
ICPE ’24
Proceedings of the 15th ACM/SPEC International Conference on
Performance Engineering
Sponsored by:

ACM SIGMETRICS, ACM SIGSOFT, & SPEC
General Chairs:

Simonetta Balsamo (Ca’ Foscari University of Venice, Italy)
William Knottenbelt (Imperial College London, UK)
Program Chairs:

Cristina L. Abad (Escuela Superior Politecnica del Litoral, Ecuador)
Weiyi Shang (University of Waterloo, Canada)
Publications Chairs:

Mauro Iacono (Università degli Studi della Campania Luigi Vanvitelli, Italy)
Jianing Qiu (Imperial College London, UK)

May 7–11, 2024
London, United Kingdom

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3629526&domain=pdf&date_stamp=2024-05-07


 
 

The Association for Computing Machinery 

1601 Broadway, 10th Floor 

New York, NY 10019-7434 

Copyright © 2024 by the Association for Computing Machinery, Inc. (ACM).  

Permission to make digital or hard copies of portions of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed for 

profit or commercial advantage and that copies bear this notice and the full citation on 

the first page.  Copyright for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted.  To copy otherwise, to republish, to post on 

servers or to redistribute to lists, requires prior specific permission and/or a fee.  Request 

permission to republish from: permissions@acm.org or Fax +1 (212) 869-0481. 

For other copying of articles that carry a code at the bottom of the first or last page,  

copying is permitted provided that the per-copy fee indicated in the code  

is paid through www.copyright.com. 

 

ISBN:  979-8-4007-0444-4 

Additional copies may be ordered prepaid from: 

ACM Order Department 

PO Box 30777 

New York, NY 10087-0777, USA 

Phone: 1-800-342-6626 (USA and Canada) 

+1-212-626-0500 (Global) 

Fax: +1-212-944-1318 

E-mail: acmhelp@acm.org 

Hours of Operation: 8:30 am – 4:30 pm ET 

 

 

 

 

 

Printed in the USA 

  

 

mailto:acmhelp@acm.org


 

 iii 

ICPE 2024 Chairs’ Welcome 

 
Years of planning have gone into preparing for ICPE 2024 in London, UK. For the first time in UK, the 
organization of ICPE has generated a great deal of excitement and expectation of productive interactions 
between the usual participants of ICPE conferences, the members of the various SPEC working groups, and 
a desire to increase the involvement of the local scientific community with ICPE.  

It is our pleasure to welcome you to the 15th ACM/SPEC International Conference on Performance 
Engineering (ICPE), hosted at South Kensington, London, UK, from May 7-11, 2024. ICPE is the leading 
international forum for presenting and discussing novel ideas, innovations, trends and experiences in the 
field of performance engineering. 

ICPE formed from merging the ACM Workshop on Software Performance (WOSP, since 1998) and the SPEC 
International Performance Engineering Workshop (SIPEW, since 2008). Despite the peculiar time we are all 
living in around the world, we are pleased to introduce an exciting program, which is the result of hard 
work by the authors, the program committee, and the conference organizers. 

We received high quality submissions across the Research, Industry, Emerging Research, Artifact, Data 
Challenge, Poster and Demo. Each submission received at least two to three reviews from program 
committee members. Through a rigorous review process, including a discussion period, we selected the 
most meritorious papers to create a diverse and interesting conference program. For the first time in ICPE, 
we accept Journal-first submissions that encourage published journal papers to be presented in ICPE in 
order to further enrich our program. 

In the research track, 18 out of 52 submissions were accepted as full papers, yielding a full paper acceptance 
ratio of 34.6%. 12 full papers received an ACM artifact badge after the subsequent review process in the 
artifact evaluation track. 

In the industry track, 8 full papers have been accepted out of 13 submissions. One paper received an an 
ACM artifact badge in the artifact evaluation track. 

In the emerging research track, we also accepted 7 out of 13 papers (53.8%), where 2 papers were acted as 
vision papers and 5 papers were accepted as work-in-progress papers. 

We also selected candidates for the best paper awards, with the awards to be announced during the 
conference events. 

In addition to the paper sessions, we are glad to welcome the keynote speakers. Manzoor Mohammed, from 
Capacitas, who plans to share his experience in software performance engineering in the cloud; Jane 
Hillston, from the University of Edinburgh, who plan to share her experience on performance in the era of 
large language models; and Giuliano Casale, from Imperial College London who plans to share his research 
on optimizing performance on Edge AI. 

The technical program also includes a poster and demo track, 7 workshops and 3 tutorials. 

