skip to main content
research-article

Demystifying the QoS and QoE of Edge-hosted Video Streaming Applications in the Wild with SNESet

Published: 12 December 2023 Publication History

Abstract

Video streaming applications (VSAs) are increasingly being deployed on large-scale edge platforms, which have the potential to significantly improve the quality of service (QoS) and end-user experience (QoE), ultimately maximizing business outcomes. However, there is currently very little understanding of how QoS, QoE, and the impact of QoS on QoE for VSAs on edge platforms in the wild and at scale. To close the knowledge gap, we collect SNESet, an active measurement dataset comprising QoS and QoE telemetry metrics of 8 VSAs over four months, covering end-users from 798 edge sites,30 cities, and 3 ISPs in one country.We characterize and compare the QoS and QoE metrics in SNESet with existing publicly available datasets, highlighting that SNESet includes a significantly greater number of metrics (horizontal diversity and vertical hierarchy) and provides more comprehensive coverage of specific metrics.Moreover, we qualitatively and quantitatively analyze the impact of QoS on QoE in both domain-general and domain-specific scenarios. Our findings can inform the system design decisions that different entities in the video ecosystem (content providers, video player designers, third-party optimizers, edge vendors) make to maximize end-users experience and ultimately maximize the business outcomes. We hope SNESet can attract more research efforts in the data management community, computer network community, and beyond.

