Check for
Updates

Low-Latency, Line-Rate Variable-Length
Field Parsing for 100+ Gb/s Ethernet

Greg Stitt Wesley Piard Christopher Crary
gstitt@ufl.edu wespiard@ufl.edu ccrary@ufl.edu
University of Florida University of Florida University of Florida
Gainesville, FL, USA Gainesville, FL, USA Gainesville, FL, USA

ABSTRACT

Field-programmable gate arrays (FPGAs) are widely employed in
network-interface cards across applications including cloud ser-
vices, machine learning, and high-frequency trading. These ap-
plications often share a common optimization goal: minimizing
latency while meeting throughput constraints. In addition, these
applications ideally aim to achieve “line-rate” operation, where
the FPGA operates at full bandwidth without using back-pressure
to stall incoming data. However, these goals are often conflicting.
For example, to minimize latency, application protocols must ef-
fectively utilize network bandwidth by encoding variable-length
data in variable-length fields. However, variable-length fields often
have prohibitively complex processing requirements that prevent
line-rate throughput or have excessive latency. In this paper, we
present a novel variable-length field parser capable of scaling to
accommodate the bus widths and clock frequencies necessary for
100+ Gb/s Ethernet, while still achieving low latency. Our exper-
iments demonstrate parsing variable-length fields at line rate for
anticipated bus widths and throughputs, achieving ultra-low laten-
cies under 2 ns for some use cases. To the best of our knowledge,
this latency surpasses existing work, including fixed-length field
parsing.

CCS CONCEPTS

« Hardware — Hardware accelerators.

KEYWORDS
FPGA, SmartNIC, low-latency, HFT

ACM Reference Format:

Greg Stitt, Wesley Piard, and Christopher Crary. 2024. Low-Latency, Line-
Rate Variable-Length Field Parsing for 100+ Gb/s Ethernet. In Proceedings of
the 2024 ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’24), March 3-5, 2024, Monterey, CA, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3626202.3637559

1 INTRODUCTION

Previous studies have demonstrated the effectiveness of FPGAs
as accelerators across a wide array of domains [2, 11, 13, 14, 19].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA °24, March 3-5, 2024, Monterey, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0418-5/24/03...$15.00
https://doi.org/10.1145/3626202.3637559

12

FPGA advantages are particularly pronounced when integrated
into network-interface cards, often denoted as SmartNICs [7, 9,
10, 12, 18]. This integration facilitates low-latency processing di-
rectly within the network, eliminating the need for data exchange
with a host microprocessor. The combination of low-latency, high-
throughput, and low-energy acceleration has made SmartNIC FP-
GAs an attractive technology, especially for cloud services, machine
learning, networking, and high-frequency trading.

SmartNIC FPGAs, positioned in close proximity to networks,
are routinely tasked with parsing and processing network traffic.
While the accelerated parsing of Ethernet, IP, and transport-layer
protocols (such as TCP and UDP) represents a mature technology,
the parsing of application protocols remains an evolving field due
to changing requirements. Transport-layer (and lower) protocols
predominantly utilize fixed-length fields. Though payloads may
exhibit variable lengths, parsed headers consistently contain fields
within the same bit range for each new packet.

By contrast, application-layer protocols often entail variable-
length data, such as strings and ticker symbols. Ideally, these variable-
length data should be encoded within variable-length fields to max-
imize network bandwidth utilization. However, hardware accelera-
tion of variable-length fields, especially in the context of wide buses,
poses considerable challenges. Firstly, the start of each field can oc-
cur at any bit position within a given bus input. Secondly, different
inputs from the bus can contain different numbers of fields. Finally,
fields may overlap multiple consecutive bus inputs. Consequently,
the FPGA must dynamically align all variable-length fields within
a bus while preserving the contents of fields spanning multiple
inputs.

Addressing these challenges in general, particularly in the con-
text of achieving line rate, demands a hardware solution capable
of aligning and coalescing an arbitrary number of variable-length
strings every cycle—a task of significant complexity. Additionally,
many use cases pose further challenges by prioritizing minimiza-
tion of latency. In essence, the parsing of variable-length fields
necessitates solutions that reconcile competing objectives: high
throughput via substantial parallelism and high clock frequencies,
while simultaneously achieving low latency.

In this paper, we present an FPGA architecture capable of ef-
ficiently processing any number of variable-length fields within
a single bus input, while scaling to accommodate wide bus sizes
and high frequencies required for 100+ Gb/s Ethernet. The architec-
ture offers numerous configurable options for optimizing trade-offs
between throughput and latency for different bus widths. Our ex-
periments thoroughly investigate these trade-offs, demonstrating
latencies under 2 ns at 10 Gb/s, 2.7 ns at 40 Gb/s, and 9.9 ns at
100 Gb/s for some use cases. To our knowledge, these trade-offs

https://orcid.org/0000-0001-7159-7439
https://orcid.org/0000-0001-6581-2200
https://orcid.org/0000-0002-4953-9344
https://doi.org/10.1145/3626202.3637559
https://doi.org/10.1145/3626202.3637559
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637559&domain=pdf&date_stamp=2024-04-02

FPGA °24, March 3-5, 2024, Monterey, CA, USA

Greg Stitt, Wesley Piard, and Christopher Crary

ol | | | | | | | | | | | | | | |
bus 7777777777K__ABCSDESF Y GHIJSKLS) aSbScsds ’///
bus_valid /

"0l A X X
feld_tengtnlo] 2777 A 72 3 X 5 X
"eldl1 7777 X X
feld_tengtn1) 27 777 2 X X

ABC FGHIJ

DE KL

2

ol o] =] |o

field[2]
field_length{2]
field[3]
field_length{3|

Figure 1: Timing diagram for example with 8-byte bus and $ delimiter. There are four output fields to match the maximum
possible number of fields in one input. Note that string FGHIJ spans multiple inputs.

represent a significant improvement over the state-of-the-art [17],
even compared to fixed-length field parsing [3].