We thank all the authors who submitted their innovative work to ICPE this year. In addition, we thank all 
the program committee members and external reviewers for volunteering their time for the benefit of the 
ICPE community and their hard work in providing quality reviews. Finally, we thank all ICPE participants 
as we rely on you to make this event interactive, engaging, and thought-provoking for everyone involved. 

Simonetta Balasamo 

ICPE’24 General Co-Chair 
Ca’Foscari University of Venice, Italy 

William Knottenbelt 
ICPE’24 Genreal Co-Chair 
Imperial College London, UK 

 Chairs continued. 
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Cristina L. Abad 

ICPE’24 Program Co-Chair 
Escuela Superior Politecnica del Litoral, Ecuador 

Weiyi Shang 

ICPE’24 Program Co-Chair 
University of Waterloo, Canada 

Alexander Podelko 

ICPE’24 Industry Chair 
Amazon/AWS, USA 

Vittoria de Nitto Personè 

ICPE’24 Emerging Research Co-Chair 
Tor Vergata University of Rome, Italy 

Lishan Yang 

ICPE’24 Emerging Research Co-Chair 
George Mason University, USA 
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How the Cloud made Performance Appear on the Board Agenda 
 

Manzoor Mohammed 
Capacitas Ltd, London, United Kingdom 
manzoormohammed@capacitas.co.uk 

 
ABSTRACT 
Cloud spending is growing! Gartner predicts a 20% surge to 
$678.8 billion in 2024, making it a top expense after personnel for 
many organisations. In fact, 78% of US businesses and 54% in 
EMEA already leverage the cloud for diverse needs, from 
infrastructure and storage to development. However, a crucial 
question lingers: are we maximising our cloud investments? This 
year, boards are wanting to know the answer this question as 
investments continue to increase due to new technologies such 
as LLM. Thankfully, by delving deeper into cloud performance 
characteristics, we can unlock valuable insights. This keynote 
will explore how understanding performance empowers 
organisations to extract the full potential of their cloud, 
transforming cost and performance data into strategic advantage. 
 

CCS Concepts 
•Computer systems organization~Cloud computing 

Author Keywords 
cloud optimization, cloud performance, cloud cost 
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systems and has helped companies achieve their financial goals 
through strategic cloud management. Manzoor recognised the 
transformative power of cloud computing early on, 
understanding how it strengthens the link between performance 
and cost. This realisation led him to create Capacitas' unique 
methodology, which has empowered numerous clients, including 
easyJet, Skype, JAGGAER, Ancestry, Cegid, and BMC Software, 
to achieve significant cost reductions and performance 
improvements. Manzoor is a trusted advisor and thought leader 
in the cloud computing space, passionate about helping 
businesses leverage the cloud to achieve their full potential. 
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ABSTRACT
Distributed stream processing frameworks help building scalable
and reliable applications that perform transformations and aggre-
gations on continuous data streams. This paper introduces Shuf-
fleBench, a novel benchmark to evaluate the performance of modern
stream processing frameworks. In contrast to other benchmarks,
it focuses on use cases where stream processing frameworks are
mainly employed for shuffling (i.e., re-distributing) data records to
perform state-local aggregations, while the actual aggregation logic
is considered as black-box software components. ShuffleBench is
inspired by requirements for near real-time analytics of a large
cloud observability platform and takes up benchmarking metrics
and methods for latency, throughput, and scalability established
in the performance engineering research community. Although
inspired by a real-world observability use case, it is highly con-
figurable to allow domain-independent evaluations. ShuffleBench
comes as a ready-to-use open-source software utilizing existing
Kubernetes tooling and providing implementations for four state-
of-the-art frameworks. Therefore, we expect ShuffleBench to be
a valuable contribution to both industrial practitioners building
stream processing applications and researchers working on new
stream processing approaches. We complement this paper with an
experimental performance evaluation that employs ShuffleBench
with various configurations on Flink, Hazelcast, Kafka Streams, and
Spark in a cloud-native environment. Our results show that Flink
achieves the highest throughput while Hazelcast processes data
streams with the lowest latency.

CCS CONCEPTS
• Software and its engineering → Software performance; •
Computer systems organization → Cloud computing; • In-
formation systems → Stream management.

This work is licensed under a Creative Commons Attribution
International 4.0 License.
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1 INTRODUCTION
State-of-the-art distributed stream processing frameworks such as
Spark [4, 39], Flink [6], Kafka Streams [31, 38], or Hazelcast with its
Jet engine [10] have gained widespread adoption over the last years
not only for building data analytics pipelines, but also for imple-
menting core business logic in software-based organizations [9, 22].
Such frameworks support software engineers in building highly
scalable, reliable, and efficient applications that process continu-
ous data streams of massive volume. They provide high-level APIs
and domain-specific languages to define the processing logic as
directed acyclic processing graphs that filter, transform, aggregate,
and merge data streams.