References

[1]
Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F Ilyas, Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016. Detecting data errors: Where are we and what needs to be done? Proceedings of the VLDB Endowment, Vol. 9, 12 (2016), 993--1004.
[2]
Vijay K Adhikari, Yang Guo, Fang Hao, Volker Hilt, Zhi-Li Zhang, and Matteo Varvello. 2014. Measurement study of Netflix, Hulu, and a tale of three CDNs. IEEE/ACM Transactions On Networking, Vol. 23, 6 (2014), 1984--1997.
[3]
Akamail. 2020. Measuring Video Quality and Performance: Best Practices. https://www.akamai.com/site/it/documents/white-paper/measuring-video-quality-and-performance-best-practices.pdf
[4]
Zahaib Akhtar, Yun Seong Nam, Jessica Chen, Ramesh Govindan, Ethan Katz-Bassett, and etc. Rao, Sanjay. 2018a. Understanding video management planes. In Proceedings of the ACM IMC Conference. 238--251.
[5]
Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. 2018b. Oboe: Auto-tuning video ABR algorithms to network conditions. In Proceedings of the ACM SIGCOMM Conference. 44--58.
[6]
Alibaba. 2023. What is ENS? https://www.alibabacloud.com/help/en/ens/latest/e49d6b
[7]
Lamine Amour, Souihi Sami, Said Hoceini, and Abdelhamid Mellouk. 2015. Building a large dataset for model-based QoE prediction in the mobile environment. In Proceedings of the ACM MSWiM Conference. 313--317.
[8]
Arvind Arasu et al. 2009. A grammar-based entity representation framework for data cleaning. In Proceedings of the ACM SIGMOD Conference. 233--244.
[9]
Consumer Technology Association. 2020. Streaming Quality of Experience Events, Properties and Metrics. Technical Report. Arlington, VA, USA.
[10]
Santiago Andrés Azcoitia et al. 2022. A survey of data marketplaces and their business models. ACM SIGMOD Record, Vol. 51, 3 (2022), 18--29.
[11]
Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, et al. 2013. Developing a predictive model of quality of experience for internet video. ACM SIGCOMM Computer Communication Review, Vol. 43, 4 (2013), 339--350.
[12]
Kaustubh Beedkar et al. 2021. Compliant geo-distributed query processing. In Proceedings of the ACM SIGMOD Conference. 181--193.
[13]
James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of machine learning research, Vol. 13, 2 (2012).
[14]
Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J Elmore, et al. 2015. Datahub: Collaborative data science & dataset version management at scale. In Proceedings of the CIDR Conference.
[15]
BITAG. 2021. 2020 PandemicNetwork Performance. https://bitag.org/documents/bitag_report.pdf
[16]
Niklas Blum, Serge Lachapelle, et al. 2021. WebRTC: Real-time communication for the open web platform. Commun. ACM, Vol. 64, 8 (2021), 50--54.
[17]
Alex Bogatu, Alvaro AA Fernandes, Norman W Paton, and Nikolaos Konstantinou. 2020. Dataset discovery in data lakes. In Proceedings of the IEEE ICDE Conference. IEEE, 709--720.
[18]
Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teixeira, and Nick Feamster. 2019. Inferring streaming video quality from encrypted traffic: Practical models and deployment experience. Proceedings of the ACM SIGMETRICS Conference, Vol. 3, 3 (2019), 1--25.
[19]
Wei Cao, Yusong Gao, Bingchen Lin, Xiaojie Feng, Yu Xie, Xiao Lou, and Peng Wang. 2018. Tcprt: Instrument and diagnostic analysis system for service quality of cloud databases at massive scale in real-time. In Proceedings of the ACM SIGMOD Conference. 615--627.
[20]
Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020. Creating embeddings of heterogeneous relational datasets for data integration tasks. In Proceedings of the ACM SIGMOD Conference. 1335--1349.
[21]
Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, et al. 2015. Apache flink: Stream and batch processing in a single engine. The Bulletin of the Technical Committee on Data Engineering, Vol. 38, 4 (2015).
[22]
Neal Cardwell, Yuchung Cheng, and etc. Gunn, C Stephen. 2017. BBR: congestion-based congestion control. Commun. ACM, Vol. 60, 2 (2017), 58--66.
[23]
Giovanna Carofiglio, Giulio Grassi, Enrico Loparco, Luca Muscariello, Michele Papalini, and Jacques Samain. 2021. Characterizing the relationship between application QoE and network QoS for real-time services. In Proceedings of the ACM SIGCOMM Workshop on Network-application Integration. 20--25.
[24]
Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. 2021. Can you see me now? A measurement study of Zoom, Webex, and Meet. In Proceedings of the ACM IMC Conference. 216--228.
[25]
Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD Conference. 785--794.
[26]
