skip to main content
10.1145/3628797.3628989acmotherconferencesArticle/Chapter ViewAbstractPublication PagessoictConference Proceedingsconference-collections
research-article

Efficient Machine Learning-based Gene Selection Exploiting Immune-related Biomarkers and Recursive Feature Elimination for Sepsis Diagnosis

Published: 07 December 2023 Publication History

Abstract

Differential expression gene (DEG) analysis of transcriptomic data allows for a comprehensive examination of the regulation in gene expression profiles related to specific biological states. The result of this analysis typically consists of an extensive record of genes that display varying levels of expression among two or more groups. A portion of these genes with altered expression could potentially function as candidate biomarkers, chosen through either existing biological insights or data-driven techniques. In diagnosing sepsis, a life-threatening health problem, our work proposes a novel approach using immune-related gene data to identify the optimal gene combination as signature biomarkers to improve the diagnosis performance. Our proposed method involves sequential gene selection procedures, including the DEG analysis and the machine learning-based importance assessment, and a Recursive Feature Elimination (RFE) process supported by Principal Component Analysis (PCA). The selected gene combination, which consists of twelve immune-related genes, shows remarkable cross-validation results with an accuracy of 99.35%, AUC score of 99.56%, Sensitivity and a Specificity of 99.44% and 90.00%, respectively. Besides, the proposed 12 gene markers combined with the XGBoost algorithm were also tested in three individual cohorts with appropriately significant results, demonstrating the effectiveness of our developed method in different cohorts and the reliability of the proposed gene selection procedure.