Over the last decade, several works have been published that eval-
uate the performance of distributed stream processing frameworks
or propose new benchmarks, evaluation methods, and auxiliary
tools [5, 13, 18, 21, 34, 37]. Available benchmarks usually contain
one or a few task samples that fulfill domain-specific use cases,
for example, for analyzing car traffic data [3, 34] or aggregating
Industrial Internet of Things (IIoT) sensor measurements [13, 18].
To implement these task samples (also referred to as queries), the
benchmarks define the domain-specific processing logic with the
frameworks’ high-level APIs.

In this paper, we study a different, more general use case, where
the actual domain-specific processing logic is out of the scope of a
stream processing framework, but stream processing frameworks
are still used for their abstractions for clustermanagement, means to
scale out the data processing, fault-tolerant state management, well-
defined processing guarantees (e.g., exactly-once or at-least-once),
and rich ecosystem of documentation, support, and associated tool-
ing. We illustrate this use case inspired by requirements of a large
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cloud observability platform, where potentially thousands or mil-
lions of stateful black-box software components have to receive and
process selected data records. The literature is currently missing
a well-defined evaluation method for this use case and previous
work found that the performance of stream processing frameworks
highly depends on the use case [16].

Therefore, we propose ShuffleBench as a new stream processing
benchmark focusing on the use of stream processing frameworks
for shuffling (i.e., re-partitioning) data streams to efficiently pro-
cess data in high numbers of stateful components. ShuffleBench
provides well-defined metrics, measurement methods, and a highly
configurable task sample. Thus, it allows researchers and practi-
tioners to evaluate stream processing frameworks with respect to
performance attributes such as throughput, latency, and scalabil-
ity and regarding a representative use case. Our research design
combines requirements identified from a large cloud observability
platform with established benchmarking metrics, methods, and
techniques from the performance engineering research community.

Contributions. In summary, we make the following contribu-
tions with this paper to industry practitioners and the research
community:

• We propose ShuffleBench, a new benchmark for distributed
stream processing frameworks. It addresses a use case not
covered by existing benchmarks and is highly configurable
for different assorted characteristics.

• We provide open-source implementations1 of ShuffleBench
for different state-of-the-art stream processing frameworks
as well as associated tooling to automate running bench-
marks in Kubernetes-based cloud environments.

• We conduct an experimental evaluation covering throughput
and latency that are highly relevant metrics for stream pro-
cessing [37]. Our evaluation covers the open-source stream
processing frameworks Flink, Hazelcast, Kafka Streams, and
Spark Structured Streaming due to their industry acceptance
and academic relevance [37]. We provide a replication pack-
age and the collected data of our experiments as supplemen-
tal material [17], such that other researchers and practition-
ers may repeat and extend our work.

Outline. The remainder of this paper is structured as follows:
Section 2 introduces the fundamental concepts of distributed stream
processing frameworks and related benchmarking studies. Section 3
describes the use of stream processing for large-scale data shuffling
illustrated by industrial requirements. Afterward, Section 4 presents
ShuffleBench, our proposal for a new stream processing benchmark.
Section 5 employs ShuffleBench to evaluate four stream processing
frameworks regarding their throughput and latency for different
configurations. Section 6 concludes this work and discusses future
work.

2 BACKGROUND AND RELATEDWORK
In the following, we briefly introduce the fundamental concepts of
modern stream processing frameworks and discuss related work
on benchmarking stream processing frameworks.

1https://github.com/dynatrace-research/ShuffleBench

2.1 Distributed Stream Processing
Stream processing frameworks perform operations such as filter-
ings, transformations, or aggregations in near-real time on continu-
ous streams of data [19]. State-of-the-art frameworks are designed
for high throughput and low-latency processing, while also scaling
withmassive amounts of data [9, 16]. To address these requirements,
they run in a distributed fashion on commodity hardware. A key
advantage of stream processing frameworks is that they provide
dataflow models that abstract aspects such as cluster management,
state management, and time semantics from their users [2, 31].With
such models, engineers describe the processing logic in directed
acyclic dataflow graphs of processing operators. The frameworks
allow the initiation of multiple instances across various compute
nodes, containers, or with multiple threads, with each instance
handling a distinct portion of the data. While the isolated process-
ing of data records remains unaffected by the assignment of data
portions to instances, processing that depends on previous data
records, such as aggregations, requires state management. Similar
to the MapReduce [8] programming model, keys are assigned to
records before a stateful operation. This allows the stream process-
ing frameworks routing all records with the same key to the same
instance. Consequently, no state synchronization among instances
is required, which allows operating stream processing applications
at significantly lower costs compared to, for example, Functions-
as-a-Service [29]. When a processing operator modifies the key of
a record and a subsequent operator performs a stateful operation,
the framework divides the dataflow graph into subgraphs that can
be independently processed by different instances.