2 RELATED WORK

Although GPUs are the most common accelerator in general, to
our knowledge, GPUs have not yet been integrated with Smart-
NICs. GPUs are used for network processing by offloading network
traffic from a NIC to a PCle GPU [15], but such an approach is
not appropriate for low-latency use cases due to latencies over 80
microseconds [20]. This paper focuses on low-latency, line-rate
processing that achieves latencies that are 1000X to 10000x smaller
than GPUs.

Numerous FPGA studies have investigated packet processing
using SmartNICs for network functions (e.g., [4, 5, 8]). hXDP [6]
implemented a software-programmable packet processor on an
FPGA-based SmartNIC capable of any function. hXDP was intended
to maximize flexibility at the cost of latency and throughput, which
was on the order of microseconds and tens of Mb/s. FlowBlaze
[16] is conceptually similar, providing a flexible abstraction for
building stateful packet processing in FPGAs. FlowBlaze achieved
similar performance as hXDP, with latencies in the microseconds,
but with a higher throughputs of 40 Gb/s. By contrast, our archi-
tecture is specifically for variable-length field parsing and achieves
nanosecond latencies for throughputs between 10 and 100 Gb/s.

Similarly, FPGA-based SmartNICs have also been used heavily
for low-latency cloud and edge services, including homomorphic
computing [18], web searches [7, 10], and machine learning [9, 12],
among others. These studies are complementary to our work, and
they could potentially leverage our work to minimize latency or
increase throughput for variable-length fields.

Sierra et al. [17] presented conceptually similar work focusing
on the problem of decoding variable-length data for unstructured
meshes streamed from memory. Sierra’s work did not optimize
for low latency and line-rate processing, and instead used flow
control to stall the input stream when the FPGA could not keep up
with the data rate. By contrast, our architecture includes numerous
configuration options to achieve a wide range of trade-offs between
latency and throughput, while guaranteeing line-rate processing.

13

3 PROBLEM DEFINITION

This paper focuses on the problem of parsing variable-length fields
in application-level protocols at line rate. Figure 1 illustrates a
timing diagram demonstrating the desired functionality. In this
example, the field primitives are 1-byte characters, but primitives
could be any bit width in general.

As input, a bus delivers a fixed amount of data, potentially each
cycle. We denote the bit width of the bus as w, and use b as the
width in bytes (b = w/8). The b bytes comprise both complete
and partial variable-length fields that are separated by a delimiter,
shown as $ in the figure. The architecture allows for configuration
of the number of field outputs m, which can vary depending on
the specific protocol. In the worst case for b = 8, every field is two
bytes: a single character followed by a delimiter. Consequentially,
the maximum possible number of fields per input is b/2 = 4. To
support the worst case, m would also be equivalent to b/2, but m
can also be restricted to smaller values based on characteristics of
the specific use case.

In this example, the initial valid data on the bus (indicated by the
assertion of bus_valid) contains two complete fields (ABC and DE),
along with one partial field (F), which will be completed by a future
input. To minimize post-processing latency, the architecture always
outputs fields as soon as possible, rather than waiting for a specific
number of fields. This policy is shown in the initial outputs from the
architecture, where the first two outputs deliver the fields ABC and
DE, in addition to their size. The architecture also provides valid
signals for each output field, which are omitted here for brevity.

During the second input cycle, the bus provides a continuation
(GHIJ) of the previously incomplete field (F) from the preceding in-
put, as well as another complete field (KL). The architecture outputs
those two fields one cycle after the initial output.

It is worth noting that in the first two output cycles, output fields
2 and 3 remained unused because there were not sufficient input
fields to necessitate their utilization. However, during the third
input cycle, the bus delivers four 1-character fields, resulting in all
four outputs containing valid data.

While some application protocols consist entirely of variable-
length fields (e.g., Financial Information eXchange (FIX) [1]), most

Low-Latency, Line-Rate Variable-Length
Field Parsing for 100+ Gb/s Ethernet

bus
¥ . 3
| Find Delimiters |
[
| !
Get Delimiter Get Last Delimiter
Indices | Iv Delay
|D[0:m-1]
Delay
Delay Get Field Sizes
Yopom-17 ¥ sjo:m-1] I 1Y, data}
data S[0] L v data S{f] DD{/—I] +1
¥ ¥ 2 ¥
Buffer Write Logic I data count offset
! ! Field Aligners[1:m-1]
Field Field
Buffer 0 Buffer 1
1 ! 7
! !
field[0] length[0] valid[O] field[i] length[i] valid[i]

Figure 2: Overview of the variable-length field parsing archi-
tecture.

protocols combine both variable and fixed-length fields. The pre-
sented architecture remains applicable to such protocols with straight-
forward adjustments to exclude delimiters within the range of the
fixed-length fields and to accommodate the fixed-length shift re-
quired by those fields. Our decision to focus exclusively on variable-
length fields was intended to isolate and thoroughly explore solu-
tions to this specific problem, rather than creating protocol-specific
solutions, which would likely further improve performance via
protocol-specific optimizations.

4 VARIABLE-LENGTH FIELD PARSER
4.1 Overview

Figure 2 provides a high-level overview of the variable-length field
parsing architecture. We designed every component in this architec-
ture with configurable pipelining options ranging from no pipelin-
ing to including a register after every logic level in each targeted
FPGA. The inclusion of these configuration options allowed us to
explore trade-offs between latency, clock frequency, throughput,
and resource utilization to better support different use cases. We
also included configuration options to optimize various compo-
nents (e.g., muxes, priority encoders) to best align with the logic
resources of each targeted FPGA.

In the absence of pipelining, the delay components function as
wires, and the only registers in the entire architecture are within the
field buffers, serving to store partial fields. This configuration allows
for the immediate appearance of all complete fields on the outputs
within the same cycle in which the input is valid. Conversely, with
full pipelining, every level of logic has a register, leading to high
clock frequencies at the cost of increased latency.

In addition to configuration options for pipelining, the archi-
tecture has parameters for specifying the bus’ byte width b, the
maximum number of fields per input m, the maximum number of

14

FPGA °24, March 3-5, 2024, Monterey, CA, USA

bytes per field n, and the delimiter character. For all configuration
options, the architecture is capable of taking new bus inputs every
cycle (i.e., line rate).

