skip to main content
research-article

Exploring the Relative Effects of Body Position and Locomotion Method on Presence and Cybersickness when Navigating a Virtual Environment

Published:09 December 2023Publication History
Skip Abstract Section

Abstract

The primary goals of this research are to strengthen the understanding of the mechanisms underlying presence and cybersickness in relation to the body position and locomotion method when navigating a virtual environment (VE). In this regard, we compared two body positions (standing and sitting) and four locomotion methods (steering + embodied control [EC], steering + instrumental control [IC], teleportation + EC, and teleportation + IC) to examine the association between body position, locomotion method, presence, and cybersickness in VR. The results of a two-way ANOVA revealed a main effect of locomotion method on presence, with the sense of presence significantly lower for the steering + IC condition. However, there was no main effect of body position on presence, nor was there an interaction between body position and locomotion method. For cybersickness, nonparametric tests were used due to non-normality. The results of Mann-Whitney U tests indicated a statistically significant effect of body position on cybersickness. In particular, the level of cybersickness was significantly higher for a standing position than for a sitting position. In addition, the results of Kruskal-Wallis tests revealed that the locomotion method had a meaningful effect on cybersickness, with participants in the steering conditions feeling stronger symptoms of cybersickness than those in the teleportation conditions. Overall, this study confirmed the relationship between body position, locomotion method, presence, and cybersickness when navigating a VE.

REFERENCES

  1. [1] Al Zayer Majed, MacNeilage Paul, and Folmer Eelke. 2020. Virtual locomotion: A survey. IEEE Transactions on Visualization and Computer Graphics 26, 6 (2020), 23152334. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Arcioni Benjamin, Palmisano Stephen, Apthorp Deborah, and Kim Juno. 2018. Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58 (2018), 311. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Bakker Niels H., Werkhoven Peter J., and Passenier Peter O.. 1999. The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperators and Virtual Environments 8, 1 (1999), 3653. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Balcetis Emily and Dunning David. 2007. Cognitive dissonance and the perception of natural environments. Psychological Science 18, 10 (2007), 917921. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Bardy Benoît G., Marin Ludovic, Stoffregen Thomas A., and Bootsma Reinoud J.. 1999. Postural coordination modes considered as emergent phenomena. Journal of Experimental Psychology: Human Perception and Performance 25, 5 (1999), 12841301. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] María Baños Rosa, Botella Cristina, García-Palacios Azucena, Villa Martín Helena, Perpiñá Concepción, and Luis Alcañiz Raya Mariano. 2000. Presence and reality judgment in virtual environments: A unitary construct? CyberPsychology and Behavior 3, 3 (2000), 327335. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Bhandari Jiwan, MacNeilage Paul, and Folmer Eelke. 2018. Teleportation without spatial disorientation using optical flow dues. In Proceedings of the Graphics Interface 2018. 162167. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. [8] Boletsis Costas and Cedergren Jarl Erik. 2019. VR Locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Advances in Human-Computer Interaction 2019 (2019). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Bos Jelte E., Bles Willem, and Groen Eric L.. 2008. A theory on visually induced motion sickness. Displays 29, 2 (2008), 4757. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Bowman Doug A., Koller David, and Hodges Larry F.. 1997. Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of IEEE 1997 Virtual Reality Annual International Symposium (VRAIS). 4552. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Bowman Doug A., Kruijff Ernst, LaViola Joseph J., and Poupyrev Ivan. 2004. 3D User Interfaces: Theory and Practice. Addison-Wesley.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Bozgeyikli Evren, Raij Andrew, Katkoori Srinivas, and Dubey Rajiv V.. 2016. Point and teleport locomotion technique for virtual reality. In Proceedings of the 2016 Annual Symposium on Computer–Human Interaction in Play (CHI PLAY’ 16). 