Abstract

This survey examines approaches to promote Collaborative Learning in distributed systems for emergent Intelligent Autonomous Systems (IAS). The study involves a literature review of Intelligent Autonomous Systems based on Collaborative Learning, analyzing aspects in four dimensions: computing environment, performance concerns, system management, and privacy concerns, mapping the significant requirements of systems to the emerging Artificial intelligence models. Furthermore, the article explores Collaborative Learning Taxonomy for IAS to demonstrate the correlation between IoT, Big Data, and Human-in-the-Loop. Several technological open issues exist in the aforementioned domains (such as in applications of autonomous driving, robotics in healthcare, cyber security, and others) to effectively achieve the future deployment of Intelligent Autonomous Systems. This Survey aims to organize concepts around IAS, indicating the approaches used to extract knowledge from data in Collaborative Learning for IAS, and identifying open issues. Moreover, it presents a guide to overcoming the existing challenges in decision-making mechanisms with IAS, providing a holistic vision of Big Data and Human-in-the-Loop.

REFERENCES

  1. [1] Abreha Haftay Gebreslasie, Hayajneh Mohammad, and Serhani Mohamed Adel. 2022. Federated learning in edge computing: A systematic survey. Sensors 22, 2 (Jan.2022), 145. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Apache Spark. 2022. Apache Spark. Retrieved from https://spark.apache.org/Google ScholarGoogle Scholar
  3. [3] Arulkumaran Kai, Deisenroth Marc Peter, Brundage Miles, and Bharath Anil Anthony. 2017. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine 34, 6 (Nov.2017), 2638. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Behere Sagar, Asplund Fredrik, Söderberg Andreas, and Törngren Martin. 2016. Architecture challenges for intelligent autonomous machines. In Intelligent Autonomous Systems 13 (Advances in Intelligent Systems and Computing (AISC)). Menegatti Emanuele, Michael Nathan, Berns Karsten, and Yamaguchi Hiroaki (Eds.), Vol. 302. Springer International Publishing, Cham, 16691681. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Bengio Yoshua, Lecun Yann, and Hinton Geoffrey. 2021. Deep learning for AI. Commun. ACM 64, 7 (June2021), 5865. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Braten Anders E., Kraemer Frank A., and Palma David. 2020. Autonomous IoT device management systems: Structured review and generalized cognitive model. IEEE Internet of Things Journal 8, 6 (Nov.2020), 116. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Busoniu Lucian, Babuska Robert, and Schutter Bart De. 2008. A comprehensive survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 38, 2 (Feb.2008), 156172. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Chang Hongyan, Shejwalkar Virat, Shokri Reza, and Houmansadr Amir. 2019. Cronus: Robust and heterogeneous collaborative learning with black-box knowledge transfer. CoRR abs/1912.11279, 1–16. http://arxiv.org/abs/1912.11279Google ScholarGoogle Scholar
  9. [9] Chen C. L. P. and Liu Z.. 2018. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems 29, 1 (Jan.2018), 1024. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Chen Min and Hao Yixue. 2020. Label-less learning for emotion cognition. IEEE Transactions on Neural Networks and Learning Systems 31, 7 (July2020), 24302440. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Chen Migzhe, Poor H. Vicent, Saad Walid, and Cui Shuguang. 2020. Wireless communications for collaborative federated learning. IEEE Communications Magazine 58, 12 (Dec.2020), 4854. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  12. [12] Chen Shuzhen, Tao Youming, Yu Dongxiao, Li Feng, Gong Bei, and Cheng Xiuzhen. 2021. Privacy-preserving collaborative learning for multiarmed bandits in IoT. IEEE Internet of Things Journal 8, 5 (March2021), 32763286. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Chen Yujing, Ning Yue, Slawski Martin, and Rangwala Huzefa. 2020. Asynchronous online federated learning for edge devices with non-IID data. In 2020 IEEE International Conference on Big Data (Big Data). IEEE Computer Society, 1524. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Chen Zheyi, Tian Pu, Liao Weixian, and Yu Wei. 2021. Zero knowledge clustering based adversarial mitigation in heterogeneous federated learning. IEEE Transactions on Network Science and Engineering 8, 2 (June2021), 10701083. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Chiu Te-Chuan, Shih Yuan-Yao, Pang Ai-chun, Wang Chieh-Sheng, Weng Wei, and Chou Chun-Ting. 2020. Semisupervised distributed learning with non-IID data for AIoT service platform. IEEE Internet of Things Journal 7, 10 (May2020), 92669277. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Corinzia Luca, Beuret Ami, and Buhmann Joachim M.. 2021. Variational federated multi-task learning. CoRR abs/1906.06268, 1–12. https://arxiv.org/abs/1906.06268Google ScholarGoogle Scholar