Initially the bus delivers data to the architecture, which goes into
the Find Delimiters unit, in addition to being delayed to align with
subsequent logic. Find Delimiters uses b separate 8-bit comparators
to compare every byte of the bus with the delimiter character. The
output of the Find Delimiters unit is b bits, where each bit is asserted
if the delimiter exists at the corresponding byte of the input.

To output each field, the architecture must first shift the fields
such that the first byte of the field aligns with the first byte of the
corresponding output. While sub-line-rate execution has many op-
tions for such alignment, line-rate execution requires a barrel shifter,
at least for low latencies. The barrel shifters are implemented in the
field buffers and field aligners, but first the architecture needs to de-
termine how much to shift the bus data for each field. To determine
the shift amounts, the Get Delimiter Indices unit is used to convert
the byte locations of the delimiters into binary-encoded indices
that specify the ending of each field. The Get Delimiter Indices unit
is implemented using a multiple-output priority encoder, which we
discuss in Section 4.2.

Get Delimiter Indices outputs up to m indices D[0 : m — 1], which
the architecture then uses in the Get Field Sizes unit to determine
the number of bytes in each field with the following equations,
where S[i] is the number of bytes of field i provided by the current
input, and |D| is the number of delimiters:

if D[=0

b
" |Dp[0] if|D| >0
S[i] =D[i] -D[i—1] —1,for 0 < i < |D|

The first field in the input has a special condition because there
may exist bus inputs with no delimiter (|D| = 0), in which case the
number of bytes is just the size of the bus. For all other situations,
the bytes in the first field provided by the current input is just the
index of the first delimiter D[0]. For subsequent fields, the number
of bytes is the distance between adjacent pairs of delimiters minus
1. For example, in Figure 1, the DE field in the first input cycle ends
at index 6. The preceding field ends at index 3, making the size 2
(6 —3 — 1 = 2). Like all other logic, Get Field Sizes has configuration
options to register the subtractions.

The delimiter indices (D) are also delayed by the latency of Get
Field Sizes to ensure they (DD) can be provided to the Field Aligners
at the same time as the fields sizes (S).

Although Get Delimiter Indices specifies the location of all delim-
iters, identifying the last delimiter is inefficient due to the variable
amount of delimiters. This identification at line rate would require
a mux that selects from all possible indices, where the select logic
requires another priority encoder to identify the last asserted bit.
To avoid this complexity, the architecture uses Get Last Delimiter,
which is a single-output pipelined priority encoder, discussed in
Section 4.2. Get Last Delimiter first reverses the order of the bits
provided by Find Delimiters to ensure that it reports the last delim-
iter. The architecture delays the last delimiter / and its valid signal
lv to align with the output of Get Field Sizes.

The remaining logic is responsible for assembling the output
fields. To handle fields that are partially provided by a single input,

s[o]

FPGA °24, March 3-5, 2024, Monterey, CA, USA

l inputs[b-1:0]

| Expand Inputs |
| inputs[2cloa2(b)-1:0]

1 inputs[2¢los2(b) /2-1:0]

PE

valid index

inputs[2¢log2(b) /21
2clog2(b) /2] 1

PE

index

valid

T e) _L: F -

(a)

Greg Stitt, Wesley Piard, and Christopher Crary

inputs
1. b

1* base }base isbase } base

| Base PE || Base PE |

| Base PE || Base PE

I
|

(b)

Figure 3: Overview of the pipelined priority encoder, which leverages (a) a recursive definition that divides a priority encoder
into two smaller priority encoders, followed by merging logic. (b) This recursive rule can be applied any number of times to
create a priority encoder with a single level of logic in between registers by choosing the number of base inputs based on the
targeted FPGA. All dashed rectangles are optional pipeline stages.

the Field Buffers (Section 4.3) and Buffer Write Logic store partial
data until a complete field is available.

For all fields that are completely specified by a single bus input
(e.g., DE, KL in Figure 1), the Field Aligners (Section 4.4) shift the
delayed bus data by the appropriate amount to align the correspond-
ing field with the first byte of the field output, while also outputting
the length of the field.

For any maximum number of fields per input m, the architecture
always has two field buffers. This exact amount is required because
for every input provided by the bus, there can be two sets of partial
data: one at the beginning of the input that completes a previously
buffered field (referred to as the first field), and another at the end
that starts a new partial field (i.e., the last field).

One challenge of the write buffer logic is that the field[0] output
must always represent the first completed field within an input, but
a field that starts at the end of one input is always completed at the
beginning of a subsequent input. As a result, the architecture can’t
statically designate one field buffer for the first field, and another
for the last field. To handle this situation, the architecture resolves
the potential ambiguity about which field buffer stores the next
field by maintaining a pointer to one of the two field buffers. That
pointer then provides a select to the mux to output the correct
field. The buffer write logic toggles the field buffer pointer any time
there is a valid delimiter anywhere in the input. The presence of
a delimiter suggests that any field buffered from a previous input
is now complete, so the last field of the current input should now
become the first field of the next output.

4.2 Pipelined, Multi-output Priority Encoder

The Get Delimiter Indices unit from Figure 2 takes in a vector of bits
that specify valid delimiter locations in the bus input. The output of
Get Delimiter Indices is a set of up to m binary-encoded byte indices
for the delimiters.

15

This functionality is equivalent to a multi-output priority en-
coder, where instead of outputting the index of the highest-priority
asserted input, it instead outputs m indices for the highest-priority
m inputs, in sorted order.

Before discussing how to create a pipelined multi-output priority
encoder, we first need a way of pipelining a traditional priority
encoder so that, if requested, we can register the design to ensure
that the logic delay does not increase with wider bus widths. This
goal is challenging because traditional priority encoders have a
delay that increases logarithmically with the number of inputs,
with the base of the logarithm being the number of lookup-table
(LUT) inputs in the targeted FPGA.

Figure 3(a) explains our pipelined priority encoder, which lever-
ages the illustrated recursive rule to divide a priority encoder with
many inputs into multiple, optionally pipelined levels with a max-
imum number of inputs per level. The priority encoder takes as
input a parameter to specify the base number of inputs before we
divide the priority encoder into multiple levels. This parameter al-
lows the user to optimize the priority encoder to the LUTs provided
by a given FPGA.

