skip to main content
10.1145/3627631.3627664acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicvgipConference Proceedingsconference-collections
research-article

MCDNet: Multi Context Dense Network for multi-frame super resolution of satellite images

Published:31 January 2024Publication History

ABSTRACT

Satellite image super resolution is an important task that generates high resolution satellite images from low resolution inputs. Multi-frame super resolution utilizes multiple low-resolution images to generate a single high-resolution image. Multi-frame super resolution methods face difficulty in handling spatial and temporal dependencies of pixels. In this work, we proposed a novel architecture named Multi-context Dense Network (MCDNet) to handle spatial and temporal pixel dependencies using multiple approaches of global average pooling, multiple size kernels, and self-attention. The proposed approach improved the PSNR values by 0.29 % and 0.001 % for super resolution of NIR and RED bands on the benchmark PROBA-V dataset.

References

  1. Nour Aburaed, Alavikunhu Panthakkan, Mina Al-Saad, Marwa Chendeb El Rai, Saeed Al Mansoori, Hussain Al-Ahmad, and Stephen Marshall. 2020. Super-resolution of satellite imagery using a wavelet multiscale-based deep convolutional neural network model. In Image and Signal Processing for Remote Sensing XXVI, Lorenzo Bruzzone, Francesca Bovolo, and Emanuele Santi (Eds.). Vol. 11533. International Society for Optics and Photonics, SPIE, 115331J. https://doi.org/10.1117/12.2573991Google ScholarGoogle ScholarCross RefCross Ref
  2. Tai An, Xin Zhang, Chunlei Huo, Bin Xue, Lingfeng Wang, and Chunhong Pan. 2022. TR-MISR: Multiimage Super-Resolution Based on Feature Fusion With Transformers. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15 (2022), 1373–1388. https://doi.org/10.1109/JSTARS.2022.3143532Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Anger, T. Ehret, Carlo de Franchis, and Gabriele Facciolo. 2020. FAST AND ACCURATE MULTI-FRAME SUPER-RESOLUTION OF SATELLITE IMAGES. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2020 (08 2020), 57–64. https://doi.org/10.5194/isprs-annals-V-1-2020-57-2020Google ScholarGoogle ScholarCross RefCross Ref
  4. Daniel Bull, Nick Lim, and Eibe Frank. 2021. Perceptual improvements for Super-Resolution of Satellite Imagery. In 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ). 1–6. https://doi.org/10.1109/IVCNZ54163.2021.9653355Google ScholarGoogle ScholarCross RefCross Ref
  5. Hasan Demirel and Gholamreza Anbarjafari. 2010. Satellite Image Resolution Enhancement Using Complex Wavelet Transform. IEEE Geoscience and Remote Sensing Letters 7, 1 (2010), 123–126. https://doi.org/10.1109/LGRS.2009.2028440Google ScholarGoogle ScholarCross RefCross Ref
  6. Hasan Demirel and Gholamreza Anbarjafari. 2011. Discrete Wavelet Transform-Based Satellite Image Resolution Enhancement. IEEE Transactions on Geoscience and Remote Sensing 49, 6 (2011), 1997–2004. https://doi.org/10.1109/TGRS.2010.2100401Google ScholarGoogle ScholarCross RefCross Ref
  7. Michel Deudon, Alfredo Kalaitzis, Israel Goytom, Md Rifat Arefin, Zhichao Lin, Kris Sankaran, Vincent Michalski, Samira E. Kahou, Julien Cornebise, and Yoshua Bengio. 2020. HighRes-net: Recursive Fusion for Multi-Frame Super-Resolution of Satellite Imagery. https://doi.org/10.48550/ARXIV.2002.06460Google ScholarGoogle ScholarCross RefCross Ref