  17. [17] Graaf Maartje MA De and Malle Bertram F. 2017. How people explain action (and autonomous intelligent systems should too). In 2017 AAAI Fall Symposium Series. The AAAI Press, 18. Google ScholarGoogle Scholar
  18. [18] Dennis Louise A. and Fisher Michael. 2020. Verifiable self-aware agent-based autonomous systems. Proc. IEEE 108, 7 (July2020), 10111026. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Dinneweth Joris, Boubezoul Abderrahmane, Mandiau René, and Espié Stéphane. 2022. Multi-agent reinforcement learning for autonomous vehicles: A survey. Autonomous Intelligent Systems 2, 27 (Nov.2022), 112. showISSN2730-616X DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Dong Hao, Ding Zihan, and Zhang Shanghang (Eds.). 2020. Deep Reinforcement Learning—Fundamentals, Research and Applications. Springer Nature Singapore, Gateway East, Singapore. 526 pages. Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Anjos Julio C. S. dos, Gross João L. G., Matteussi Kassiano J., González Gabriel V., Leithardt Valderi R. Q., and Geyer Claudio F. R.. 2021. An algorithm to minimize energy consumption and elapsed time for IoT workloads in a hybrid architecture. Sensors 21, 9 (April2021), 120. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Anjos J. C. S. dos, Matteussi K. J., Souza P. R. R. De, Grabher G. J. A., Borges G. A., Barbosa J. L. V., González G. V., Leithardt V. R. Q., and Geyer C. F. R.. 2020. Data processing model to perform big data analytics in hybrid infrastructures. IEEE Access 8 (Sept.2020), 170281170294. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Anjos Julio C. S. dos, Matteussi Kassiano J, Jr Paulo RR de Souza, Veith Alexandre da Silva, Fedak Gilles, Barbosa Jorge Luis Victória, and Geyer Claudio F. R.. 2018. Enabling strategies for big data analytics in hybrid infrastructures. HPCS—-International Conference on High Performance Computing and Simulation, 869876. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Du Zhaoyang, Wu Celimuge, Yoshinaga Tsutomu, Yau Kok-lim A., Ji Yusheng, and Li Jie. 2020. Federated learning for vehicular internet of things: Recent advances and open issues. IEEE Open Journal of the Computer Society 1 (May2020), 4561. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Eichner Hubert, Koren Tomer, McMahan Brendan, Srebro Nathan, and Talwar Kunal. 2019. Semi-cyclic stochastic gradient descent. In Proceedings of the 36th International Conference on Machine Learning (Proceedings of Machine Learning Research). Chaudhuri Kamalika and Salakhutdinov Ruslan (Eds.), Vol. 97. PMLR, 17641773.Google ScholarGoogle Scholar
  26. [26] Elayan Haya, Aloqaily Moayad, and Guizani Mohsen. 2021. Sustainability of healthcare data analysis IoT-based systems using deep federated learning. IEEE Internet of Things Journal 9, 10 (2021), 1–9.Google ScholarGoogle Scholar
  27. [27] Fan Sizheng, Zhang Hongbo, Zeng Yuchen, and Cai Wei. 2021. Hybrid blockchain-based resource trading system for federated learning in edge computing. IEEE Internet of Things Journal 8, 4 (Feb.2021), 22522264. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Farhat Peter, Sami Hani, and Mourad Azzam. 2020. Reinforcement R-learning model for time scheduling of on-demand fog placement. The Journal of Supercomputing 76, 1 (2020), 388410. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Feng Lei, Zhao Yiqi, Guo Shaoyong, Qiu Xuesong, Li Wenjing, and Yu Peng. 2021. Blockchain-based asynchronous federated learning for Internet of Things. IEEE Trans. Comput. 71, 5 (April2021), 112. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Ferdinand Nuwan and Draper Stark. 2018. Anytime Stochastic Gradient Descent: A Time to Hear from all the Workers. Cornell University, ArXiv, 1–10. https://arxiv.org/abs/1810.02976Google ScholarGoogle Scholar
  31. [31] Ferdinand Nuwan, Gharachorloo Benjamin, and Draper Stark C.. 2017. Anytime exploitation of stragglers in synchronous stochastic gradient descent. In 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE Computer Society, 141146. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Fernandes J., Raposo D., Armando N., Sinche S., Silva J. Sá, Rodrigues A., Pereira V., Oliveira H. Gonçalo, Macedo Luís, and Boavida F.. 2020. ISABELA—A socially-aware human-in-the-loop advisor system. Online Social Networks and Media 16 (March2020), 100060. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Fu Anmin, Zhang Xianglong, Xiong Naixue, Gao Yansong, Wang Huaqun, and Zhang Jing. 2020. VFL: A verifiable federated learning with privacy-preserving for big data in industrial IoT. IEEE Transactions on Industrial Informatics 18, 5 (Nov.2020), 111. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Gao Xin, Wang Donghua, Zhang Jun, Liao Qing, and Liu Bin. 2019. iRBP-Motif-PSSM: Identification of RNA-binding proteins based on collaborative learning. IEEE Access 7 (Nov.2019), 168956168962. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Ghosh Ankan, Khalid Osman, Rais Rao N. B., Rehman Amjad, Malik Saif U. R., and Khan Imran A.. 2019. Data offloading in IoT environments: Modeling, analysis, and verification. EURASIP Journal on Wireless Communications and Networking 2019, 59 (March2019), 123. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Gross João Luiz Grave, Matteussi Kassiano José, Anjos Julio C. S. dos, and Geyer Cláudio Fernando Resin. 2020. A dynamic cost model to minimize energy consumption and processing time for IoT tasks in a mobile edge computing environment. In Service-Oriented Computing. Kafeza Eleanna, Benatallah Boualem, Martinelli Fabio, Hacid Hakim, Bouguettaya Athman, and Motahari Hamid (Eds.), Vol. 12571. Springer International Publishing, Cham, 101109. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [37] Gupta Deepti, Kayode Olumide, Bhatt Smriti, Gupta Maanak, and Tosun Ali Saman. 2020. Learner’s dilemma: IoT devices training strategies in collaborative deep learning. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). IEEE Computer Society, 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Gupta Deepti, Kayode Olumide, Bhatt Smriti, Gupta Maanak, and Tosun Ali S.. 2020. Learner’s dilemma: IoT devices training strategies in collaborative deep learning. In 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). IEEE Computer Society, 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  39. [39] Hakimi Ido, Barkai Saar, Gabel Moshe, and Schuster Assaf. 2020. Taming Momentum in a Distributed Asynchronous Environment. Cornell University, 1–18. https://arxiv.org/abs/1907.11612Google ScholarGoogle Scholar
  40. [40] Halabi Talal and Zulkernine Mohammad. 2019. Trust-based cooperative game model for secure collaboration in the internet of vehicles. In ICC 2019–2019 IEEE International Conference on Communications (ICC). IEEE Computer Society, 16. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Hasani Ramin, Lechner Mathias, Amini Alexander, Rus Daniela, and Grosu Radu. 2021. Liquid time-constant networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21). 76577666.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Heimerl Alexander, Baur Tobias, Lingenfelser Florian, Wagner Johannes, and André Elisabeth. 2019. NOVA—A tool for eXplainable cooperative machine learning. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII). IEEE Computer Society, 109115. Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Hu Wenxing, Cai Biao, Zhang iying, Calhoun Vince D., and Wang Yu-Ping. 2019. Deep collaborative learning with application to the study of multimodal brain development. IEEE Transactions on Biomedical Engineering 66, 12 (March2019), 33463359. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Hua Gaofeng, Zhu Li, Wu Jinsong, Shen Chunzi, Zhou Linyan, and Lin QingQing. 2020. Blockchain-based federated learning for intelligent control in heavy haul railway. IEEE Access 8 (Sept.2020), 176830176839. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Imani Mohsen, Kim Yeseong, Riazi Sadegh, Messerly John, Liu Patric, Koushanfar Farinaz, and Rosing Tajana. 2019. A framework for collaborative learning in secure high-dimensional space. In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE Computer Society, 435446. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Jia Qi, Guo Linke, Fang Yuguang, and Wang Guirong. 2019. Efficient privacy-preserving machine learning in hierarchical distributed system. IEEE Transactions on Network Science and Engineering 6, 4 (Dec.2019), 599612. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Jiang Linshan, Tan Rui, Lou Xin, and Lin Guosheng. 2019. On lightweight privacy-preserving collaborative learning for internet-of-things objects. In Proceedings of the International Conference on Internet of Things Design and Implementation (IoTDI’19). ACM, New York, NY, 7081. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [48] Kabir Sohag and Papadopoulos Yiannis. 2020. Computational intelligence for safety assurance of cooperative systems of systems. Computer 53, 12 (Nov.2020), 2434. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [49] Kanerva P.. 2019. Computing with high-dimensional vectors. IEEE Design Test 36, 3 (Dec.2019), 714. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Khalil Khaled M., Abdel-Aziz M., Nazmy Taymour T., and Salem Abdel-Badeeh M.. 2015. Machine learning algorithms for multi-agent systems. In Proceedings of the International Conference on Intelligent Information Processing, Security and Advanced Communication (IPAC’15). ACM, New York, NY, Article 59, 5 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. [51] Khoa Tran V., Saputra Yuris M., Hoang Dinh T., Trung Nguyen L., Nguyen Diep, Ha Nguyen V., and Dutkiewicz Eryk. 2020. Collaborative learning model for cyberattack detection systems in IoT industry 4.0. In 2020 IEEE Wireless Communications and Networking Conference (WCNC). 16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Kitchenham Barbara A.. 2012. Systematic review in software engineering: Where we are and where we should be going. In Proceedings of the 2nd International Workshop on Evidential Assessment of Software Technologies (EAST’12). Association for Computing Machinery, New York, NY, 12. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. [53] Kouris Aexandros, Venieris Stylianos I., and Bouganis Christos-Savvas. 2019. Towards efficient on-board deployment of DNNs on intelligent autonomous systems. In 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE Computer Society, 568573. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Kusne A. Gilad, Yu Heshan, Wu Changming, Zhang Huairuo, Hattrick-Simpers Jason, DeCost Brian, Sarker Suchismita, Oses Corey, Toher Cormac, Curtarolo Stefano, Davydov Albert V., Agarwal Ritesh, Bendersky Leonid A., Li Mo, Mehta Apurva, and Takeuchi Ichiro. 2020. On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications Volume 11, 5966(2020) (Nov.2020), 111. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] La Hung M., Lim Ronny, and Sheng Wwihua. 2015. Multirobot cooperative learning for predator avoidance. IEEE Transactions on Control Systems Technology 23, 1 (April2015), 5263. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Laird John E., Lebiere Christian, and Rosenbloom Paul S.. 2017. A standard model of the mind: Toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Magazine 38, 4 (Dec.2017), 1326. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. [57] Lei Lei, Tan Yue, Zheng Kan, Liu Shiwen, Zhang Kuan, and Shen Xuemin. 2020. Deep reinforcement learning for autonomous Internet of Things: Model, applications and challenges. IEEE Communications Surveys Tutorials 22, 3 (April2020), 17221760. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Li Tian, Sahu Aniy Kumar, Talwalkar Ameet, and Smith Virginia. 2020. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine 37, 3 (May2020), 5060. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Li Tian, Sahu Anit Kumar, Zaheer Manzil, Sanjabi Maziar, Talwalkar Ameet, and Smith Virginia. 2020. Federated optimization in heterogeneous networks. In Proceedings of Machine Learning and Systems 2020, MLSys 2020, Dhillon Inderjit S., Papailiopoulos Dimitris S., and Sze Vivienne (Eds.), Vol. 2. mlsys.org, Austin, TX, 429450.Google ScholarGoogle Scholar
  60. [60] Li Wenhui, Nie Weizhi, and Su Yuting. 2018. Human action recognition based on selected spatio-temporal features via bidirectional LSTM. IEEE Access 6 (Aug.2018), 4421144220. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Lin Ying, Liu Kaibo, Byon Eunshin, Qian Xiaoning, Liu Shan, and Huang Shuai. 2018. A collaborative learning framework for estimating many individualized regression models in a heterogeneous population. IEEE Transactions on Reliability 67, 1 (March2018), 328341. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Liu Guozhi, Dai Fei, Huang Bi, Qiang Zhenping, Wang Shuai, and Li Lecheng. 2022. A collaborative computation and dependency-aware task offloading method for vehicular edge computing: A reinforcement learning approach. Journal of Cloud Computing 11, 68 (Oct.2022), 115. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. [63] Mani Ganapathy, Bharat Bhargava, Shivakumar Basavesh, and Kobes Jason. 2018. Incremental learning through graceful degradations in autonomous systems. In 2018 IEEE International Conference on Cognitive Computing (ICCC). IEEE Computer Society, 2532. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Manogaran Gunasekaran, Alazab Mamoun, Shakeel P. Mohamed, and Hsu Ching-Hsien. 2022. Blockchain assisted secure data sharing model for Internet of Things based smart industries. IEEE Transactions on Reliability 71, 1 (March2022), 348358. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] Matteussi Kassiano J., Anjos Julio C. S. dos, Leithardt Valderi R. Q., and Geyer Claudio F. R.. 2022. Performance evaluation analysis of spark streaming backpressure for data-intensive pipelines. Sensors 22, 13 (2022), 4756(1–28). DOI:Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Matteussi Kassiano J., Zanchetta Breno F., Bertoncello Germano, Santos Jobe Dos, Anjos Julio C. S. Dos, and Geyer Claudio F. R.. 2019. Analysis and performance evaluation of deep learning on big data. In 2019 IEEE Symposium on Computers and Communications (ISCC) (IEEE ISCC 2019). IEEE Computer Society, 751756. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Matthews Gerald, Hancock Peter A., Lin Jinchao, Panganiban April Rose, Reinerman-Jones Lauren E., Szalma James L., and Wohleber Ryan W.. 2021. Evolution and revolution: Personality research for the coming world of robots, artificial intelligence, and autonomous systems. Personality and Individual Differences 169, 109969 (March2021), 111. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Matthews G., Reinerman-Jones L. E., Barber D. J., Teo G., Wohleber R. W., Lin J., and Panganiban A. R.. 2016. Resilient autonomous systems: Challenges and solutions. In 2016 Resilience Week (RWS). IEEE Computer Society, 208213. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Melis Luca, Song Congzheng, Cristofaro Emiliano De, and Shmatikov Vitaly. 2019. Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, 691706. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Meng Lingwu., You Xiaoming., and Liu Sheng. 2020. Multi-colony collaborative ant optimization algorithm based on cooperative game mechanism. IEEE Access 8 (Sept.2020), 154153154165. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Mohammadi M. and Al-Fuqaha A.. 2018. Enabling cognitive smart cities using big data and machine learning: Approaches and challenges. IEEE Communications Magazine 56, 2 (Feb.2018), 94101. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. [72] Müller Christopher. 2022. World Robotics 2022 – Industrial Robots. Technical Report. Frankfurt, Germany. 98 pages. Google ScholarGoogle Scholar
  73. [73] Nahavandi S.. 2019. Trust in autonomous systems-iTrust lab: Future directions for analysis of trust with autonomous systems. IEEE Systems, Man, and Cybernetics Magazine 5, 3 (July2019), 5259. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Nunes David, Silva Jorge Sá, and Boavida Fernando. 2018. A Practical Introduction to Human-in-the-Loop Cyber-Physical Systems. John Wiley & Sons. 289 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Nunes D. S., Zhang P., and Silva J. Sá. 2015. A Survey on human-in-the-loop applications towards an internet of all. IEEE Communications Surveys Tutorials 17, 2 (Feb.2015), 944965. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. [76] Pant Y. V., Abbas H., Mohta K., Quaye R. A., Nghiem T. X., Devietti J., and Mangharam R.. 2020. Anytime computation and control for autonomous systems. IEEE Transactions on Control Systems Technology 29, 2 (Mar2020), 112. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Nicolas Papernot, Martín Abadi, U. Erlingsson, I. Goodfellow, and Kunal Talwar. 2017. Semi-supervised knowledge transfer for deep learning from private training data. 5th International Conference on Learning Representations (ICLR’17), abs/1610.05755, 1–16. https://arxiv.org/abs/1610.05755Google ScholarGoogle Scholar
  78. [78] Park Jin-ho, Salim Mikail Mohammed, Jo Jeong Hoon, Sicato Jose Costa Sapalo, Rathore Shailendra, and Park Jong Hyuk. 2019. CIoT-net: A scalable cognitive IoT based smart city network architecture. Human-Centric Computing and Information Sciences 9, 29 (Aug.2019), 120. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. [79] Parliament European and EU Council. 2016. General data protection regulation. Official Journal of the European Union 59 (May2016), 1149. Retrieved from https://gdpr-info.eu/Google ScholarGoogle Scholar
  80. [80] Pramanik Pijush Kanti Dutta, Pal Saurabh, and Choudhury Prasenjit. 2018. Beyond Automation: The Cognitive IoT. Artificial Intelligence Brings Sense to the Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, Vol. 14. Springer International Publishing, 137. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Hernández M. E. Pérez and Reiff-Marganiec S.. 2016. Towards a software framework for the autonomous Internet of Things. In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud). IEEE Computer Society, 220227. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] Qammar Attia, Karim Ahmad, Ning Huansheng, and Ding Jianguo. 2022. Securing federated learning with blockchain: A systematic literature review. Artificial Intelligence Review 56, 5 (Sept.2022), 135. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. [83] Qian Shengsheng, Zhang Tianzhu, and Xu Changsheng. 2018. Cross-domain collaborative learning via discriminative nonparametric Bayesian model. IEEE Transactions on Multimedia 20, 8 (Dec.2018), 20862099. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  84. [84] Qin Yao, Bruzzone Lorenzo, Li Biao., and Ye Yuanxin. 2019. Cross-domain collaborative learning via cluster canonical correlation analysis and random walker for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing 57, 6 (Jan.2019), 39523966. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Rahman Sawsan A., Tout Hanine, Ould-Slimane Hakima, Mourad Azzam, Talhi Chamseddine, and Guizani Mohsen. 2020. A survey on federated learning: The journey from centralized to distributed on-site learning and beyond. IEEE Internet of Things Journal 8, 7 (Oct.2020), 123. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Rapids Spark. 2022. RAPIDS—Accelerator for Apache Spark Leverages GPUs. Retrieved from https://nvidia.github.io/spark-rapids/Google ScholarGoogle Scholar