When the actual number of inputs is less than the base inputs,
the architecture simply allocates a normal priority encoder. When
the number of inputs exceeds the base inputs, the architecture
recursively sub-divides the priority encoder into two sub-encoders,
where the input is first expanded to the next power of 2 if it isn’t
already a power of 2.

The two sub-encoders output an index and valid bit for their
corresponding half of the expanded input. The rest of the recursive
rule then combines these by checking the valid bit of the upper
encoder. If the upper valid bit is asserted, the architecture asserts
the most-significant bit of the output index, and sets the other index
bits equal to the index of the upper encoder. Otherwise, the most-
significant bit of the output index is cleared and the remaining index

Low-Latency, Line-Rate Variable-Length
Field Parsing for 100+ Gb/s Ethernet

inputs
L Clear 1t
PlpihEned Asserted
Bit
t
Pipelined ;Iear 1Sd
PE sse.rte
l Bit
Delay Pipelined | ..,
PE
Delay l
Delay |
output[0] valid[0] output[1] valid[1] output[2] valid[2] «««

Figure 4: The pipelined multi-output priority encoder, which
chains single-output pipelined priority encoders together
while clearing the topmost asserted bit at each step.

bits are set equal to the lower encoder. The valid bit is asserted if
either of the sub-encoder valid bits are asserted.

As illustrated in Figure 3(b) the architecture can apply this recur-
sive rule an arbitrary number of times to create a pipelined priority
encoder of any depth, where the logic delay per level remains con-
stant for any number of inputs.

Given the pipelined, single-output priority encoder, we can now
create the multi-output priority encoder as shown in Figure 4. The
basic strategy is to allocate a separate single-output priority encoder
for each output. However, for this strategy to work, the architecture
must clear the topmost asserted bit for each additional output. To
accomplish this goal, we first reverse the inputs and then leverage
a bit manipulation technique that clears the lowest asserted bit.
Specifically, we use the following equation:

inputiy, = input; and (input; — 1) (1)

Although not shown in the figure, this equation is optionally
pipelined, which is necessary for maximizing clock frequencies. For
the unpipelined results, the multi-output priority encoder’s chain
of subtractions between bits is the critical path.

Because each single-output priority encoder starts after the sub-
sequent encoder, and may take multiple cycles, each encoder is
followed by a delay of decreasing latency to ensure all the outputs
are aligned.

4.3 Field Buffer

The architecture of the field buffer is shown in Figure 5. The field
buffer has several main responsibilities: 1) store partial field data
from a given input, 2) align the existing partial data with data
provided by a new input, 3) when the full field has arrived, output
the field along with its length. Conceptually, the field buffer acts
analogously to a FIFO that can write a variable number of elements
every cycle.

16

FPGA °24, March 3-5, 2024, Monterey, CA, USA

wr_offset wr_complete wr_count

1\

i !

| Buffer Offset | | Buffer Count |

/L__I

Delay

amount

direction l

Pipelined Left/Right Shift

—— 1

| | Buffer Update Logic
3 field field_length |

Delay

Figure 5: Overview of the field buffer, which buffers and
assembles partial data into complete fields. The grey boxes
are registers.

wr_data: ABCSDESF Buffer Offset: 0

wr_offset: 7 Shift Amount: 7
wr_count: 1 Direction: Left
suer: | F| | | | | | | |

wr_data: GHIJSKLS ~ Buffer Offset: 1

wr_offset: 0 Shift Amount: 1
wr_count: 4 Direction: Right
Buffer:|F|G|H|||J| | | |

Figure 6: Examples of the internal state of the field buffer
using the example from Figure 1.

The buffer’s interface consists of write data (provided by delayed
bus data), a write offset specifying the starting index of the field
within the write data, a write count that specifies the amount of
data being written, and a write complete that specifies the write
contains the end of the field. There is also an implicit write enable
connected to each register.

All of the alignment in the buffer is done by the pipelined left/right
shifter (Section 4.5). The primary input to this shifter is the write
data being written into the buffer. In most cases, the data for the
field being written might not start at byte index 0 of the bus, so the
shifter uses the write offset to account for the first index. However,
the actual shift amount is not equal to this offset unless the buffer
is empty. If the buffer contains partial field data from a previous
input, the shifter is responsible for accounting for both the offset

FPGA °24, March 3-5, 2024, Monterey, CA, USA

within the bus, in addition to the amount of data already in the
buffer (i.e., the buffer offset).

Figure 6 illustrates an example of this functionality for the first
two inputs in Figure 1. Since the field buffer always stores partial
data, the main architecture uses the field buffer to write the final
F character from the first input. All the other fields are complete
and do not need buffering. In this case, the write offset is 7 (the
index of the character in the input) and the write count is 1. The
buffer is currently empty, so the shifter would shift the input left
by 7 elements, and then store the F character.

When the buffer contains data internally, the shift must take
that data into consideration. For the second bus input, the main
architecture writes GHIJ to complete the field. The write offset is 0
because the partial data starts at address 0 of the input. However,
the buffer offset is 1 because the buffer already contains 1 element.
In this case, the buffer first shifts the input data right by 1 element
to align the G with the first empty buffer position. The buffer then
stores the data at elements 1-4.

The buffer update logic is responsible for enabling the registers
that need to be updated for each write. Each register in the buffer
is assigned an index. The buffer update logic simply enables all
registers with an index greater than or equal to the buffer offset. In
addition, the actual field output does not come directly from the
buffer registers, but instead from the update logic. We made this
optimization to ensure that the entire parsing architecture could
have a latency of 0 cycles after the final data for a field arrives on
the bus. We originally had the field output come from the buffer
registers, but that approach always required at least one cycle of
latency, and we found the effects on clock frequency to be negligible.

Like all other components, the shifter has configurable pipelining
options that can make it take any number of cycles. This pipelining
creates several challenges. The field buffer needs to know how
much data is stored in the buffer (i.e., the buffer offset) before doing
the shift, but the data isn’t actually stored into the buffer until after
the shift. To handle this discrepancy, the buffer offset is updated
immediately on a new write, and uses accumulation with a feedback
of one cycle so that every new write knows the amount of data in
the buffer by the time that data is actually written.