205216. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Bruder Gerd, Lubos Paul, and Steinicke Frank. 2015. Cognitive resource demands of redirected walking. IEEE Transactions on Visualization and Computer Graphics 21, 4 (2015), 539544. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Bystrom Karl-Erik, Barfield Woodrow, and Hendrix Claudia M.. 1999. A conceptual model of the sense of presence in virtual environments. Presence: Teleoperators and Virtual Environments 8, 2 (1999), 241244. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Campos Jennifer L., Siegle Joshua H., Mohler Betty J., Bülthoff Heinrich H., and Loomis Jack M.. 2009. Imagined self-motion differs from perceived self-motion: Evidence from a novel continuous pointing method. PLoS ONE 4, 11 (2009), e7793. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Carassa Antonella, Morganti Francesca, and Tirassa Maurizio. 2004. Movement, action, and situation: Presence in virtual environments. In Proceedings of the 7th Annual International Workshop on Presence (Presence 2004). 712.Google ScholarGoogle Scholar
  17. [17] Chance Sarah S., Gaunet Florence, Beall Andrew C., and Loomis Jack M.. 1998. Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoperators and Virtual Environments 7, 2 (1998), 168178. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. [18] Chen Yi-Chou, Dong Xiao, Chen Fu-Chen, and Stoffregen Thomas A.. 2012. Control of a virtual avatar influences postural activity and motion sickness, Ecological Psychology 24, 4 (2012), 279299. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Cherep Lucia A., Lim Alex F., Kelly Jonathan W., Acharya Devi, Velasco Alfredo, Bustamante Emanuel, Ostrander Alec G., and Gilbert Stephen B. 2020. Spatial cognitive implications of teleporting through virtual environments. Journal of Experimental Psychology: Applied 26, 3 (2020), 480492. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Cherni Heni, Métayer Natacha, and Souliman Nicolas. 2020. Literature review of locomotion techniques in virtual reality. International Journal of Virtual Reality 20, 1 (2020), 120. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Christou Chris G. and Aristidou Poppy. 2017. Steering versus teleport locomotion for head mounted displays. In Proceedings of the Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2017). Tommaso De Paolis Lucio, Bourdot Patrick, and Mongelli Antonio (Eds.), Lecture Notes in Computer Science, Vol. 10325, 431446. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Clifton Jeremy and Palmisano Stephen A.. 2019. Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality 24 (2019), 453468. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Clifton Jeremy and Palmisano Stephen A.. 2019. Comfortable locomotion in VR: Teleportation is not a complete solution. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology (VRST’19). 12. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Conradi Jessica and Alexander Thomas. 2012. On the effect of free vs. Restricted interaction during the exploration of virtual environments. Work 41, 1 (2012), 22012207. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Curry Chris, Peterson Nicolette, Li Ruixuan, and Stoffregen Thomas A.. 2020. Postural activity during use of a head-mounted display: Sex differences in the “Driver–Passenger” effect. Frontiers in Virtual Reality 1 (2020), 1-11. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Davis Simon, Nesbitt Keith, and Nalivaiko Eugene. 2014. A systematic review of cybersickness. In Proceedings of the 2014 Conference on Interactive Entertainment (IE 2014). 19. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [27] Davis Simon, Nesbitt Keith, and Nalivaiko Eugene. 2015. Comparing the onset of cybersickness using the Oculus Rift and two virtual roller coasters. In Proceedings of the 11th Australasian Conference on Interactive Entertainment (IE 2015). 314.Google ScholarGoogle Scholar