  8. Francisco Dorr. 2020. Satellite Image Multi-Frame Super Resolution Using 3D Wide-Activation Neural Networks. Remote Sensing 12, 22 (2020). https://doi.org/10.3390/rs12223812Google ScholarGoogle ScholarCross RefCross Ref
  9. S. Farsiu, M.D. Robinson, M. Elad, and P. Milanfar. 2004. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 13, 10 (2004), 1327–1344. https://doi.org/10.1109/TIP.2004.834669Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. M. Hakim, A. Ghazdali, and A. Laghrib. 2020. A multi-frame super-resolution based on new variational data fidelity term. Applied Mathematical Modelling 87 (2020), 446–467. https://doi.org/10.1016/j.apm.2020.06.013Google ScholarGoogle ScholarCross RefCross Ref
  11. Mohamed Ramzy Ibrahim, Robert Benavente, Felipe Lumbreras, and Daniel Ponsa. 2022. 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 322–331. https://doi.org/10.1109/CVPRW56347.2022.00047Google ScholarGoogle ScholarCross RefCross Ref
  12. Kui Jiang, Zhongyuan Wang, Peng Yi, Guangcheng Wang, Tao Lu, and Junjun Jiang. 2019. Edge-Enhanced GAN for Remote Sensing Image Superresolution. IEEE Transactions on Geoscience and Remote Sensing 57, 8 (2019), 5799–5812. https://doi.org/10.1109/TGRS.2019.2902431Google ScholarGoogle ScholarCross RefCross Ref
  13. Toshiyuki Kato, Hideitsu Hino, and Noboru Murata. 2017. Double sparsity for multi-frame super resolution. Neurocomputing 240 (2017), 115–126. https://doi.org/10.1016/j.neucom.2017.02.043Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Michal Kawulok, Pawel Benecki, Daniel Kostrzewa, and Lukasz Skonieczny. 2018. Evolving Imaging Model for Super-Resolution Reconstruction(GECCO ’18). Association for Computing Machinery, New York, NY, USA, 284–285. https://doi.org/10.1145/3205651.3205676Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Michal Kawulok, Pawel Benecki, Szymon Piechaczek, Krzysztof Hrynczenko, Daniel Kostrzewa, and Jakub Nalepa. 2020. Deep Learning for Multiple-Image Super-Resolution. IEEE Geoscience and Remote Sensing Letters 17, 6 (2020), 1062–1066. https://doi.org/10.1109/LGRS.2019.2940483Google ScholarGoogle ScholarCross RefCross Ref
  16. Michal Kawulok, Tomasz Tarasiewicz, Jakub Nalepa, Diana Tyrna, and Daniel Kostrzewa. 2021. Deep Learning for Multiple-Image Super-Resolution of Sentinel-2 Data. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 3885–3888. https://doi.org/10.1109/IGARSS47720.2021.9553243Google ScholarGoogle ScholarCross RefCross Ref
  17. Minji Lee, Inyong Koo, Kangwook Ko, and Changick Kim. 2022. Multi-image Super-resolution via Quality Map Associated Temporal Attention Network.Google ScholarGoogle Scholar
  18. Huan Liu and Yanfeng Gu. 2022. Deep Joint Estimation Network for Satellite Video Super-Resolution With Multiple Degradations. IEEE Transactions on Geoscience and Remote Sensing 60 (2022), 1–15. https://doi.org/10.1109/TGRS.2022.3163790Google ScholarGoogle ScholarCross RefCross Ref
  19. Xun Liu, Chenwei Deng, Jocelyn Chanussot, Danfeng Hong, and Baojun Zhao. 2019. StfNet: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion. IEEE Transactions on Geoscience and Remote Sensing 57, 9 (2019), 6552–6564. https://doi.org/10.1109/TGRS.2019.2907310Google ScholarGoogle ScholarCross RefCross Ref
  20. Xiaomin Liu, Tiantian Feng, Xiaofan Shen, and Rongxing Li. 2022. PMDRnet: A Progressive Multiscale Deformable Residual Network for Multi-Image Super-Resolution of AMSR2 Arctic Sea Ice Images. IEEE Transactions on Geoscience and Remote Sensing 60 (2022), 1–18. https://doi.org/10.1109/TGRS.2022.3151623Google ScholarGoogle ScholarCross RefCross Ref