Xu Chu, Ihab F Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data cleaning: Overview and emerging challenges. In Proceedings of the ACM SIGMOD Conference. 2201--2206.
[27]
Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura, and Ricardo Bianchini. 2017. Resource central: Understanding and predicting workloads for improved resource management in large cloud platforms. In Proceedings of the ACM SOSP Conference. 153--167.
[28]
Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and Marco Slot. 2021. Citus: Distributed postgresql for data-intensive applications. In Proceedings of the ACM SIGMOD Conference. 2490--2502.
[29]
Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed Elmagarmid, Ihab F Ilyas, Mourad Ouzzani, and Nan Tang. 2013. NADEEF: a commodity data cleaning system. In Proceedings of the ACM SIGMOD Conference. 541--552.
[30]
Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, and Aditya Ganjam. 2011. Understanding the impact of video quality on user engagement. ACM SIGCOMM Computer Communication Review, Vol. 41, 4 (2011), 362--373.
[31]
Zhengfang Duanmu, Wentao Liu, Diqi Chen, Zhuoran Li, Zhou Wang, Yizhou Wang, and Wen Gao. 2019. A knowledge-driven quality-of-experience model for adaptive streaming videos. arXiv preprint arXiv:1911.07944 (2019).
[32]
Nagabhushan Eswara, S Ashique, Anand Panchbhai, Soumen Chakraborty, Hemanth P Sethuram, Kiran Kuchi, Abhinav Kumar, and Sumohana S Channappayya. 2019. Streaming video QoE modeling and prediction: A long short-term memory approach. IEEE Transactions on Circuits and Systems for Video Technology, Vol. 30, 3 (2019), 661--673.
[33]
Kevin R Fall and W Richard Stevens. 2011. TCP/IP illustrated, volume 1: The protocols. addison-Wesley.
[34]
Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In Proceedings of the IEEE ICDE Conference. IEEE, 1001--1012.
[35]
Guanyu Gao, Linsen Dong, Huaizheng Zhang, and Yonggang Wen. 2019. Content-aware personalised rate adaptation for adaptive streaming via deep video analysis. In Proceedings of the IEEE ICC Conference. IEEE, 1--8.
[36]
Nishant Garg. 2013. Apache kafka. Packt Publishing Birmingham, UK.
[37]
Apache Grafana. 2023. Apache Grafana. https://grafana.com/
[38]
Alibaba Group. 2018. Alibaba Cluster Trace Program. https://github.com/alibaba/clusterdata/blob/master/cluster-trace-v2018/trace_2018.md
[39]
Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang Bao. 2019. Who limits the resource efficiency of my datacenter: An analysis of alibaba datacenter traces. In Proceedings of the IEEE IWQoS Conference. 1--10.
[40]
Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark Russinovich, et al. 2020. Protean: VM allocation service at scale. In Proceedings of the USENIX OSDI Conference. 845--861.
[41]
Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-aware mobile volumetric video streaming. In Proceedings of the ACM MobiCom Conference. 1--13.
[42]
Arvid Heise, Gjergji Kasneci, et al. 2014. Estimating the number and sizes of fuzzy-duplicate clusters. In Proceedings of the ACM CIKM Conference. 959--968.
[43]
Tin Kam Ho. 1995. Random decision forests. In Proceedings of International Conference on Document Analysis and Recognition, Vol. 1. IEEE, 278--282.
[44]
Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. 2015. Mobile edge computing-A key technology towards 5G. ETSI white paper, Vol. 11, 11 (2015), 1--16.
[45]
Haoyu Huang and Shahram Ghandeharizadeh. 2021. Nova-LSM: a distributed, component-based LSM-tree key-value store. In Proceedings of the ACM SIGMOD Conference. 749--763.
[46]
Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, et al. 2020. Stick: A harmonious fusion of buffer-based and learning-based approach for adaptive streaming. In Proceedings of the IEEE INFOCOM Conference. IEEE, 1967--1976.
[47]
Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, and Lifeng Sun. 2022. Learning tailored adaptive bitrate algorithms to heterogeneous network conditions: A domain-specific priors and meta-reinforcement learning approach. IEEE Journal on Selected Areas in Communications, Vol. 40, 8 (2022), 2485--2503.
[48]
Te-Yuan Huang, Ramesh Johari, Nick McKeown, et al. 2014. A buffer-based approach to rate adaptation: Evidence from a large video streaming service. In Proceedings of the ACM SIGCOMM Conference. 187--198.
[49]
Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu, et al. 2019. Tangram: bridging immutable and mutable abstractions for distributed data analytics. In Proceedings of the USENIX ATC Conference. 191--206.
[50]