  87. [87] Reinsel David. 2019. How You Contribute to Today’s Growing DataSphere and Its Enterprise Impact. Retrieved from https://blogs.idc.com/2019/11/04/how-you-contribute-to-todays-growing-d%atasphere-and-its-enterprise-impact/Google ScholarGoogle Scholar
  88. [88] Russel Stuart and Norving Peter. 2021. Artificial Intelligence, A Modern Approach (4th ed.). Pearson Education Limited. 1066 pages. Google ScholarGoogle Scholar
  89. [89] Samaniego M. and Deters R.. 2017. Internet of smart things - IoST: Using blockchain and CLIPS to make things autonomous. In 2017 IEEE International Conference on Cognitive Computing (ICCC). IEEE Computer Society, 916. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  90. [90] Sarker Sujan, Jamal Lafifa, Ahmed Syeda Faiza, and Irtisam Niloy. 2021. Robotics and artificial intelligence in healthcare during COVID-19 pandemic: A systematic review. Robotics and Autonomous Systems 146, 103902 (Dec.2021), 118. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. [91] Sattler Felix, Wiedemann Simon, Müller Klaus-Robert, and Samek Wojciech. 2020. Robust and communication-efficient federated learning from non-i.i.d. data. IEEE Transactions on Neural Networks and Learning Systems 31, 9 (Sept.2020), 34003413. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Sengupta Souvik, Garcia Jordi, and Masip-Bruin Xavi. 2020. Collaborative learning-based schema for predicting resource usage and performance in F2C paradigm. In 2020 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE Computer Society, 16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Seo Jeongin and Park Hyeyoung. 2019. Object recognition in very low resolution images using deep collaborative learning. IEEE Access 7 (Sept.2019), 134071134082. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Shallue Christopher J., Lee Jaehoon, Antognini Joseph, Sohl-Dickstein Jascha, Frostig Roy, and Dahl George E.. 2019. Measuring the effects of data parallelism on neural network training. Journal of Machine Learning Research 20, 112 (July2019), 149.Google ScholarGoogle Scholar
  95. [95] Shao Taihua, Kui Xiaoyan, Zhang Pengfei, and Chen Honghui. 2019. Collaborative learning for answer selection in question answering. IEEE Access 7 (Jan.2019), 73377347. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Sifakis Joseph. 2019. Autonomous systems—An Architectural Characterization. Springer Nature Switzerland, 388410. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] Silver David, Singh Satinder, Precup Doina, and Sutton Richard S.. 2021. Reward is enough. Artificial Intelligence 299, 103535 (May2021), 113. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Smith Virginia, Chiang Chao-Kai, Sanjabi Maziar, and Talwalkar Ameet. 2017. Federated multi-task learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, 44274437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Song Mingcong, Zhong Kan, Zhang Jiaqi, Hu Yang, Liu Yang, Zhang Weigong, Wang Jing, and Li Tao. 2018. In-situ AI: Towards autonomous and incremental deep learning for IoT systems. In 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE Computer Society, 92103. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Sun Haifeng, Li Shiqi, Yu F. Richard, Qi Qi, Wang Jingyu, and Liao Jianxin. 2020. Toward communication-efficient federated learning in the Internet of Things with edge computing. IEEE Internet of Things Journal 7, 11 (May2020), 1105311067. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  101. [101] Suresh Ananda Theertha, Yu Felix X., Kumar Sanjiv, and McMahan H. Brendan. 2017. Distributed mean estimation with limited communication. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research), Precup Doina and Teh Yee Whye (Eds.), Vol. 70. PMLR, 33293337.Google ScholarGoogle Scholar