The buffer count is similar to the buffer offset, with one key
difference. The buffer offset is reset immediately on the completion
of a field, whereas the write count is reset one cycle later. This delay
is needed to ensure that the field length is reported correctly.

4.4 Field Aligner

This field aligner is conceptually similar to the field buffer, with
several simplifications. The biggest difference is that the field buffer
needs to buffer data across inputs, whereas the field aligner is solely
used for complete fields that are provided within a single input.

As a result, the field aligner contains no buffering resources, and
instead only contains shifting logic. Unlike the field buffer that has
to shift left or right depending on the contents of the buffer, the
field aligner only ever has to shift left because there is no buffer.

Ultimately, the field aligner is a pipelined left shifter that takes a
write offset based on the starting byte index of the field. The aligner
also takes a write count, which it simply delays to align the field
length output with the field data leaving the shifter.

17

Greg Stitt, Wesley Piard, and Christopher Crary

4.5 Pipelined Shifter

One key component of both the field buffer and field aligner is the
pipelined shifter. Although we could potentially use a traditional
barrel shifter, such a shifter has massive overhead. For a shifter
with n inputs, a traditional barrel shifter has a mux for each output
that also has n inputs. For large values of n, the mux delay overhead
and routing complexity become prohibitive. One alternative is to
pipeline the muxes across multiple cycles, but that does not reduce
the prohibitive routing complexity.

Existing strategies pipeline a large barrel shifter into multiple
stages where each stage uses muxes with only 2 inputs along with
an optional register, which we refer to as the binary-decision shifter.
For example, for a 16-input barrel shifter, the first stage shifts by 8
or 0, the second by 4 or 0, the third by 2 or 0, and the fourth by 1 or
0.

One problem with the binary-decision shifter is that it greatly
increases the latency of the shift, due to passing through [log,(n)]
stages, which can be prohibitive for latency-sensitive designs. In
addition, 2-input muxes do not fully utilize LUTs on some FPGAs,
where larger numbers of inputs can map to the same number of
resources.

We solve this problem by expanding the binary-decision shifter
to support decisions of any power-of-two base, which translates
to power-of-two inputs to each multiplexor. This optimization was
motivated by the observation that some newer FPGAs are optimized
to handle wide muxes. For example, the UltraScale+ can implement
a 32-input mux in a single CLB [21].

To explain our optimized shifter, we use b to represent the base
number of mux inputs, where the select line has x = [log,(b)]
bits. The shifter architecture performs the shift across [n/x] stages,
where n is the number of inputs to the shifter. In each stage i of the
shifter, each mux j selects from b muxes from the preceding stage,
using the following equation:

f(s)=s-2"""% 4 forse{0,1,2,....b—1} @)

For example, for a 32-input shifter (n = 32), to optimize for muxes
with 4 inputs (b = 4), the first stage of the shifter (i = 1) would have
muxes that select values from stage 0 with an offset of 0, 8, 16, and
24 for the mux position. Stage 2 muxes would select between 0, 2,
4, and 6. For b = 8, stage 1 muxes would select from 0,4,8,12,16..28.

5 EXPERIMENTAL RESULTS

This section is organized as follows. We first describe the experi-
mental setup in Section 5.1. We then evaluate the trade-offs between
latency and throughput across a wide range of configuration op-
tions in Section 5.2. Finally, Section 5.3 evaluates the scalability of
the design for different maximum numbers of fields per bus input.

5.1 Experimental Setup

We designed the parsing architecture using 3,872 lines of SystemVer-
ilog, including testbenches. To demonstrate effectiveness on multi-
ple FPGAs, we evaluate both AMD and Intel FPGAs. For the AMD
experiments, we synthesized the designs using Vivado 2023.1 target-
ing a Virtex Ultrascale+ xcvu9p-flga2104-2L-e. For the Intel experi-
ments, we synthesized using Quartus Prime Pro 23.1.0.115 targeting
an Agilex AGIC040R39A2I3V. We do not have physical access to
boards with either of these FPGAs, but we have verified correct

Low-Latency, Line-Rate Variable-Length
Field Parsing for 100+ Gb/s Ethernet

40
35
30
n + ¢
=y
; 25
*
2 20 al ** Bus Width
3 % + o
© ®x 64
15 x = = 128
& . + 256
10 x = ¢ 512
/"" xe Bytes per Field
5 o ® &
o* 256
0
0 50 100 150 200 250 300 350

Throughput (Gb/s)

(a) AMD Virtex Ultrascale+

FPGA °24, March 3-5, 2024, Monterey, CA, USA

35
*
30
7 25 = +
£ *
> ¢ ¢
£ 20 N —t Bus Width
] + o =
815 Sw ® 64
® " 128
+ 256
10 e X ¢ 512
e
5 ® * Bytes per Field
+ ® 3
ox " 256
0 50 100 150 200 250 300

Throughput (Gb/s)

(b) Intel Agilex

Figure 7: A comparison of trade-offs between latency and throughput for different bus widths, maximum bytes per field, and
pipelining options for (a) AMD Virtex Ultrascale+ and (b) Intel Agilex. These results assume a maximum number of fields per

input of 8.

functionality on an Stratix 10 provided by an Intel Platform Ac-
celeration Card (PAC). We do not report the Stratix 10 results due
to it being an older technology. Our intent is not to compare de-
vices capabilities, but to demonstrate efficient operation on different
devices.

We created the RTL code with parameters for the bus width,
maximum number of bytes per field, maximum number of fields
per bus input, and pipelining configuration options that include
customizing priority encoders and muxes to the specific LUT ar-
chitecture of each FPGA. These pipelining options also offer the
flexibility to optionally insert registers between each level of the
synthesized LUT hierarchy.

To conduct design-space exploration, we developed a set of
Python scripts that take a YAML file as input to define the pa-
rameter combinations to explore. Initially, we used these scripts to
validate functionality via simulation for thousands of parameter
combinations. Subsequently, we employed similar scripts to syn-
thesize, place, and route over 100 combinations across both FPGAs.
The synthesis exploration was limited by placement and routing
times, which took approximately one week cumulatively across all
experiments.