ITU. 2017. Vocabulary for performance, quality of service and quality of experience. https://www.itu.int/rec/T-REC-P.10--201711-I/en
[51]
Subramania Jayaraman, S Esakkirajan, and T Veerakumar. 2009. Digital image processing. Vol. 7014. Tata McGraw Hill Education New Delhi.
[52]
Martin Jergler, Mohammad Sadoghi, and Hans-Arno Jacobsen. 2015. D2WORM: A management infrastructure for distributed data-centric workflows. In Proceedings of the ACM SIGMOD Conference. 1427--1432.
[53]
Junchen Jiang, Vyas Sekar, Ion Stoica, et al. 2013. Shedding light on the structure of internet video quality problems in the wild. In Proceedings of the ACM CoNEXT Conference. 357--368.
[54]
Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In Proceedings of the ACM CoNEXT Conference. 97--108.
[55]
Zhimeng Jiang, Kaixiong Zhou, Zirui Liu, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. 2021. An information fusion approach to learning with instance-dependent label noise. In Proceedings of the ICLR Conference.
[56]
Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Proceedings of the NIPS Conference, Vol. 30 (2017).
[57]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[58]
Kongjian. 2022. Taobao System Activity Reporter. https://github.com/alibaba/tsar
[59]
Alok Gautam Kumbhare, Reza Azimi, Ioannis Manousakis, Anand Bonde, et al. 2021. Prediction-Based power oversubscription in cloud platforms. In Proceedings of the USENIX ATC Conference. 473--487.
[60]
Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017. The quic transport protocol: Design and internet-scale deployment. In Proceedings of the ACM SIGCOMM Conference. 183--196.
[61]
Jinyang Li, Zhenyu Li, Ri Lu, Kai Xiao, Songlin Li, Jufeng Chen, Jingyu Yang, Chunli Zong, Aiyun Chen, Qinghua Wu, et al. 2022. LiveNet: a low-latency video transport network for large-scale live streaming. In Proceedings of the ACM SIGCOMM Conference. 812--825.
[62]
Xiang Li, Fabing Li, and Mingyu Gao. 2023. Flare: A Fast, Secure, and Memory-Efficient Distributed Analytics Framework. Proceedings of the VLDB Endowment, Vol. 16, 6 (2023), 1439--1452.
[63]
Yuliang Li, Xiaolan Wang, Zhengjie Miao, and Wang-Chiew Tan. 2021. Data augmentation for ml-driven data preparation and integration. Proceedings of the VLDB Endowment, Vol. 14, 12 (2021), 3182--3185.
[64]
Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David Oran. 2014. Probe and adapt: Rate adaptation for HTTP video streaming at scale. IEEE Journal on Selected Areas in Communications, Vol. 32, 4 (2014), 719--733.
[65]
Xianshang Lin, Yunfei Ma, Junshao Zhang, Yao Cui, Jing Li, Shi Bai, Ziyue Zhang, Dennis Cai, Hongqiang Harry Liu, and Ming Zhang. 2022. GSO-simulcast: global stream orchestration in simulcast video conferencing systems. In Proceedings of the ACM SIGCOMM Conference. 826--839.
[66]
Xingchi Liu, Mahsa Derakhshani, and Lyudmila Mihaylova. 2022. Risk-Aware Contextual Learning for Edge-Assisted Crowdsourced Live Streaming. IEEE Journal on Selected Areas in Communications (2022).
[67]
YouTube Live. 2023. https://www.youtube.com/live
[68]
Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice dependency and performance: Alibaba trace analysis. In Proceedings of the ACM SoCC Conference. 412--426.
[69]
Kyle MacMillan, Tarun Mangla, and James Saxon. 2021. Measuring the performance and network utilization of popular video conferencing applications. In Proceedings of the ACM IMC Conference. 229--244.
[70]
Hongzi Mao, Ravi Netravali, et al. 2017. Neural adaptive video streaming with pensieve. In Proceedings of the ACM SIGCOMM Conference. 197--210.
[71]
Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. 1997. The macroscopic behavior of the TCP congestion avoidance algorithm. ACM SIGCOMM Computer Communication Review, Vol. 27, 3 (1997), 67--82.
[72]
Justin Meza, Tianyin Xu, Kaushik Veeraraghavan, and Onur Mutlu. 2018. A large scale study of data center network reliability. In Proceedings of the ACM IMC Conference. 393--407.
[73]
Zhengjie Miao, Yuliang Li, and Xiaolan Wang. 2021. Rotom: A meta-learned data augmentation framework for entity matching, data cleaning, text classification, and beyond. In Proceedings of the ACM SIGMOD Conference. 1303--1316.
[74]
Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford. 2022. Enabling passive measurement of zoom performance in production networks. In Proceedings of the ACM IMC Conference. 244--260.
[75]
Tom Michael Mitchell et al. 2007. Machine learning. Vol. 1. McGraw-hill New York.
[76]
Ricky KP Mok, Hongyu Zou, Rui Yang, Tom Koch, Ethan Katz-Bassett, and Kimberly C Claffy. 2021. Measuring the network performance of Google Cloud platform. In Proceedings of the ACM IMC Conference. 54--61.