  28. [28] Dennison Mark S. and D'Zmura Michael. 2017. Cybersickness without the wobble: Experimental results speak against postural instability theory. Applied Ergonomics 58 (2017), 215223. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Dennison Mark S. and D'Zmura Michael. 2018. Effects of unexpected visual motion on postural sway and motion sickness. Applied Ergonomics 71 (2018), 916. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Dimian Alexandre C., Bildea Costin S., and Kiss Anton A.. 2014. Dynamic simulation. In Proceedings of the Computer Aided Chemical Engineering. Dimian Alexandre C., Bildea Costin S., Kiss Anton A. (Eds.), 127156. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Dong Xiao, Yoshida Ken, and Stoffregen Thomas A.. 2011. Control of a virtual vehicle influences postural activity and motion sickness. Journal of Experimental Psychology: Applied 17, 2 (2011), 128138. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Dorado José L. and Figueroa Pablo A.. 2014. Ramps are better than stairs to reduce cybersickness in applications based on a HMD and a Gamepad. In Proceedings of 2014 IEEE Symposium on 3D User Interfaces (3DUI). 4750. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Epstein Russell A., Patai Eva Zita, Julian Joshua B., and Spiers Hugo J.. 2017. The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience 20, 11 (2017), 15041513. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Farmani Yasin and Teather Robert J.. 2018. Viewpoint snapping to reduce cybersickness in virtual reality. In Proceedings of the 44th Graphics Interface Conference (GI’18). 168175. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [35] Farmani Yasin and Teather Robert J.. 2020. Evaluating discrete viewpoint control to reduce cybersickness in virtual reality. Virtual Reality 24 (2020), 645664. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Fernandes Ajoy S. and Feiner Steven K.. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI). 201210. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Ferracani Andrea, Pezzatini Daniele, Bianchini Jacopo, Biscini Gianmarco, and Bimbo A.. 2016. Locomotion by natural gestures for immersive virtual environments. In Proceedings of the 1st International Workshop on Multimedia Alternate Realities (AltMM’16). 2124. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Flach John M. and Holden John G.. 1998. The reality of experience: Gibson's way. Presence: Teleoperators and Virtual Environments 7, 1 (1998), 9095. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Frommel Julian, Sonntag Sven, and Weber Michael. 2017. Effects of controller-based locomotion on player experience in a virtual reality exploration game. In Proceedings of the 12th International Conference on the Foundations of Digital Games (FDG '17). 16. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Jacob Habgood M. P., Moore David, Wilson David, and Alapont Sergio. 2018. Rapid, continuous movement between nodes as an accessible virtual reality locomotion technique. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 371378. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Harrington Jake, Williams Benjamin, and Headleand Christopher James. 2019. A somatic approach to combating cybersickness utilising airflow feedback. In Proceedings of the Computer Graphics and Visual Computing (CGVC 2019). 3543. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Harris Alyssa, Nguyen Kevin, Wilson Preston Tunnell, Jackoski Matthew, and Sanders Betsy Williams. 2014. Human joystick: Wii-leaning to translate in large virtual environments. In Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-reality Continuum and its Applications in Industry (VRCAI’14). 231234. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Harris Laurence R., Jenkin Michael R. M., Zikovitz Daniel C., Redlick Fara, Jaekl P. M., Jasiobedzka Urszula, Jenkin Heather, and Allison Robert S.. 2002. Simulating self-motion I: Cues for the perception of motion. Virtual Reality 6 (2002), 7585. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Hashemian Abraham M. and Riecke Bernhard E.. 2017. Leaning-based 360° interfaces: Investigating virtual reality navigation interfaces with leaning-based-translation and full-rotation. In Proceedings of the Virtual, Augmented and Mixed Reality, VAMR 201., Stephanie Lackey and Jessie Chen (Eds), Lecture Notes in Computer Science Vol. 10280, Springer, Cham, 1532. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Horak Fay B.. 2006. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing 35, suppl_2 (2006), ii7ii11. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Horak Fay B. and Macpherson J. Michael. 1996. Postural orientation and equilibrium. In Proceedings of the Handbook of Physiology: Exercise Regulation and Integration of Multiple Systems. L. B. Rowell and J. T. Shepard (Eds.), Oxford University Press, 255292. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Isip Marc Immanuel G.. 2014. Effect of a standing body position during college students'exam: Implications on cognitive test performance. Industrial Engineering and Management Systems 13, 2 (2014), 185192. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Interrante Victoria, Ries Brian, and Anderson Lee. 2007. Seven league boots: A new metaphor for augmented locomotion through moderately large scale immersive virtual environments. In Proceedings of the 2007 IEEE Symposium on 3D User Interfaces. 167170. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Irish Muireann and Ramanan Siddharth. 2019. Spatial navigation: A question of scale. eLife 8 (2019), e50890. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Johnson David M.. 2005. Introduction to and Review of Simulator Sickness Research. Research Report. United States Army Research Institute for the Behavioral and Social Sciences.Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Jennett Charlene Ianthe, Cox Anna Louise, Cairns Paul A., Dhoparee Samira, Epps Andrew, Tijs Tim J. W., and Walton Alison. 2008. Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies 66, 9 (2008), 641661. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [52] Kennedy Robert S., Lane Norman E., Berbaum Kevin S., and Lilienthal Michael G.. 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology 3, 3 (1993), 203220. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Kerr Beth, Condon Shawn Michael, and McDonald L. A.. 1985. Cognitive spatial processing and the regulation of posture. Journal of Experimental Psychology 11, 5 (1985), 617622. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Kim Aelee, Kim Min Woo, Bae Hayoung, and Lee Kyoung-Min. 2020. Exploring the relative effects of body position and spatial cognition on presence when playing virtual reality games. International Journal of Human–Computer Interaction 36, 18 (2020), 16831698. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Kitson Alexandra, Hashemian Abraham M., Stepanova Ekaterina R., Kruijff Ernst, and Riecke Bernhard E.. 2017. Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI). 7382. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Kitson Alexandra, Riecke Bernhard E., Hashemian Abraham M., and Neustaedter Carman. 2015. NaviChair: Evaluating an embodied interface using a pointing task to navigate virtual reality. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction (SUI’15). 123126. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. [57] Klatzky Roberta L., Loomis Jack M., Beall Andrew C., Chance Sarah S., and Golledge Reginald G.. 1998. Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science 9, 4 (1998), 293298. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Kohn Josh and Rank Stefan. 2016. You're the Camera!: Physical movements for transitioning between environments in VR. In Proceedings of the 13th International Conference on Advances in Computer Entertainment Technology (ACE’16). 19. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. [59] Kolasinski Eugenia M.. 1995. Simulator Sickness in Virtual Environments. Technical Report 1027. U.S. Army Research Institute for the Behavioral and Social Sciences.Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Kolasinski Eugenia M. and Gilson Richard D.. 1998. Simulator sickness and related findings in a virtual reality. Proceedings of Human Factors and Ergonomics Society Annual Meeting 42, 21 (1998), 15111515. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Koslucher Frank, Munafo Justin, and Stoffregen Thomas A.. 2016. Postural sway in men and women during nauseogenic motion of the illuminated environment. Experimental Brain Research 234, 9 (2016), 27092720. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Lajoie Yves, Teasdale Normand, Bard Chantal, and Fleury Michelle. 1993. Attentional demands for static and dynamic equilibrium. Experimental Brain Research 97 (1993), 139144. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Langbehn Eike, Lubos Paul, and Steinicke Frank. 2018. Evaluation of locomotion techniques for room-scale VR: Joystick, teleportation, and redirected walking. In Proceedings of the Virtual Reality International Conference (VRIC’18). 19. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] LaViola Joseph J.. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bulletin 32, 1 (2000), 4756. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [65] Litleskare Sigbjørn and Calogiuri Giovanna. 2019. Camera stabilization in 360° videos and its impact on cyber sickness, environmental perceptions, and psychophysiological responses to a simulated nature walk: A single-blinded randomized trial. Frontiers in Psychology 10 (2019), 2436. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  66. [66] Marin Ludovic, Bardy Benoît G., Baumberger Bernard, Flückiger Michelangelo, and Stoffregen Thomas A.. 1999. Interaction between task demands and surface properties in the control of goal-oriented stance. Human Movement Science 18, 1 (1999), 3147. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Marsh Anthony P. and Geel Stanley E.. 2000. The effect of age on the attentional demands of postural control. Gait and Posture 12, 2 (2000), 105113. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Merhi Omar A., Faugloire Elise, Flanagan Moira B., and Stoffregen Thomas A.. 2007. Motion sickness, console video games, and head-mounted displays. Human Factors 49, 5 (2007), 920934. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Money Kenneth E.. 1990. Motion sickness and evolution. In Proceedings of the Motion and Space Sickness. Crampton George H. (Eds.), CRC, Boca Raton, 17.Google ScholarGoogle Scholar
  70. [70] Morasso Pietro. 2022. A vexing question in motor control: The degrees of freedom problem. Frontiers in Bioengineering and Biotechnology 9 (2022), 1-13. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Mousavi Maryam, Hwa Jen Yap, and Musa Siti Nurmaya. 2013. A review on cybersickness and usability in virtual environments. Advanced Engineering Forum 10 (2013), 3439. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Munafo Justin, Diedrick Meg, and Stoffregen Thomas A.. 2017. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research 235 (2017), 889901. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Nguyen-Vo Thinh, Riecke Bernhard E., and Stuerzlinger Wolfgang. 2018. Simulated reference frame: A cost-effective solution to improve spatial orientation in VR. In Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 415422. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Nguyen-Vo Thinh, Riecke Bernhard E., Stuerzlinger Wolfgang, Pham Duc-Minh, and Kruijff Ernst. 2019. NaviBoard and NaviChair: Limited translation combined with full rotation for efficient virtual locomotion. IEEE Transactions on Visualization and Computer Graphics 27, 1 (2021), 165177. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. [75] Palmisano Stephen A., Allison Robert S., Kim Juno, and Bonato Frederick. 2011. Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing Perceiving 24, 2 (2011), 173200. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Palmisano Stephen A., Allison Robert S., Matthias Schira Mark, and Barry Robert J.. 2015. Future challenges for vection research: Definitions, functional significance, measures, and neural bases. Frontiers in Psychology 6 (2015), 193. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Palmisano Stephen A., Apthorp Deborah, Seno Takeharu, and Stapley Paul J.. 2014. Spontaneous postural sway predicts the strength of smooth vection. Experimental Brain Research 232, 4 (2014), 11851191. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Park George D., Wade Allen R., Fiorentino Dary D., Rosenthal Theodore J., and Cook Marcia L.. 2006. Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 26 (2006), 27022706. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Pausch Randy F., Proffitt Dennis R., and Williams George H.. 1997. Quantifying immersion in virtual reality. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’97). 1318. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. [80] Powers William T.. 2009. PCT in 11 Steps. In Proceedings of the Perceptual Control Theory: An Overview of the 3rd Grand Theory in Psychology. Forssell Dag (Eds.), Living Control Systems, 2025.Google ScholarGoogle Scholar
  81. [81] Powers William T., Abbott Bruce, Carey Timothy, Goldstein David M., Mansell Warren, Marken Richard S., Nevin Bruce, Robertson Richard, and Taylor Martin. 2011. A model for understanding the mechanisms and phenomena of control. In Proceedings of the Perceptual Control Theory: An Overview of the 3rd Grand Theory in Psychology. Forssell Dag (Eds.), Living Control Systems. 3046.Google ScholarGoogle Scholar
  82. [82] Rahimi Kasra, Banigan Colin, and Ragan Eric D.. 2020. Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. IEEE Transactions on Visualization and Computer Graphics 26, 6 (2020), 22732287. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  83. [83] Reason James T. and Brand Jesse J.. 1975. Motion Sickness. Academic Press, London.Google ScholarGoogle Scholar