  102. [102] Tang Xiangyun, Zhu Liehuang, Shen Meng, Peng Jialiang, Kang Jiawen, Niyato Dusit, and El-Latif Ahmed A. Abd. 2022. Secure and trusted collaborative learning based on blockchain for artificial intelligence of things. IEEE Wireless Communications 29, 3 (June2022), 1422. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. [103] Van Tuan Nguyen, Xuan Nang Ho, and Duc Nam Nguyen. 2022. Design and development of multifunctional autonomous mobile disinfection robot against SARS-CoV-2 virus. International Journal of Mechanical Engineering and Robotics Research 11, 10 (Oct.2022), 718723. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Verbraeken Joost, Wolting Matthijs, Katzy Jonathan, Kloppenburg Jeroen, Verbelen Tim, and Rellermeyer Jan S.. 2020. A survey on distributed machine learning. ACM Computing Survey 53, 30-2, Article 30 (March2020), 33 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. [105] Vidhate Deepak A. and Kulkarni Parag. 2016. Performance enhancement of cooperative learning algorithms by improved decision making for context based application. In 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). IEEE Computer Society, 246252. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Viktor Herna L.. 2000. Cooperating to learn: Knowledge discovery through intelligent learning agents. In Proceedings of the 4th International Conference on MultiAgent Systems. IEEE Computer Society, 453454. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Wang Hongbign, Chen Xin, Wu Qin, Yu Qi, Hu Xingguo, Zheng Zibin, and Bouguettaya Athman. 2017. Integrating reinforcement learning with multi-agent techniques for adaptive service composition. ACM Transactions on Autonomous and Adaptive Systems 12, 2, Article 8 (May2017), 42 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  108. [108] Wang Qian, Du Minxin, Chen Xiuying, Chen Yanjiao, Zhou Pan, Chen Xiaofeng, and Huang Xinyi. 2018. Privacy-preserving collaborative model learning: The case of word vector training. IEEE Transactions on Knowledge and Data Engineering 30, 12 (Dec.2018), 23812393. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. [109] Wei Xin, Zhao Jialin, Zhou Liang, and Qian Yi. 2020. Broad reinforcement learning for supporting fast autonomous IoT. IEEE Internet of Things Journal 7, 8 (Aug.2020), 70107020. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  110. [110] Werkhoven Peter, Kester Leon, and Neerincx Mark. 2018. Telling autonomous systems what to do. In Proceedings of the 36th European Conference on Cognitive Ergonomics (ECCE’18). ACM, New York, NY, Article 2, 8 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. [111] Wu Celimuge, Liu Zhi, Liu Fuqiang, Yoshinaga Tsutomu, Ji Yusheng, and Li Jie. 2020. Collaborative learning of communication routes in edge-enabled multi-access vehicular environment. IEEE Transactions on Cognitive Communications and Networking 6, 4 (June2020), 111. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Wu Maoqiang, Ye Dongdong, Ding Jiahao, Guo Yuanxiong, Yu Rong, and Pan Miao. 2021. Incentivizing differentially private federated learning: A multi-dimensional contract approach. IEEE Internet of Things Journal 8, 13 (Jan.2021), 113. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  113. [113] Wu Zhaohui, Mao Yuxin, and Chen Huajun. 2009. Subontology-based resource management for web-based e-learning. IEEE Transactions on Knowledge and Data Engineering 21, 6 (July2009), 867880. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. [114] Xie Yutong, Xia Yong, Zhang Jianpeng, Song Yang, Feng Dagan, Fulham Michael, and Cai Weidong. 2019. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Transactions on Medical Imaging 38, 4 (Oct.2019), 9911004. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Xu Wenyuan, Fang Weiwei, Ding Yi, Zou Meixia, and Xiong Naixue. 2021. Accelerating federated learning for IoT in big data analytics with pruning, quantization and selective updating. IEEE Access 9 (March2021), 3845738466. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Yaga Dylan, Mell Peter, Roby Mik, and Scarfone Karen. 2018. Blockchain Technology Overview (1st ed.). Technical Report NISTIR 8202. National Institute of Standards and Technology. 66 pages. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  117. [117] Yu Rong and Li Peichun. 2021. Toward resource-efficient federated learning in mobile edge computing. IEEE Network 35, 1 (Feb.2021), 148155. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. [118] Zaharia Matei, Xin Reynold S., Wendell Patrick, Das Tathagata, Armbrust Michael, Dave Ankur, Meng Xiangrui, Rosen Josh, Venkataraman Shivaram, Franklin Michael J., Ghodsi Ali, Gonzalez Joseph, Shenker Scott, and Stoica Ion. 2016. Apache spark: A unified engine for big data processing. Commun. ACM 59, 11 (Oct2016), 5665. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. [119] Zannou Abderrahim, Boulaalam Abdelhak, and Nfaoui El Habib. 2021. Relevant node discovery and selection approach for the Internet of Things based on neural networks and ant colony optimization. Pervasive and Mobile Computing 70, 101311 (Jan.2021), 114. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  120. [120] Zhang Fuqiang, Zhang Yanrui, and Xu Shilin. 