References

[1]
Mostafa Abbas and Yasser EL-Manzalawy. 2020. Machine learning based refined differential gene expression analysis of pediatric sepsis. BMC Medical Genomics 13 (12 2020), 122. Issue 1. https://doi.org/10.1186/s12920-020-00771-4
[2]
Raquel Almansa, Eduardo Tamayo, María Heredia, Sandra Gutierrez, Patricia Ruiz, Elisa Alvarez, Esther Gomez-Sanchez, David Andaluz-Ojeda, Rafael Ceña, Lucia Rico, 2014. Transcriptomic evidence of impaired immunoglobulin G production in fatal septic shock. Journal of critical care 29, 2 (2014), 307–309.
[3]
Derek C. Angus and Tom van der Poll. 2013. Severe Sepsis and Septic Shock. New England Journal of Medicine 369 (8 2013), 840–851. Issue 9. https://doi.org/10.1056/NEJMra1208623
[4]
Marie-Angélique Cazalis, Alain Lepape, Fabienne Venet, Florence Frager, Bruno Mougin, Hélène Vallin, Malick Paye, Alexandre Pachot, and Guillaume Monneret. 2014. Early and dynamic changes in gene expression in septic shock patients: a genome-wide approach. Intensive care medicine experimental 2, 1 (2014), 1–17.
[5]
Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7
[6]
William A. Knaus, Douglas P. Wagner, Elizabeth A. Draper, Jack E. Zimmerman, Marilyn Bergner, Paulo G. Bastos, Carl A. Sirio, Donald J. Murphy, Ted Lotring, Anne Damiano, and Frank E. Harrell. 1991. The APACHE III Prognostic System. Chest 100 (12 1991), 1619–1636. Issue 6. https://doi.org/10.1378/chest.100.6.1619
[7]
Jianhai Lu, Rui Chen, Yangpeng Ou, Qianhua Jiang, Liping Wang, Genglong Liu, Yayun Liu, Ben Yang, Zhujiang Zhou, Liuer Zuo, and Zhen Chen. 2022. Characterization of immune-related genes and immune infiltration features for early diagnosis, prognosis and recognition of immunosuppression in sepsis. International Immunopharmacology 107 (6 2022), 108650. https://doi.org/10.1016/j.intimp.2022.108650
[8]
Leo McHugh, Therese A. Seldon, Roslyn A. Brandon, James T. Kirk, Antony Rapisarda, Allison J. Sutherland, Jeffrey J. Presneill, Deon J. Venter, Jeffrey Lipman, Mervyn R. Thomas, Peter M. C. Klein Klouwenberg, Lonneke van Vught, Brendon Scicluna, Marc Bonten, Olaf L. Cremer, Marcus J. Schultz, Tom van der Poll, Thomas D. Yager, and Richard B. Brandon. 2015. A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts. PLOS Medicine 12 (12 2015), e1001916. Issue 12. https://doi.org/10.1371/journal.pmed.1001916
[9]
Ithan D. Peltan, Samuel M. Brown, Joseph R. Bledsoe, Jeffrey Sorensen, Matthew H. Samore, Todd L. Allen, and Catherine L. Hough. 2019. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis. Chest 155 (5 2019), 938–946. Issue 5. https://doi.org/10.1016/j.chest.2019.02.008
[10]
Ithan D. Peltan, Kristina H. Mitchell, Kristina E. Rudd, Blake A. Mann, David J. Carlbom, Catherine L. Hough, Thomas D. Rea, and Samuel M. Brown. 2017. Physician Variation in Time to Antimicrobial Treatment for Septic Patients Presenting to the Emergency Department. Critical Care Medicine 45 (6 2017), 1011–1018. Issue 6. https://doi.org/10.1097/CCM.0000000000002436
[11]
Kristina E Rudd, Sarah Charlotte Johnson, Kareha M Agesa, Katya Anne Shackelford, Derrick Tsoi, Daniel Rhodes Kievlan, Danny V Colombara, Kevin S Ikuta, Niranjan Kissoon, Simon Finfer, Carolin Fleischmann-Struzek, Flavia R Machado, Konrad K Reinhart, Kathryn Rowan, Christopher W Seymour, R Scott Watson, T Eoin West, Fatima Marinho, Simon I Hay, Rafael Lozano, Alan D Lopez, Derek C Angus, Christopher J L Murray, and Mohsen Naghavi. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet 395 (1 2020), 200–211. Issue 10219. https://doi.org/10.1016/S0140-6736(19)32989-7
[12]
Brendon P Scicluna, Peter MC Klein Klouwenberg, Lonneke A van Vught, Maryse A Wiewel, David SY Ong, Aeilko H Zwinderman, Marek Franitza, Mohammad R Toliat, Peter Nürnberg, Arie J Hoogendijk, 2015. A molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. American journal of respiratory and critical care medicine 192, 7 (2015), 826–835.
[13]
Brendon P. Scicluna, Maryse A. Wiewel, Lonneke A. van Vught, Arie J. Hoogendijk, Augustijn M. Klarenbeek, Marek Franitza, Mohammad R. Toliat, Peter Nürnberg, Janneke Horn, Marc J. Bonten, Marcus J. Schultz, Olaf L. Cremer, and Tom van der Poll. 2018. Molecular Biomarker to Assist in Diagnosing Abdominal Sepsis upon ICU Admission. American Journal of Respiratory and Critical Care Medicine 197 (4 2018), 1070–1073. Issue 8. https://doi.org/10.1164/rccm.201707-1339LE
[14]
Olivier Tabone, Marine Mommert, Camille Jourdan, Elisabeth Cerrato, Matthieu Legrand, Alain Lepape, Bernard Allaouchiche, Thomas Rimmelé, Alexandre Pachot, Guillaume Monneret, 2019. Endogenous retroviruses transcriptional modulation after severe infection, trauma and burn. Frontiers in immunology 9 (2019), 3091.
[15]
J. L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonça, H. Bruining, C. K. Reinhart, P. M. Suter, and L. G. Thijs. 1996. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine 22 (7 1996), 707–710. Issue 7. https://doi.org/10.1007/BF01709751
[16]
Long Duc Vu, Van Su Pham, Minh Tuan Nguyen, and Hai-Chau Le. 2022. Pediatric Sepsis Diagnosis Based on Differential Gene Expression and Machine Learning Method. 2022 14th International Conference on Knowledge and Systems Engineering (KSE) (10 2022), 1–6. https://doi.org/10.1109/KSE56063.2022.9953619
[17]
Scott L. Weiss, Julie C. Fitzgerald, John Pappachan, Derek Wheeler, Juan C. Jaramillo-Bustamante, Asma Salloo, Sunit C. Singhi, Simon Erickson, Jason A. Roy, Jenny L. Bush, Vinay M. Nadkarni, and Neal J. Thomas. 2015. Global Epidemiology of Pediatric Severe Sepsis: The Sepsis Prevalence, Outcomes, and Therapies Study. American Journal of Respiratory and Critical Care Medicine 191 (5 2015), 1147–1157. Issue 10. https://doi.org/10.1164/rccm.201412-2323OC
[18]
Hector R Wong, Natalie Cvijanovich, Richard Lin, Geoffrey L Allen, Neal J Thomas, Douglas F Willson, Robert J Freishtat, Nick Anas, Keith Meyer, Paul A Checchia, 2009. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC medicine 7, 1 (2009), 1–12.
[19]
Hector R Wong, Natalie Z Cvijanovich, Geoffrey L Allen, Neal J Thomas, Robert J Freishtat, Nick Anas, Keith Meyer, Paul A Checchia, Scott L Weiss, Thomas P Shanley, 2014. Corticosteroids are associated with repression of adaptive immunity gene programs in pediatric septic shock. American journal of respiratory and critical care medicine 189, 8 (2014), 940–946.
[20]
Hector R Wong, Thomas P Shanley, Bhuvaneswari Sakthivel, Natalie Cvijanovich, Richard Lin, Geoffrey L Allen, Neal J Thomas, Allan Doctor, Meena Kalyanaraman, Nancy M Tofil, 2007. Genome-level expression profiles in pediatric septic shock indicate a role for altered zinc homeostasis in poor outcome. Physiological genomics 30, 2 (2007), 146–155.
[21]
Yueran Yang, Yu Zhang, Shuai Li, Xubin Zheng, Man Hon Wong, Kwong Sak Leung, and Lixin Cheng. 2021. A robust and generalizable immune-related signature for sepsis diagnostics. IEEE/ACM Transactions on Computational Biology and Bioinformatics (2021), 1–1. https://doi.org/10.1109/TCBB.2021.3107874
[22]
Jianchao Ying, Qian Wang, Teng Xu, and Zhongqiu Lu. 2021. Diagnostic potential of a gradient boosting-based model for detecting pediatric sepsis. Genomics 113 (1 2021), 874–883. Issue 1. https://doi.org/10.1016/j.ygeno.2020.10.018

Index Terms

  1. Efficient Machine Learning-based Gene Selection Exploiting Immune-related Biomarkers and Recursive Feature Elimination for Sepsis Diagnosis

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Other conferences
        SOICT '23: Proceedings of the 12th International Symposium on Information and Communication Technology
        December 2023
        1058 pages
        ISBN:9798400708916
        DOI:10.1145/3628797
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 07 December 2023

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Feature Selection
        2. Immune-Related Gene
        3. Machine Learning
        4. Recursive Feature Elimination
        5. Sepsis

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Conference

        SOICT 2023

        Acceptance Rates

        Overall Acceptance Rate 147 of 318 submissions, 46%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 27
          Total Downloads
        • Downloads (Last 12 months)20
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 01 Mar 2025

        Other Metrics

        Citations

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media