  84. [84] Reed-Jones Rebecca J., Vallis Lori Ann, Reed-Jones James G., and Trick Lana M.. 2008. The relationship between postural stability and virtual environment adaptation. Neuroscience Letters 435, 3 (2008), 204209. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] Riccio Gary E. and Stoffregen Thomas A.. 1991. An ecological theory of motion sickness and postural instability. Ecological Psychology 3, 3 (1991), 195240. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  86. [86] Riecke Bernhard E. 2008. Consistent left-right reversals for visual path integration in virtual reality: More than a failure to update one's heading? Presence: Teleoperators and Virtual Environments 17, 2 (2008), 143175. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. [87] Riecke Bernhard E., Bodenheimer Bobby, McNamara Timothy P., Sanders Betsy Williams, Peng Peng, and Feuereissen Daniel. 2010. Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In Proceedings of the Spatial Cognition. Christoph Hölscher, Thomas F. Shipley, Marta Olivetti Belardinelli, John A. Bateman, Nora S. Newcombe (Eds.), Lecture Notes in Computer Science, Vol. 6222. Springer, Berlin, 234247. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Riecke Bernhard E., von der Heyde Markus, and Bülthoff Heinrich H.. 2005. Visual cues can be sufficient for triggering automatic, reflexlike spatial updating. ACM Transactions on Applied Perception 2, 3 (2005), 183215. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. [89] Riecke Bernhard E., Schulte-Pelkum Jörg, Avraamides Marios N., von der Heyde Markus, and Bülthoff Heinrich H.. 2006. Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception 3, 3 (2006), 194216. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. [90] Riecke Bernhard E., van Veen Hendrik A. H. C., and Bülthoff Heinrich H.. 2002. Visual homing is possible without landmarks: A path integration study in virtual reality. Presence: Teleoperators and Virtual Environments 11, 5 (2002), 443473. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. [91] Rieser John J.. 1989. Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, and Cognition 15, 6 (1989), 11571165. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Riva Giuseppe and Mantovani Fabrizia. 2012. From the body to the tools and back: A general framework for presence in mediated interactions. Interacting with Computers 24, 4 (2012), 203210. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [93] Riva Giuseppe, Waterworth John A., and Murray Dianne M.. 2014. Interacting with Presence: HCI and the Sense of presence in Computer-mediated Environments. De Gruyter Open Poland. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  94. [94] Mitrani Rosenbaum David, Mama Yaniv, and Algom Daniel. 2017. Stand by your stroop: Standing up enhances selective attention and cognitive control. Psychological Science 28, 12 (2017), 18641867. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  95. [95] Ruddle Roy A. and Lessels Simon. 2006. For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science 17, 6 (2006), 460465. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Ruddle Roy A. and Lessels Simon. 2009. The benefits of using a walking interface to navigate virtual environments. ACM Transactions on Computer-Human Interaction 16, 1 (2009), 118. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [97] Sadowski Wallace and Stanney Kay. 2002. Presence in virtual environments. In Proceedings of the Handbook of Virtual Environments: Design, Implementation, and Applications. Kay M. Stanney (Eds.), Lawrence Erlbaum Associates. 791806.Google ScholarGoogle Scholar
  98. [98] Schubert Thomas W., Friedmann Frank, and Regenbrecht Holger. 2001. The experience of presence: Factor analytic insights. Presence: Teleoperators and Virtual Environments 10, 3 (2001), 266281. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Sheldon Robert. 2022. Degrees of freedom (mechanics). Retrieved from https://www.techtarget.com/whatis/definition/degrees-of-freedomGoogle ScholarGoogle Scholar