[77]
Hyunwoo Nam, Kyung-Hwa Kim, and Henning Schulzrinne. 2016. QoE matters more than QoS: Why people stop watching cat videos. In Proceedings of the IEEE INFOCOM Conference. IEEE, 1--9.
[78]
Jyoti Nandimath, Ekata Banerjee, Ankur Patil, Pratima Kakade, Saumitra Vaidya, et al. 2013. Big data analysis using Apache Hadoop. In Proceedings of the IEEE IRI Conference. IEEE, 700--703.
[79]
Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, and Zhengxuan Yang. 2021. A variegated look at 5G in the wild: performance, power, and QoE implications. In Proceedings of the ACM SIGCOMM Conference. 610--625.
[80]
Netflix. 2022. VMAF - Video Multi-Method Assessment Fusion. https://github.com/Netflix/vmaf
[81]
Cagri Ozcinar and Julián Cabrera. 2019. Visual attention-aware omnidirectional video streaming using optimal tiles for virtual reality. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 9, 1 (2019), 217--230.
[82]
Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. 1998. Modeling TCP throughput: A simple model and its empirical validation. In Proceedings of the ACM SIGCOMM Conference. 303--314.
[83]
H Parmar and M Thornburgh. 2012. Adobe's real time messaging protocol. Copyright Adobe Systems Incorporated (2012), 1--52.
[84]
Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boosting with categorical features. Proceedings of the NIPS Conference, Vol. 31 (2018).
[85]
Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Jordan Henkel, Matteo Interlandi, Subru Krishnan, Brian Kroth, Venkatesh Emani, Wentao Wu, Ce Zhang, et al. 2022. Data Science Through the Looking Glass: Analysis of Millions of GitHub Notebooks and ML. NET Pipelines. ACM SIGMOD Record, Vol. 51, 2 (2022), 30--37.
[86]
Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, et al. 2015. Low latency geo-distributed data analytics. ACM SIGCOMM Computer Communication Review, Vol. 45, 4 (2015), 421--434.
[87]
Eric Rescorla. 2000. Http over tls. Technical Report.
[88]
Anthony Robins. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, Vol. 7, 2 (1995), 123--146.
[89]
Werner Robitza, Marie-Neige Garcia, and Alexander Raake. 2017. A modular http adaptive streaming qoe model-candidate for itu-t p. 1203 (?p. nats"). In Proceedings of the IEEE QoMEX Conference. IEEE, 1--6.
[90]
Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 627--635.
[91]
Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. 2015. Inside the social network's (datacenter) network. In Proceedings of the ACM SIGCOMM Conference. 123--137.
[92]
Mohammad Shahrad, Rodrigo Fonseca, Í nigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild: Characterizing and optimizing the serverless workload at a large cloud provider. In Proceedings of the USENIX ATC Conference. 205--218.
[93]
Zeyuan Shang, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eichmann, Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska. 2019. Democratizing data science through interactive curation of ml pipelines. In Proceedings of the ACM SIGMOD Conference. 1171--1188.
[94]
Jie Song, George Alter, and HV Jagadish. 2019. C2Metadata: Automating the capture of data transformations from statistical scripts in data documentation. In Proceedings of the ACM SIGMOD Conference. 2005--2008.
[95]
Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. 2020. BOLA: Near-optimal bitrate adaptation for online videos. IEEE/ACM Transactions On Networking, Vol. 28, 4 (2020), 1698--1711.
[96]
Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving video bitrate selection and adaptation with data-driven throughput prediction. In Proceedings of the ACM SIGCOMM Conference. 272--285.
[97]
Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, et al. 2020. Cockroachdb: The resilient geo-distributed sql database. In Proceedings of the ACM SIGMOD Conference. 1493--1509.
[98]
Alibaba Taobao Tengine. 2023. https://github.com/alibaba/tengine Retrieved Jul 20, 2023 from
[99]
TikTok. 2023. https://www.tiktok.com/
[100]
Muhammad Tirmazi, Adam Barker, Nan Deng, Md E Haque, Zhijing Gene Qin, Steven Hand, et al. 2020. Borg: the next generation. In Proceedings of the ACM EuroSys Conference. 1--14.
[101]
Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, et al. 2011. Dissecting video server selection strategies in the youtube cdn. In Proceedings of the IEEE ICDCS Conference. IEEE, 248--257.
[102]
Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, and Mérouane Debbah. 2018. Predicting QoE factors with machine learning. In Proceedings of the IEEE ICC Conference. IEEE, 1--6.