For placement and routing, we applied a uniform clock frequency
constraint of 1 GHz. Ideally, we would have explored different
constraints for each parameter combination, but such exploration
would have required a prohibitive amount of time. We estimate
that the designs with low clock frequencies are pessimistic because,
in our experience, using a constraint that significantly exceeds an
attainable frequency results in lower-quality placement and routing.

To determine the maximum clock frequency of each configu-
ration, we leveraged Vivado’s out-of-context (OOC) flow, where
we constrained the placement of the clock buffer for realistic clock
skew. For Intel results, we used virtual pins for all I/O except for
the clock and reset. For both vendors, we registered all I/O except
for the clock and reset.

18

5.2 Throughput vs. Latency

In this section, we compare trade-offs between latency and through-
put for different bus widths, maximum bytes per field, and different
pipelining options. Figure 7 compares the trade-offs on both the
AMD Virtex Ultrascale+ and Intel Agilex. The different shapes for
each point correspond to different bus widths, and the different col-
ors correspond to different maximum bytes per field. We consider
two different maximum bytes per field: 8 (for an HFT use case) and
256 (for general strings). All experiments used a maximum number
of fields per input of eight. The pipelining options are not explicitly
labeled due to requiring too many dimensions to visualize, but each
separate point within a given series is a different pipelining option.

For the AMD Virtex Ultrascale+, Fig. 7 shows a wide range
of trade-offs. As expected, increasing throughput (usually with
more registers) increased latency, and reducing latency decreased
throughput. However, when just considering the Pareto-optimal
solutions (i.e., the Pareto Frontier) across all configurations, the
Pareto-optimal points yielded minor sacrifices to latency for sig-
nificant improvements in throughput. The experiments with 256
maximum bytes per field generally showed a wider range of trade-
offs, but interestingly, the Pareto Frontier was reasonably similar to
the experiments using 8 maximum bytes per field. This frontier sim-
ilarity suggests that the architecture scales well to larger maximum
numbers of bytes per field.

With the exception of one configuration, all designs were able to
achieve a throughput of 10 Gb/s. When using a 32-bit bus with no
pipelining and 8 maximum bytes per field, the latency was only 1.9
ns. To our knowledge, this is the lowest latency for a variable-length
field parser. Even compared to fixed-length parsing studies [3], the
latency of our architecture was over 10x smaller.

At a throughput of 40 Gb/s, the minimum latency was 7.3 ns,
which was achieved by a 512-bit bus with 8 maximum bytes per
field and no pipelining. At a throughput of 100 Gb/s, the minimum

FPGA °24, March 3-5, 2024, Monterey, CA, USA

Bytes per Field

® s
256
40000
Bus Width
o 32
X 64
30000 m 128
+ 256
2 ® 512
)
-
20000
10000
N ole o ¢
4 + + |+
u, L L]
0 @YX X
0 50 100 150 200 250 300 350

Throughput (Gb/s)

(a) AMD Virtex Ultrascale+

LUTs

Greg Stitt, Wesley Piard, and Christopher Crary

50000
40000
Bytes per Field Bus Width
30000 ®_s @ 32
256 ® 64
m 128
+ 256
20000 ¢ 512
10000
+ o4 44 +o o ¢ *
= my
0 0¥ *
0 50 100 150 200 250 300

Throughput (Gb/s)

(b) Intel Agilex

Figure 8: A comparison of throughput and LUT usage for different bus widths, maximum bytes per field, and pipelining options
for (a) AMD Virtex Ultrascale+ and (b) Intel Agilex. These results assume a maximum number of fields per input of 8.

latency was 9.9 ns, which used a 128-bit bus, 8 maximum bytes
per field, and an amount of pipelining that generally skipped two
levels of LUTs. The highest throughput design achieved 362 Gb/s at
a latency of 28.3 ns, using a 512-bit bus with all pipelining options
enabled.

The Intel Agilex experiments showed the same trends as the
AMD Virtex Ultrascale+, with similar trade-offs across most experi-
ments. For 10 Gb/s, the minimum latency was 1.8 ns for a 32-bit bus,
8 maximum bytes per field, and no pipelining. For 40 Gb/s, the min-
imum latency was 2.7 ns for a 128-bit bus with 8 maximum bytes
per field, and no pipelining. For 100 Gb/s, the minimum latency
was 19.8 ns for a bus width of 256, 8 maximum bytes per field, and
pipelining that skipped two levels of LUTs. Maximum throughput
was 320 Gb/s for a 512-bit bus, 8 maximum bytes per field, and full
pipelining.

For the AMD results, the average clock frequencies for 32-bit,
64-bit, 128-bit, 256-bit, and 512-bit buses were 684 MHz, 641 MHz,
487 MHz, 387 MHz, and 381 MHz, respectively. The maximum
frequencies were 1016 MHz, 931 MHz, 806 MHz, 639 MHz, and
708 MHz, respectively, which occurred for 8 bytes per field. Note
that some of these high frequencies result from “out-of-context”
analysis and would be restricted by device limitations.

For the Intel results, the average clock frequencies for 32-bit,
64-bit, 128-bit, 256-bit, and 512-bit buses were 640 MHz, 579 MHz,
496 MHz, 420 MHz, and 398 MHz, respectively. The maximum
frequencies were 883 MHz, 776 MHz, 656 MHz, 726 MHz, and 626
MHyz, respectively, which again occurred for 8 bytes per field.

Figure 8 illustrates how the LUT usage varies with throughput
for different bus widths, maximum bytes per field, and pipelining
options. All experiments again assume a maximum number of fields
per bus input of eight.

For a maximum bytes per field of 8, both the AMD and Intel exper-
iments demonstrate a clear linear relationship between throughput
and LUTs. For all bus widths, the LUT usage is small for any mod-
ern FPGA, averaging just 6,560 and 5,507 LUTs for the 512-bit bus

19

on AMD and Intel, respectively. Both of these use less than 1% of
available FPGA resources.