  100. [100] Slater Mel. 2002. Presence and the sixth sense. Presence: Teleoperators and Virtual Environments 11, 4 (2002), 435439. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. [101] Slater Mel. 2009. Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society B 364, 1535 (2009), 35493557. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Slater Mel, Steed Anthony, McCarthy J. Daniel, and Maringelli Francesco. 1998. The influence of body movement on subjective presence in virtual environments. Human Factors: The Journal of the Human Factors and Ergonomics Society 40, 3 (1998), 469477. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Slater Mel and Steed Anthony. 2000. A virtual presence counter. Presence: Teleoperators and Virtual Environments 9, 5 (2000), 413434. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  104. [104] Slater Mel, Usoh Martin, and Steed Anthony. 1995. Taking steps: The influence of a walking metaphor on presence in virtual reality. ACM Transactions on Computer-Human Interaction 2, 3 (1995), 201219. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. [105] Smith Kendra C., Davoli Christopher, Knapp William H., and Abrams Richard A.. 2019. Standing enhances cognitive control and alters visual search. Attention, Perception and Psychophysics 81, 7 (2019), 23202329. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  106. [106] Domínguez José Luis Soler, Ripoll Carla de Juan, Contero Manuel, and Alcañiz Mariano. 2020. I walk, therefore I am: A multidimensional study on the influence of the locomotion method upon presence in virtual reality. Journal of Computational Design and Engineering 7, 5 (2020), 577590. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  107. [107] Stanney Kay M., Hale Kelly S., Nahmens Isabelina, and Kennedy Robert S.. 2003. What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience. Human Factors 45, 3 (2003), 504520. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Stanney Kay M. and Kennedy Robert S.. 1997. The psychometrics of cybersickness. Communications of the ACM 40, 8 (1997), 6668. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. [109] Stanney Kay M., Lawson Ben, Rokers Bas, Dennison Mark, Fidopiastis Cali, Stoffregen Thomas A., Weech Séamas, and Fulvio Jacqueline. 2020. Identifying causes of and solutions for cybersickness in immersive technology: Reformulation of a research and development agenda. International Journal of Human-Computer Interaction 36, 19 (2020), 17831803. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  110. [110] Stanney Kay M., Kingdon Kelly S., Graeber David A., and Kennedy Robert S.. 2002. Human performance in immersive virtual environments: Effects of exposure duration, user control, and scene complexity. Human Performance 15, 4 (2002), 339366. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  111. [111] Steinicke Frank, Visell Yon, Campos Jennifer L., and Lcuyer Anatole. (Eds.). 2013. Human Walking in Virtual Environments: Perception, Technology, and Applications. Springer. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  112. [112] Steuer Jonathan. 1992. Defining virtual reality: Dimensions determining telepresence. Journal of Communication 42, 4 (1992), 7393. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  113. [113] Stoffregen Thomas A., Chen Yi-Chou, and Koslucher Frank C.. 2014. Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research 232 (2014), 13891397. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Stoffregen Thomas A., Chen Fu-Chen, Varlet Manuel, Porto Alves Alcantara Cristina, and Bardy Benoît G.. 2013. Getting your sea legs. PLoS ONE 8, 6 (2013), e66949. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  115. [115] Stoffregen Thomas A., Hove Philip, Bardy Benoît, Riley Michael, and Bonnet Cédrick. 2007. Postural stabilization of perceptual but not cognitive performance. Journal of Motor Behavior 39, 2 (2007), 126138. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Stoffregen Thomas A., Pagulayan Randy, Bardy Benoît, and Hettinger Larry. 2000. Modulating postural control to facilitate visual performance. Human Movement Science 19, 2 (2000), 203220. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  117. [117] Stoffregen Thomas A. and James Smart L.. 1998. Postural instability precedes motion sickness. Brain Research Bulletin 47, 5 (1998), 437448. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  118. [118] Sunkara Adhira, DeAngelis Gregory C., and Angelaki Dora E.. 2016. Joint representation of translational and rotational components of optic flow in parietal cortex. Proceedings of the National Academy of Sciences 113, 18 (2016), 50775082. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  119. [119] Templeman James N., Denbrook Patricia S., and Sibert Linda E.. 1999. Virtual locomotion: Walking in place through virtual environments. Presence: Teleoperators and Virtual Environments 8, 6 (1999), 598617. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  120. [120] Usoh Martin, Catena Ernest, Arman Sima, and Slater Mel. 2000. Using presence questionnaires in reality. Presence: Teleoperators and Virtual Environments 9, 5 (2000), 497503. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. [121] Weech Séamas, Kenny Sophie, and Barnett-Cowan Michael. 2019. Presence and cybersickness in virtual reality are negatively related: A review. Frontiers in Psychology 10 (2019), 158. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  122. [122] Weech Séamas, Kenny Sophie, Lenizky Markus, and Barnett-Cowan Michael. 2020. Narrative and gaming experience interact to affect presence and cybersickness in virtual reality. International Journal of Human-Computer Studies 138 (2020), 102398. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] Weech Séamas, Varghese Jessy Parokaran, and Barnett-Cowan Michael. 2018. Estimating the sensorimotor components of cybersickness. Journal of Neurophysiology 120, 5 (2018), 22012217. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  124. [124] Weibel David and Wissmath Bartholomäus. 2011. Immersion in computer games: The role of spatial presence and flow. International Journal of Computer Games Technology 11 (2011), 114. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  125. [125] Welch Robert B., Blackmon Theodore, Liu Andrew, Mellers Barbara A., and Stark Lawrence W.. 1996. The effects of pictorial realism, delay of visual feedback, and observer interactivity on the subjective sense of presence. Presence: Teleoperators and Virtual Environments 5, 3 (1996), 263273. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  126. [126] Whitton Mary C., Cohn Joseph, Feasel Jeff, Zimmons Paul, Razzaque Sharif, Poulton Sarah J., McLeod Brandi, and Brooks Frederick P.. 2005. Comparing VE locomotion interfaces. In Proceedings of the IEEE Virtual Reality 2005. 123130. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Widdowson Christopher, Becerra Israel, Merrill Cameron, Wang Ranxiao Frances, and LaValle Steven M.. 2021. Assessing postural instability and cybersickness through linear and angular displacement. Human Factors 63, 2 (2021), 296311. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Witmer Bob G., Bailey John H., Knerr Bruce W., and Parsons Kimberly C.. 1996. Virtual spaces and real world places: Transfer of route knowledge. International Journal of Human-Computer Studies 45, 4 (1996), 413428. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. [129] Witmer Bob G. and Singer Michael J.. 1998. Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments 7, 3 (1998), 225240. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. [130] Woollacott Marjorie and Shumway-cook Anne. 2002. Attention and the control of posture and gait: A review of an emerging area of research. Gait and Posture 16, 1 (2002), 114. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Wraga Maryjane, Creem-Regehr Sarah H., and Proffitt Dennis R.. 2004. Spatial updating of virtual displays during self- and display rotation. Memory and Cognition 32, 3 (2004), 399415. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] Zhou Yanyun, Zhang Yifei, Hommel Bernhard, and Zhang Hao. 2017. The impact of bodily states on divergent thinking: Evidence for a control-depletion account. Frontiers in Psychology 8 (2017), 1546. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  133. [133] Zielasko Daniel. 2021. Subject 001 - A detailed self-report of virtual reality induced sickness. In Proceedings of 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 165168. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  134. [134] Zielasko Daniel and Riecke Bernhard E.. 2021. To sit or not to sit in VR: Analyzing influences and (dis)advantages of posture and embodied interaction. Computers 10, 6 (2021), 73. DOI:Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Exploring the Relative Effects of Body Position and Locomotion Method on Presence and Cybersickness when Navigating a Virtual Environment

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Applied Perception
      ACM Transactions on Applied Perception  Volume 21, Issue 1
      January 2024
      78 pages
      ISSN:1544-3558
      EISSN:1544-3965
      DOI:10.1145/3613499
      • Editor:
      • Bobby Bodenheimer
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 December 2023
      • Online AM: 16 October 2023
      • Accepted: 24 September 2023
      • Revised: 4 September 2023
      • Received: 16 April 2022
      Published in tap Volume 21, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)275
      • Downloads (Last 6 weeks)59

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text