  21. Jie Ma, Libao Zhang, and Jue Zhang. 2020. SD-GAN: Saliency-Discriminated GAN for Remote Sensing Image Superresolution. IEEE Geoscience and Remote Sensing Letters 17, 11 (2020), 1973–1977. https://doi.org/10.1109/LGRS.2019.2956969Google ScholarGoogle ScholarCross RefCross Ref
  22. Emanuele Mandanici, Luca Tavasci, Francesco Corsini, and S. Gandolfi. 2019. A multi-image super-resolution algorithm applied to thermal imagery. Applied Geomatics 11 (02 2019). https://doi.org/10.1007/s12518-019-00253-yGoogle ScholarGoogle ScholarCross RefCross Ref
  23. M. Märtens, D. Izzo, A. Krzic, and D. Cox. 2019. Super-resolution of PROBA-V images using convolutional neural networks. https://rdcu.be/bPOud. Astrodynamics (8 2019).Google ScholarGoogle Scholar
  24. Shaohui Mei, Ruituo Jiang, Xu Li, and Qian Du. 2020. Spatial and Spectral Joint Super-Resolution Using Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing 58, 7 (2020), 4590–4603. https://doi.org/10.1109/TGRS.2020.2964288Google ScholarGoogle ScholarCross RefCross Ref
  25. Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. 2019. Deep Learning For Super-Resolution Of Unregistered Multi-Temporal Satellite Images. In 2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS). 1–5. https://doi.org/10.1109/WHISPERS.2019.8920910Google ScholarGoogle ScholarCross RefCross Ref
  26. Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. 2019. DeepSUM: Deep neural network for Super-resolution of Unregistered Multitemporal images. IEEE Transactions on Geoscience and Remote Sensing 58, 5 (2019), 3644–3656.Google ScholarGoogle ScholarCross RefCross Ref
  27. Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. 2020. Deepsum++: Non-Local Deep Neural Network for Super-Resolution of Unregistered Multitemporal Images. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. 609–612. https://doi.org/10.1109/IGARSS39084.2020.9324418Google ScholarGoogle ScholarCross RefCross Ref
  28. Marwa Mostafa and Sayed Ahmed. 2021. Satellite Imagery Super-Resolution Using Squeeze-and-Excitation-Based GAN. International Journal of Aeronautical and Space Sciences (06 2021). https://doi.org/10.1007/s42405-021-00396-6Google ScholarGoogle ScholarCross RefCross Ref
  29. Marcus Märtens, Dario Izzo, Andrej Kržič, and Daniël Cox. 2019. Super-resolution of PROBA-V images using convolutional neural networks. Astrodynamics 3 (08 2019). https://doi.org/10.1007/s42064-019-0059-8Google ScholarGoogle ScholarCross RefCross Ref
  30. Ngoc Long Nguyen, Jérémy Anger, Axel Davy, Pablo Arias, and Gabriele Facciolo. 2021. Self-supervised multi-image super-resolution for push-frame satellite images. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 1121–1131. https://doi.org/10.1109/CVPRW53098.2021.00123Google ScholarGoogle ScholarCross RefCross Ref
  31. Muhammed Razzak, Gonzalo Mateo-Garcia, Luis Gómez-Chova, Yarin Gal, and Freddie Kalaitzis. 2021. Multi-Spectral Multi-Image Super-Resolution of Sentinel-2 with Radiometric Consistency Losses and Its Effect on Building Delineation. https://doi.org/10.48550/ARXIV.2111.03231Google ScholarGoogle ScholarCross RefCross Ref
  32. Md Rifat Arefin, Vincent Michalski, Pierre-Luc St-Charles, Alfredo Kalaitzis, Sookyung Kim, Samira E. Kahou, and Yoshua Bengio. 2020. Multi-Image Super-Resolution for Remote Sensing using Deep Recurrent Networks. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 816–825. https://doi.org/10.1109/CVPRW50498.2020.00111Google ScholarGoogle ScholarCross RefCross Ref