2022. Collaboration effectiveness-based complex operations allocation strategy towards to human–robot interaction. Autonomous Intelligent Systems 2, 20 (Aug.2022), 112. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  121. [121] Zhang Jie, Qu Zhihao, Chen Chenxi, Wang Haozhao, Zhan Yufeng, Ye Baoliu, and Guo Song. 2021. Edge learning: The enabling technology for distributed big data analytics in the edge. ACM Comput. Surv. 54, 7, Article 151 (July2021), 36 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. [122] Zhang Qingchen, Yang Laurence Tianruo, Chen Zhikui, Li Peng, and Bu Fanyu. 2019. An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing. IEEE Transactions on Industrial Informatics 15, 4 (April2019), 23302337. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] Zhang Tiehua, Shen Zhishu, Jin Jiong, Zheng Xi, Tagami Atsushi, and Cao Xianghui. 2021. Achieving democracy in edge intelligence: A fog-based collaborative learning scheme. IEEE Internet of Things Journal 8, 4 (Feb.2021), 27512761. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Zhang Tao and Zhu Quanyan. 2018. Distributed privacy-preserving collaborative intrusion detection systems for VANETs. IEEE Transactions on Signal and Information Processing over Networks 4, 1 (Feb.2018), 148161. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Zhang Wenyu, Wang Xiumin, Zhou Pan, Wu Weiwei, and Zhang Xinglin. 2021. Client selection for federated learning with non-IID data in mobile edge computing. IEEE Access 9 (Feb.2021), 2446224474. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Zhao Bin, Fan Kai, Yang Kan, Wang Zilong, Li Hui, and Yang Yintang. 2021. Anonymous and privacy-preserving federated learning with industrial big data. IEEE Transactions on Industrial Informatics 17, 9 (Jan.2021), 110. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Zhao Lingchen, Wang Qian, Zou Qin, Zhang Yan, and Chen Yanjiao. 2020. Privacy-preserving collaborative deep learning with unreliable participants. IEEE Transactions on Information Forensics and Security 15 (Jan.2020), 14861500. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. [128] Zhao Yanqi, Yang Xiaoyi, Yu Yong, Qin Baodong, Du Xiaojiang, and Guizani Mohsen. 2022. Blockchain-based auditable privacy-preserving data classification for Internet of Things. IEEE Internet of Things Journal 9, 4 (Feb.2022), 24682484. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Zheng Shuxin, Meng Qi, Wang Taifeng, Chen Wei, Yu Nenghai, Ma Zhi-Ming, and Liu Tie-Yan. 2017. Asynchronous stochastic gradient descent with delay compensation. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research). Precup Doina and Teh Yee Whye (Eds.), Vol. 70. PMLR, Sydney, Australia, 41204129.Google ScholarGoogle Scholar
  130. [130] Zheng Wenting, Deng Ryan, Chen Weikeng, Popa Raluca Ada, Panda Aurojit, and Stoica Ion. 2021. Cerebro: A platform for multi-party cryptographic collaborative learning. In 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 27232740.Google ScholarGoogle Scholar
  131. [131] Zhou Wei, Chen Dong, Yan Jun, Li Zhaojian, Yin Huilin, and Ge Wanchen. 2022. Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic. Autonomous Intelligent Systems 2, 5 (March2022), 112. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Zhu Guangxu, Wang Yong, and Huang Kaibin. 2020. Broadband analog aggregation for low-latency federated edge learning. IEEE Transactions on Wireless Communications 19, 1 (Jan.2020), 491506. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  133. [133] Zhu Hao, Cao Yang, Wang Wei, Jiang Tao, and Jin Shi. 2018. Deep reinforcement learning for mobile edge caching: Review, new features, and open issues. IEEE Network 32, 6 (Nov.2018), 5057. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Zhu Hangyu and Jin Yaochu. 2020. Multi-objective evolutionary federated learning. IEEE Transactions on Neural Networks and Learning Systems 31, 4 (April2020), 13101322. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Survey on Collaborative Learning for Intelligent Autonomous Systems

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Computing Surveys
        ACM Computing Surveys  Volume 56, Issue 4
        April 2024
        1026 pages
        ISSN:0360-0300
        EISSN:1557-7341
        DOI:10.1145/3613581
        • Editor:
        • Albert Zomaya
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 November 2023
        • Online AM: 28 September 2023
        • Accepted: 18 September 2023
        • Revised: 22 June 2023
        • Received: 7 January 2022
        Published in csur Volume 56, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • survey
      • Article Metrics

        • Downloads (Last 12 months)618
        • Downloads (Last 6 weeks)85

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text