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Figure 1: Overview of PID under heavy occlusion using mmWave radar.

ABSTRACT
We propose mmWave-ocPID, a person identification (PID) method
with millimeter-wave radar to identify individuals even when they
are heavily occluded by obstacles. We collect a multi-modal dataset
comprising mmWave radar point clouds and RGB images obtained
from 9 human subjects, with over 180,000 frames for each modality.
The mmWave-ocPID prototype employs a novel Neural Network in-
tegrated with two augmentation strategies for learning. Our initial
experimental results show that mmWave-ocPID can achieve high
identification accuracy, even when most of the human body of an
individual is occluded in a controlled environment.
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1 INTRODUCTION
Person identification (PID) aims to distinguish individuals based on
distinct features extracted from their body characteristics, such as
facial appearance, gait, etc. PID has various applications in security,
smart environments, and many other areas. Traditional PID systems
relying on visual sensors assume that the entire human body or
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part of an individual is visible [1], yet in real-world home and office
scenarios, people are often occluded by various obstacles, such as
chairs and other furniture. In such situations, visual sensor-based
PID methods perform poorly or fail completely.

As an alternative sensing modality to visual sensors, millimeter
wave (mmWave) radar has several advantages, such as its ability
to function in low-light conditions, adverse weather, and detect
targets by penetrating non-metallic objects. Previous studies show
mmWave radar’s capability of identifying individuals in open space,
without much occlusion between people and sensors [4]. In this
paper, we show research efforts in PID using mmWave radar even
under heavily occluded conditions, i.e., most of the human body is
occluded by obstacles.

As shown in Figure 1, we build a multi-sensor system and collect
a new dataset for mmWave radar-based PID under various occlu-
sions, which we call the mmWave-ocPID dataset. Our dataset is
accessible on https://zenodo.org/record/8377254. The dataset
consists of mmWave radar point clouds and synchronized RGB
image sequences, collected under partially or heavily occluded con-
ditions. The radar point clouds roughly outline a person’s silhouette
and provide velocity information, emphasizing mmWave radar’s
potential in identifying obstructed individuals. Thus, we propose
a novel neural network with two modules: (1) A feature extractor
with two attention mechanisms takes a sequence of radar point
cloud frames as input, (2) A spatio-temporal network to extract
complete gait features. Because point clouds are sparse, we propose
two data augmentation strategies to improve PID accuracy. Finally,
experimental results show that our data augmentation method can
increase accuracy by 10.72%, and the overall method can achieve
an accuracy of 94.17% on average.

2 SYSTEM AND METHOD
2.1 System
To conduct PID under diverse occlusion conditions, We use a COTS
mmWave radar and an RGB-D camera to capture the sequential
data. Specifically, We utilize a TI IWR6843ISK-ODS radar for the
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transmission and reception of radar signals; and we use an Intel
RealSense D435 camera to collect RGB images with 424×240 resolu-
tion. The radar achieves a range resolution of 4.5𝑐𝑚 and a maximum
unambiguous range of 11.52𝑚. It can measure a maximum radial
velocity of 3𝑚/𝑠 with a resolution of 0.049𝑚/𝑠 . Sampling rate for
radar frames and images is 15𝐻𝑧. The raw signals are transported
from the radar to a PC using a DCA1000EVM data capture card.
Our dataset comprises 9 recruited individuals instructed to walk
behind the obstacle in an inbound/outbound manner, each subject
completing 5 minutes of walking. Our experiment includes three
types of obstacles: paper box, sponge and plant. Additionally, we
deploy obstacles at three different orientations: 0◦, 45◦, and 90◦. To
generate point clouds from raw radar signals, we adopt the signal
processing method proposed by [2].

2.2 Method
To enhance PID accuracy, we implement two augmentation strate-
gies on the original point clouds before feeding them to the neural
network. The sample augmentation individually inverts the sign of
each component of radar points (𝑥,𝑦, 𝑧, 𝑣), where (𝑥,𝑦, 𝑧) represents
the Cartesian coordinates and 𝑣 is the recorded velocity. Then, the
feature augmentation computes the differences between a point in
the current frame and three closest points in the previous frame
using Euclidean distance. These difference values are concatenated
with original components of the radar point to increase features.
Our sample augmentation strategy can enlarge the amount of train-
ing data 5 times larger than originally acquired data. Our feature
augmentation effectively exploits the spatio-temporal relationship
between consecutive point cloud frames.

The proposed network comprises two main modules. The fea-
ture extractor module maps the augmented point cloud sequence
into a high-dimensional feature space using three shared linear
layers with input sizes of 16, 64, 256, respectively. To aggregate the
global feature for a point cloud frame, we employ a point attention
mechanism. This mechanism is constructed with two linear layers,
having input sizes of 256 and 50, respectively, and it calculates a
weighted sum of all points within the current frame. Meanwhile, we
employ a frame attention mechanism, structured similarly to the
point attention mechanism, to dynamically adjust the contribution
of distinct point cloud frames. This involves generating weights for
each point cloud and performing multiplication with corresponding
the point cloud. Subsequently, the spatio-temporal extractor module
is based on a Bidirectional Long Short-Term Memory (Bi-LSTM)
neural network to capture the spatio-temporal relationship of suc-
cessive point cloud frames, followed by two linear layers and a
Softmax function are used to determine the person identity.

3 EVALUATION
3.1 Experiments
We use a point cloud sequence consisting of 45 frames as an input
sample for each subject. The number of points in each point cloud
is predefined as 128. If the actual number of points is fewer than
128, the points in the current point cloud are used as padding points.
The training-to-testing ration is maintained at 8:2.

Figure 2: Confusion Matrix. Figure 3: Occluded Scenar-
ios.

3.2 Initial Results
Identification accuracy. The experimental result shows that our
system can achieve an average accuracy of 94.17% under various
occluded conditions for the 9 human subjects. Meanwhile, the accu-
racy witnesses an increase from 84.35% to 94.17% by data augmen-
tation. Moreover, Figure 2 depicts a percentage confusion matrix,
highlighting 7 individuals with accuracy surpassing 93.00%.

Impact of Various Occluded Scenarios. We then compare the
model performance across occluded conditions. Figure 3 demon-
strates that our method consistently maintains an average accuracy
of over 91.00% across 4 occluded conditions. In the scenario with
complete occlusion caused by the presence of plants, our method
achieves an accuracy of 84.10%, slightly lower than in other scenar-
ios. Note that, the S(0), S(45) and S(90) correspond to the sponge
that is revolved at 0◦, 45◦, and 90◦, respectively.

3.3 Discussions
As our future work, we plan to expand the current mmWave radar
dataset with more human subjects with a variety of gaits and motion
patterns for a more thorough investigation and evaluation of our
mmWave-ocPID method. We also plan to explore the open-set PID
task [3], which requires identification of not only the “Known”
targets but also the ability to reject the “Unknown” targets.

4 CONCLUSION
We study the feasibility of using mmWave radar for person identifi-
cation in heavily or even completely occluded scenarios, by recog-
nizing the subject’s spatial-temporal gaits. We collect a mmWave
radar point clouds dataset, with 5 occlusion configurations. We also
develop a novel mmWave identification method incorporating two
data augmentation strategies and a neural network. Experiments
show that our method achieves 94.17% average accuracy.
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