For a maximum bytes per field of 256, there is still a linear re-
lationship between throughput and LUTs, but with a higher slope.
For the AMD results, the Pareto Frontier demonstrates 100 Gb/s can
be achieved with 31,305 LUTs. The Intel results achieve 100 Gb/s
at a slightly lower utilization of 25,383 LUTs. For a 1 million LUT
FPGA, these LUTs represent only 3.1% and 2.5% of avaliable LUTs.
40 Gb/s was achieved with 20,102 and 18,999 LUTs, respectively. 10
Gb/s was achieved with 15,803 and 7,594 LUTs, respectively.

5.3 Scalability

Figure 9 evaluates the scalability of the architecture for a 512-bit bus
by evaluating how throughput changes for increasing amounts of
maximum fields per bus input, up to the maximum possible value
of 32 for a 512-bit bus. We use a box plot to show the distribu-
tion of all configuration options that we explored. However, the
most important results for scalability are the maximum and median
values.

It is important to note that 32 and 16 fields per input are stress
tests that would never occur in a realistic application. 32 and 16
fields per input on a 512-bit bus would consist entirely of 1-byte and
2-byte fields, respectively. 8 fields per input could be representative
of an application with many small strings, such as ticker symbols
in high-frequency. Most actual protocols are a mixture of variable
and fixed-length fields, in which case 2-4 fields per input would be
realistic.

For both AMD and Intel, the results showed good throughput
scalability up to 16 fields per input. For the AMD results, the max-
imum throughput decreased linearly with a low slope. For the
Intel results, maximum throughput stayed relatively constant. For
32 fields per input, the AMD results demonstrated a significant
decrease in throughput. By contrast, the Intel results showed con-
tinued scalability. We suspect this improved scalability was due to

Low-Latency, Line-Rate Variable-Length
Field Parsing for 100+ Gb/s Ethernet

Bytes per Field
. 8
[256

w
o
o

N
w
o

200

150

Throughput (Gb/s)

100

50

pann

4 8 32

Max Fields / Input

16

(a) AMD Virtex Ultrascale+

FPGA °24, March 3-5, 2024, Monterey, CA, USA

350
300 T o —
57 | M
)
5 200
o
<
S 150
I
<
F 100 -
50 Bytes per Field
I3
== 256
0
2 4 8 16 32

Max Fields / Input

(b) Intel Agilex

Figure 9: Throughput of all configuration options for different maximum bytes per field and maximum fields per bus input. All

results use a 512-bit bus.

120 Bytes per Field
. 8
3 256
100
—~ 80
0
£
g
c 60
[]
}
©
-
40
0
2 4 8 16 32

Max Fields / Input

(a) AMD Virtex Ultrascale+

Bytes per Field -
. 8

80 = 256
= 60
£
>
9
c
5 .F =
©
=

) %% %+ %

0

2 4 8 16 32

Max Fields / Input

(b) Intel Agilex

Figure 10: Latency of all configuration options for different maximum bytes per field and maximum fields per bus input. All

results use a 512-bit bus.

the HyperFlex registers. However, as stated earlier, 32 fields per
input is a stress test that would likely not occur in real applications.

Figure 10 evaluates how latency changes for increasing amounts
of maximum fields per input. For both AMD and Intel experiments,
the minimum and median latencies increased linearly, again up to
16 fields per input. At 32 fields per input, the minimum latency
increased slightly, but the median latency of all evaluated points
increased significantly, with the exception of the Intel results for 8
bytes per field.

Figure 11 demonstrates the average clock frequency across all
pipelining configurations for the experiments in the previous figure.
In most cases, clock frequency had approximately a linear decrease
with increased maximum fields per input, which suggests good

20

scalability. Average clock frequency fell below 100 MHz for 32
fields per input and 256 maximum bytes per field, but as mentioned
earlier, 32 fields per input on a 512-bit bus is an extreme stress test.
Even at 16 fields per input, which is still highly pessimistic, average
clock frequencies were always above 300 MHz.

6 CONCLUSIONS

In this paper, we introduced an FPGA accelerator for achieving line-
rate processing of variable-length fields. The accelerator is param-
eterized with configuration options to enable different trade-offs
between latency and throughput, in addition to logic optimizations
for each targeted FPGA. We demonstrated attractive trade-offs for
common SmartNIC use cases, achieving latencies of 1.8 ns at 10

FPGA °24, March 3-5, 2024, Monterey, CA, USA

700
= AMD Virtex Ultrascale+ 8 bytes
=+ AMD Virtex Ultrascale+ 256 bytes
600 Intel Agilex 8 bytes
Intel Agilex 256 bytes
N 500
I
s -~
x
© 400
=
b=
c
© 300
(]
=
200
100

4 8 12 16 20 24 28 32
Max Fields / Input

Figure 11: Average clock frequencies for a 512-bit bus, for
different maximum fields per bus input and maximum bytes
per field, on both AMD Virtex Ultrascale+ and Intel Agilex.

Gb/s, 2.7 ns at 40 Gb/s, and 9.9 ns at 100 Gb/s. To our knowledge,
these latencies are the fastest of any known study.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant Nos. CNS-1718033 and CCF-1909244.

REFERENCES

[1] 2022. Financial Information eXchange (FIX) Protocol. Online. https://www.
fixtrading.org/online-specification/
Srinivas Aluru and Nagakishore Jammula. 2014. A Review of Hardware Ac-
celeration for Computational Genomics. IEEE Design Test 31, 1 (2014), 19-30.
https://doi.org/10.1109/MDAT.2013.2293757
Marc Battyani. 2021. A sub 25 nanoseconds Open Source NASDAQ ITCH FPGA
Parser. https://github.com/mbattyani/sub-25-ns-nasdaq-itch-fpga- parser#a-sub-
25-nanoseconds-open-source-nasdaq-itch-fpga-parser. Accessed: October 11,
2023.
Andrew Bitar, Mohamed S. Abdelfattah, and Vaughn Betz. 2015. Bringing pro-
grammability to the data plane: Packet processing with a NoC-enhanced FPGA.
In 2015 International Conference on Field Programmable Technology (FPT). 24-31.
https://doi.org/10.1109/FPT.2015.7393125
[5] Gordon Brebner and Weirong Jiang. 2014. High-Speed Packet Processing using
Reconfigurable Computing. IEEE Micro 34, 1 (2014), 8-18. https://doi.org/10.
1109/MM.2014.19
[6] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli,
Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro
Palumbo, Luca Petrucci, and Roberto Bifulco. 2022. HXDP: Efficient Software
Packet Processing on FPGA NICs. Commun. ACM 65, 8 (jul 2022), 92-100.
https://doi.org/10.1145/3543668
[7] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 1-13. https://doi.org/10.1109/MICRO.2016.7783710
Danilo Cerovi¢, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, and
Guy Pujolle. 2018. Fast Packet Processing: A Survey. IEEE Communications
Surveys Tutorials 20, 4 (2018), 3645-3676. https://doi.org/10.1109/COMST.2018.
2851072
Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael Hasel-
man, Maleen Abeydeera, Logan Adams, Hari Angepat, Christian Boehn, Derek