  33. Francesco Salvetti, Vittorio Mazzia, Aleem Khaliq, and Marcello Chiaberge. 2020. Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks. Remote Sensing 12, 14 (2020). https://doi.org/10.3390/rs12142207Google ScholarGoogle ScholarCross RefCross Ref
  34. Changyeop Shin, Sungho Kim, and Youngjung Kim. 2022. Satellite Image Target Super-Resolution With Adversarial Shape Discriminator. IEEE Geoscience and Remote Sensing Letters 19 (2022), 1–5. https://doi.org/10.1109/LGRS.2020.3042238Google ScholarGoogle ScholarCross RefCross Ref
  35. Tao Sun, Zhengqiang Xiong, Zixian Wei, and Zhengxing Wang. 2022. Infrared image super-resolution method for edge computing based on adaptive nonlocal means. The Journal of Supercomputing 78 (04 2022), 1–22. https://doi.org/10.1007/s11227-021-04141-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Diego Valsesia and Enrico Magli. 2022. Permutation invariance and uncertainty in multitemporal image super-resolution. IEEE Transactions on Geoscience and Remote Sensing 60 (2022), 1–12. https://doi.org/10.1109/TGRS.2021.3130673Google ScholarGoogle ScholarCross RefCross Ref
  37. Junwei Wang, Kun Gao, Zhenzhou Zhang, Chong Ni, Zibo Hu, Dayu Chen, and Qiong Wu. 2021. Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN. Journal of Remote Sensing 2021, Article 9829706 (Sept. 2021), 9829706 pages. https://doi.org/10.34133/2021/9829706Google ScholarGoogle ScholarCross RefCross Ref
  38. Peijuan Wang and Elif Sertel. 2023. Multi-frame super-resolution of remote sensing images using attention-based GAN models. Knowledge-Based Systems 266 (2023), 110387. https://doi.org/10.1016/j.knosys.2023.110387Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yi Xiao, Xin Su, Qiangqiang Yuan, Denghong Liu, Huanfeng Shen, and Liangpei Zhang. 2022. Satellite Video Super-Resolution via Multiscale Deformable Convolution Alignment and Temporal Grouping Projection. IEEE Transactions on Geoscience and Remote Sensing 60 (2022), 1–19. https://doi.org/10.1109/TGRS.2021.3107352Google ScholarGoogle ScholarCross RefCross Ref
  40. Yi Xiao, Qiangqiang Yuan, Jiang He, Qiang Zhang, Jing Sun, Xin Su, Jialian Wu, and Liangpei Zhang. 2022. Space-time super-resolution for satellite video: A joint framework based on multi-scale spatial-temporal transformer. International Journal of Applied Earth Observation and Geoinformation 108 (2022), 102731. https://doi.org/10.1016/j.jag.2022.102731Google ScholarGoogle ScholarCross RefCross Ref
  41. Li Yan and Kun Chang. 2021. A New Super Resolution Framework Based on Multi-Task Learning for Remote Sensing Images. Sensors 21, 5 (2021). https://doi.org/10.3390/s21051743Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. MCDNet: Multi Context Dense Network for multi-frame super resolution of satellite images

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        ICVGIP '23: Proceedings of the Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing
        December 2023
        352 pages
        ISBN:9798400716256
        DOI:10.1145/3627631

        Copyright © 2023 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 31 January 2024

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate95of286submissions,33%
      • Article Metrics

        • Downloads (Last 12 months)10
        • Downloads (Last 6 weeks)3

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format