[103]
Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster management at Google with Borg. In Proceedings of the ACM EuroSys Conference. 1--17.
[104]
Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. CLARINET:WAN-Aware Optimization for Analytics Queries. In Proceedings of the USENIX OSDI Conference. 435--450.
[105]
Ashish Vulimiri, Carlo Curino, P Brighten Godfrey, Thomas Jungblut, Jitu Padhye, and George Varghese. 2015. Global analytics in the face of bandwidth and regulatory constraints. In Proceedings of the USENIX NSDI Conference. 323--336.
[106]
Ashish Vulimiriu, Carlo Curinom, Brighten Godfreyu, Konstantinos Karanasosm, and George Varghesem. 2015. WANalytics: Analytics for a geo-distributed data-intensive world. Proceedings of the CIDR Conference.
[107]
Zhaohua Wang, Zhenyu Li, Guangming Liu, Yunfei Chen, and Qinghua Wu. 2021. Examination of WAN traffic characteristics in a large-scale data center network. In Proceedings of the ACM IMC Conference. 1--14.
[108]
Zhou Wang, Eero P Simoncelli, and Alan C Bovik. 2003. Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, Vol. 2. Ieee, 1398--1402.
[109]
Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in the Wild: Workload Analysis and Scheduling in Large-Scale Heterogeneous GPU Clusters. In Proceedings of the USENIX NSDI Conference. 945--960.
[110]
Doris Xin, Hui Miao, Aditya Parameswaran, and Neoklis Polyzotis. 2021. Production machine learning pipelines: Empirical analysis and optimization opportunities. In Proceedings of the ACM SIGMOD Conference. 2639--2652.
[111]
Pengcheng Xiong, Hakan Hacigumus, et al. 2014. A software-defined networking based approach for performance management of analytical queries on distributed data stores. In Proceedings of the ACM SIGMOD Conference. 955--966.
[112]
Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang Wang, Ke Li, et al. 2021. From cloud to edge: a first look at public edge platforms. In Proceedings of the ACM IMC Conference. 37--53.
[113]
An Yan and Bill Howe. 2021. Equitensors: Learning fair integrations of heterogeneous urban data. In Proceedings of the ACM SIGMOD Conference. 2338--2347.
[114]
Francis Y Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang, Philip Alexander Levis, and Keith Winstein. 2020. Learning in situ: a randomized experiment in video streaming. In Proceedings of the USENIX NSDI Conference, Vol. 20. 495--511.
[115]
Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong, et al. 2018. Carousel: Low-latency transaction processing for globally-distributed data. In Proceedings of the ACM SIGMOD Conference. 231--243.
[116]
Gunce Su Yilmaz, Tana Wattanawaroon, Liqi Xu, Abhishek Nigam, Aaron J Elmore, and Aditya Parameswaran. 2018. Datadiff: User-interpretable data transformation summaries for collaborative data analysis. In Proceedings of the ACM SIGMOD Conference. 1769--1772.
[117]
Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A control-theoretic approach for dynamic adaptive video streaming over HTTP. In Proceedings of the ACM SIGCOMM Conference. 325--338.
[118]
Junyong You. 2021. Long short-term convolutional transformer for no-reference video quality assessment. In Proceedings of the ACM MM Conference. 2112--2120.
[119]
Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang, Shaochen Zhong, and Xia Hu. 2023. Data-centric artificial intelligence: A survey. arXiv preprint arXiv:2303.10158 (2023).
[120]
Yue Zha and Jing Li. 2020. Virtualizing FPGAs in the cloud. In Proceedings of the ACM ASPLOS Conference. 845--858.
[121]
Li Zhang, Zhe Fu, Boqing Shi, Xiang Li, Rujin Lai, Chenyang Chen, Ao Zhou, Xiao Ma, Shangguang Wang, and Mengwei Xu. 2022. SoC-Cluster as an Edge Server: an Application-driven Measurement Study. arXiv preprint arXiv:2212.12842 (2022).
[122]
Zicheng Zhang, Wei Wu, Wei Sun, Dangyang Tu, Wei Lu, Xiongkuo Min, Ying Chen, and Guangtao Zhai. 2023. MD-VQA: Multi-Dimensional Quality Assessment for UGC Live Videos. In Proceedings of the IEEE CVPR Conference.
[123]
Azure Edge Zones. 2020. Microsoft partners with the industry to unlock new 5G scenarios with Azure Edge Zones. https://azure.microsoft.com/en-us/blog/microsoft-partners-with-the-industry-to-unlock-new-5g-scenarios-with-azure-edge-zones/ Retrieved Mar 31, 2020 from
[124]
AWS Local Zones. 2022. https://aws.amazon.com/cn/about-aws/global-infrastructure/localzones/locations/ Retrieved Mar 31, 2022 from
[125]
Zoom. 2023. https://zoom.us/
[126]
Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), Vol. 67, 2 (2005), 301--320.