[2

3

=

[4

o

&

=

Greg Stitt, Wesley Piard, and Christopher Crary

Chiou, Oren Firestein, Alessandro Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen
Heil, Kyle Holohan, Ahmad El Husseini, Tamas Juhasz, Kara Kagi, Ratna K.
Kovvuri, Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Bran-

don Perez, Amanda Rapsang, Steven Reinhardt, Bita Rouhani, Adam Sapek, Raja
Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz, Lisa Woods, Phillip

Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger. 2018. Serving DNNs in Real
Time at Datacenter Scale with Project Brainwave. IEEE Micro 38, 2 (2018), 8-20.
https://doi.org/10.1109/MM.2018.022071131

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Conference on Networked Systems Design and Implementation (Renton,
WA, USA) (NSDI'18). USENIX Association, USA, 51-64.

[11] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. 2012. A Performance

and Energy Comparison of FPGAs, GPUs, and Multicores for Sliding-Window
Applications. In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (Monterey, California, USA) (FPGA ’12). Association
for Computing Machinery, New York, NY, USA, 47-56. https://doi.org/10.1145/
2145694.2145704

[12] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming

Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AL In 2018
ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).
1-14. https://doi.org/10.1109/ISCA.2018.00012

Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li, Dongliang Xie,
Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and William (Bill) J. Dally. 2017.
ESE: Efficient Speech Recognition Engine with Sparse LSTM on FPGA. In Pro-
ceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (Monterey, California, USA) (FPGA ’17). Association for Computing
Machinery, New York, NY, USA, 75-84. https://doi.org/10.1145/3020078.3021745
Ziyi Lv and Jing Zhang. 2022. A Survey of FPGA-Based Deep Learning Acceler-
ation Research. In The International Conference on Image, Vision and Intelligent
Systems (ICIVIS 2021), Jian Yao, Yang Xiao, Peng You, and Guang Sun (Eds.).
Springer Nature Singapore, Singapore, 59-65.

NVIDIA. 2023. NVIDIA DOCA GPU Packet Processing Application Guide.
https://docs.nvidia.com/doca/sdk/gpu-packet-processing/index.html [Accessed:
10/13/2023].

Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone, Marco
Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, Felipe Huici, and Giuseppe Siracusano. 2019. FlowBlaze: Stateful
Packet Processing in Hardware. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 531-548.
https://www.usenix.org/conference/nsdi19/presentation/pontarelli

Roberto Sierra, Filippo Mangani, Carlos Carreras, and Gabriel Caffarena. 2019.
High-Performance Decoding of Variable-Length Memory Data Packets for FPGA
Stream Processing. In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL). 307-313. https://doi.org/10.1109/FPL.2019.00056
Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and
Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture
for Homomorphic Computing on Encrypted Data. In 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 387-398. https:
//doi.org/10.1109/HPCA.2019.00052

Jagath Weerasinghe, Francois Abel, Christoph Hagleitner, and Andreas Herkers-
dorf. 2015. Enabling FPGAs in Hyperscale Data Centers. In 2015 IEEE 12th Intl
Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on
Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Com-
puting and Communications and Its Associated Workshops (UIC-ATC-ScalCom).
1078-1086. https://doi.org/10.1109/UIC- ATC-ScalCom-CBDCom-IoP.2015.199
David Wills. 2023. Fast Track Data Center Workloads and AI Applications with
NVIDIA DOCA 2.2. https://developer.nvidia.com/blog/fast-track-data-center-
workloads-and-ai-applications-with-nvidia-doca-2-2/ [Accessed: 10/13/2023].
Xilinx, Inc. 2017. Xilinx UltraScale Architecture Configurable Logic Block. https:
//docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb Accessed: October 10, 2023.

https://www.fixtrading.org/online-specification/
https://www.fixtrading.org/online-specification/
https://doi.org/10.1109/MDAT.2013.2293757
https://github.com/mbattyani/sub-25-ns-nasdaq-itch-fpga-parser##a-sub-25-nanoseconds-open-source-nasdaq-itch-fpga-parser
https://github.com/mbattyani/sub-25-ns-nasdaq-itch-fpga-parser##a-sub-25-nanoseconds-open-source-nasdaq-itch-fpga-parser
https://doi.org/10.1109/FPT.2015.7393125
https://doi.org/10.1109/MM.2014.19
https://doi.org/10.1109/MM.2014.19
https://doi.org/10.1145/3543668
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.1109/COMST.2018.2851072
https://doi.org/10.1109/COMST.2018.2851072
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1145/2145694.2145704
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1145/3020078.3021745
https://docs.nvidia.com/doca/sdk/gpu-packet-processing/index.html
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://doi.org/10.1109/FPL.2019.00056
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.199
https://developer.nvidia.com/blog/fast-track-data-center-workloads-and-ai-applications-with-nvidia-doca-2-2/
https://developer.nvidia.com/blog/fast-track-data-center-workloads-and-ai-applications-with-nvidia-doca-2-2/
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Variable-length Field Parser
	4.1 Overview
	4.2 Pipelined, Multi-output Priority Encoder
	4.3 Field Buffer
	4.4 Field Aligner
	4.5 Pipelined Shifter

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Throughput vs. Latency
	5.3 Scalability

	6 Conclusions
	Acknowledgments
	References

