skip to main content
10.1145/3627377.3627431acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbdtConference Proceedingsconference-collections
research-article

Automatic Segmentation Method for the Nuclei Contour of High Resolution Rat Brain

Authors Info & Claims
Published:04 December 2023Publication History

ABSTRACT

The brain consists of massive nuclei with different functions. In neuroscience research, the precise recognition and delineation of nucleus boundaries is the crux of brain atlas illustration. Here, we propose a method based on Markov Random Field. This method introduces fractional differentiation into texture feature extraction and a new potential energy function is defined based on kernel region information. To handle the problem of large data volume, we propose a strategy of dual MRF processing with down sampling for pre classification. Finally, the fuzzy entropy criterion is used to optimize the segmentation results. Experiments on model data and real tissue slice data show that this method can not only segment the regions with obvious differences in the density of the nuclei with insignificant differences in the density of nuclei, but also divide the nuclei without insignificant density differences by the cell shapes and textures. In addition, this method can not only segment a specific target kernel in one calculation, but also simultaneously partition multiple target kernels. The segmentation algorithm shows great potential for illustrating high-resolution 3D brain atlases.

References

  1. Wiegell, M. R., Tuch, D. S., Larsson, H. B., & Wedeen, V. J. (2003). Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage, 19(2), 391-401.Google ScholarGoogle Scholar
  2. van der Lijn, F., den Heijer, T., Breteler, M. M., & Niessen, W. J. (2008). Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. Neuroimage, 43(4), 708-720.Google ScholarGoogle Scholar
  3. McDonald, A. J. (1982). Cytoarchitecture of the central amygdaloid nucleus of the rat. Journal of Comparative Neurology, 208(4), 401-418.Google ScholarGoogle Scholar
  4. Geisler, S., Andres, K. H., & Veh, R. W. (2003). Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. Journal of Comparative Neurology, 458(1), 78-97.Google ScholarGoogle Scholar
  5. Balafar, M. A., Ramli, A. R., Saripan, M. I., & Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review,33(3), 261-274.Google ScholarGoogle Scholar
  6. Gahr, M. (1997). How should brain nuclei be delineated? Consequences for developmental mechanisms and for correlations ofarea size, neuron numbers and functions of brain nuclei. Trends in neurosciences, 20(2), 58-62.Google ScholarGoogle Scholar
  7. K. Brodmann, Beitraege zur histologischen Lokalisation der Grosshirnrinde. III Mitteilung. Die Rinenfelder der neideren Affen, J. Psychol. Neurol., 4 (1905), pp. 177–226Google ScholarGoogle Scholar
  8. Paxinos, G., & Franklin, K. B. (2004). The mouse brain in stereotaxic coordinates. Gulf Professional Publishing.Google ScholarGoogle Scholar
  9. Dong, H. W. (2008). The Allen reference atlas: A digital color brain atlas of the C57Bl/6J male mouse. John Wiley & Sons Inc.Google ScholarGoogle Scholar
  10. Brunjes, P. C., Illig, K. R., & Meyer, E. A. (2005). A field guide to the anterior olfactory nucleus (cortex). Brain research reviews, 50(2), 305-335.Google ScholarGoogle Scholar
  11. Li, A., Gong, H., Zhang, B., Wang, Q., Yan, C., Wu, J., ... & Luo, Q. (2010). Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science, 330(6009), 1404-1408.Google ScholarGoogle Scholar
  12. Xiang, Y., Büttner-Ennever, J., Cohen, B., & Raphan, T. (2004). Texture-based approaches for identifying neuro-anatomical structures and electrode tracks. Computer methods and programs in biomedicine, 74(3), 221-233.Google ScholarGoogle Scholar
  13. Mesejo, P., Ugolotti, R., Cagnoni, S., Cunto, F. D., & Giacobini, M. (2012, June). Automatic segmentation of hippocampus in histological images of mouse brains using deformable models and random forest. In Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on(pp. 1-4). IEEE.Google ScholarGoogle Scholar
  14. Mesejo, P., Cagnoni, S., Costalunga, A., & Valeriani, D. (2013, July). Segmentation of histological images using a metaheuristic-based level set approach. In Proceedings of the 15th annual conference companion on Genetic and evolutionary computation (pp. 1455-1462). ACM.Google ScholarGoogle Scholar
  15. Amunts, K., Lepage, C., Borgeat, L., Mohlberg, H., Dickscheid, T., Rousseau, M. É., ... & Shah, N. J. (2013). BigBrain: an ultrahigh-resolution 3D human brain model. Science, 340(6139), 1472-1475.Google ScholarGoogle Scholar
  16. Meyer, E. A., Illig, K. R., & Brunjes, P. C. (2006). Differences in chemo‐and cytoarchitectural features within pars principalis of the rat anterior olfactory nucleus suggest functional specialization. Journal of Comparative Neurology, 498(6), 786-795.Google ScholarGoogle Scholar
  17. N. Chandgotia. Generalisation of the Hammersley-Clifford theorem on bipartite graphs [J]. Transactions of the American Mathematical Society, 2017, 369(10):7107-7137Google ScholarGoogle ScholarCross RefCross Ref
  18. A. D. Luca, S. Termini. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory [J]. Information & Control, 1972, 20(4):301-312.Google ScholarGoogle ScholarCross RefCross Ref
  19. Sonali Bhadoria, Preeti Aggarwal, C. G. Dethe, and Renu Vig, "Comparison of Segmentation Tools for Multiple Modalities in Medical Imaging," Journal of Advances in Information Technology, Vol. 3, No. 4, pp. 197-205, November, 2012.doi:10.4304/jait.3.4.197-205.Google ScholarGoogle ScholarCross RefCross Ref
  20. S.S. Kumar, R.S. Moni, and J. Rajeesh, "Automatic Segmentation of Liver and Tumor for CAD of Liver," Journal of Advances in Information Technology, Vol. 2, No. 1, pp. 63-70, February, 2011.doi:10.4304/jait.2.1.63-70Google ScholarGoogle ScholarCross RefCross Ref
  21. Farha Fatina Wahid, Raju G., Shijo M. Joseph, Debabrata Swain, Om Prakash Das, and Biswaranjan Acharya, "A Novel Fuzzy-Based Thresholding Approach for Blood Vessel Segmentation from Fundus Image," Journal of Advances in Information Technology, Vol. 14, No. 2, pp. 185-192, 2023.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Automatic Segmentation Method for the Nuclei Contour of High Resolution Rat Brain
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Other conferences
              ICBDT '23: Proceedings of the 2023 6th International Conference on Big Data Technologies
              September 2023
              441 pages
              ISBN:9798400707667
              DOI:10.1145/3627377

              Copyright © 2023 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 4 December 2023

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article
              • Research
              • Refereed limited
            • Article Metrics

              • Downloads (Last 12 months)5
              • Downloads (Last 6 weeks)2

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format