Cited By

View all
  • (2024)Fight Fire with Fire: Towards Robust Graph Neural Networks on Dynamic Graphs via Actively DefenseProceedings of the VLDB Endowment10.14778/3659437.365945717:8(2050-2063)Online publication date: 31-May-2024
  • (2024)ETC: Efficient Training of Temporal Graph Neural Networks over Large-Scale Dynamic GraphsProceedings of the VLDB Endowment10.14778/3641204.364121517:5(1060-1072)Online publication date: 2-May-2024
  • (2024)SIMPLE: Efficient Temporal Graph Neural Network Training at Scale with Dynamic Data PlacementProceedings of the ACM on Management of Data10.1145/36549772:3(1-25)Online publication date: 30-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Management of Data
Proceedings of the ACM on Management of Data  Volume 1, Issue 4
PACMMOD
December 2023
1317 pages
EISSN:2836-6573
DOI:10.1145/3637468
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2023
Published in PACMMOD Volume 1, Issue 4

Permissions

Request permissions for this article.

Author Tags

  1. QoE metrics
  2. QoS metrics
  3. edge computing
  4. network measurements

Qualifiers

  • Research-article

Funding Sources

  • National Key R&D Program of China

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)182
  • Downloads (Last 6 weeks)18
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Fight Fire with Fire: Towards Robust Graph Neural Networks on Dynamic Graphs via Actively DefenseProceedings of the VLDB Endowment10.14778/3659437.365945717:8(2050-2063)Online publication date: 31-May-2024
  • (2024)ETC: Efficient Training of Temporal Graph Neural Networks over Large-Scale Dynamic GraphsProceedings of the VLDB Endowment10.14778/3641204.364121517:5(1060-1072)Online publication date: 2-May-2024
  • (2024)SIMPLE: Efficient Temporal Graph Neural Network Training at Scale with Dynamic Data PlacementProceedings of the ACM on Management of Data10.1145/36549772:3(1-25)Online publication date: 30-May-2024
  • (2024)ROME: Robust Query Optimization via Parallel Multi-Plan ExecutionProceedings of the ACM on Management of Data10.1145/36549732:3(1-25)Online publication date: 30-May-2024
  • (2024)An Empirical Study on Noisy Label Learning for Program UnderstandingProceedings of the IEEE/ACM 46th International Conference on Software Engineering10.1145/3597503.3639217(1-12)Online publication date: 20-May-2024
  • (2023)ChainedFilter: Combining Membership Filters by Chain RuleProceedings of the ACM on Management of Data10.1145/36267211:4(1-27)Online publication date: 12-Dec-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media