Popular stream processing frameworks include Apache Flink [6],
Hazelcast with its Jet engine [10], Apache Kafka Streams [31, 38],
and Apache Spark [39] with its Structured Streaming engine [4].
Although all these frameworks follow similar concepts, several dif-
ferences in their design decisions, programming functionalities, and
execution models can be noted. Whereas Flink and Spark follow a
master-worker cluster architecture, Hazelcast and Kafka Streams
instances form clusters and perform the necessary coordination in-
ternally. Moreover, Hazelcast and Kafka Streams can be embedded
as library into applications, while Flink and Spark are the appli-
cations themselves. Spark is different from the other frameworks
as it processes the data streams as a sequence of batches (called
micro-batches), whereas the other frameworks process record by
record as they arrive. Hazelcast’s Jet engine is special by being
built on top of the Hazelcast IMDG distributed, in-memory object
store. It differs in its execution model, which is based on a concept
similar to coroutines and cooperative threads to process data at
very low latency [10]. Kafka Streams tightly integrates with the
Apache Kafka messaging system [24]. It does not support other
data sources and sinks than Kafka, but benefits from lightweight
coordination based on Kafka’s consumer group protocol.

Stream processing frameworks often read data from or write
data to messaging systems. Such messaging systems serve both as
a scalable middleware between different systems and services as
well as the necessary infrastructure to ensure fault tolerance. For
this purpose, industry-grade messaging systems such as Apache
Kafka [24, 38] employ an immutable, sequentially appended log
structure to store and replicate records across distributed nodes.
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Table 1: Overview of related open-source stream processing benchmarks and associated benchmarking studies

DSPBench [5] OSPBench [34–36] ESPBench [18] Theodolite [13, 16] ShuffleBench
(This work)

Benchmark inspiration From the literature Car traffic IIoT IIoT Cloud observability
Application metrics Throughput,

latency
Throughput,
latency

Latency Scalability Throughput,
latency

Frameworks Spark, Storm Flink, Kafka
Streams, Spark,
Spark Structured
Streaming

Beam (Flink,
Hazelcast, Spark)

Beam, Flink,
Hazelcast, Kafka
Streams

Flink, Hazelcast,
Kafka Streams,
Spark Structured
Streaming

Deployment Virtual machines Containers, DC/OS Virtual machines Containers,
Kubernetes

Containers,
Kubernetes

Data size 1 to 60 KB approx. 200 bytes up to 280 bytes up to 100 bytes configurable
Processed record/second up to 100k up to 900k up to 10k up to one million up to one million
Customizable state size No No No No Yes

2.2 Benchmarking Stream Processing
Frameworks

A considerable number of studies proposing new benchmarks or
reporting on experimental evaluations with available benchmarks
have been published over the last years [37]. Recent examples of
open-source benchmarks include DSPBench [5], OSPBench [34],
ESPBench [18], or the streaming benchmarks from the Theodolite
framework [13]. Table 1 provided an overview of these benchmarks
and a comparison with ShuffleBench. For a systematic and compre-
hensive review of the literature on stream processing benchmarking,
we refer to our recent studies [16, 37].

The most important difference between other benchmarks and
ShuffleBench is the addressed use case. Most benchmarks re-sample
domain-specific analytics applications, for example, for IIoT data
streams [13, 18], car traffic data [34], or online gaming [21]. Our
paper in contrast investigates a more generic use case, which ad-
dresses a specific type of software architecture instead of a specific
domain.

Despite the addressed use case, we found that benchmarks pro-
posed by the research community are often not applicable for
industry-grade performance evaluations. They are often not avail-
able as open-source software or not actively maintained, lack au-
tomation, and do not use deployments that are representative for
production systems. For example, although it is nowadays common
to run stream processing applications in containerized cloud-native
environments, there is only one benchmark besides ShuffleBench
specifically tailored to such deployments [13]. Likewise, results of
performance evaluations conducted with these benchmarks are of-
ten not transferable to industry use cases, for example, because they
evaluate frameworks only at small-scale deployments [5]. Other
benchmarks or evaluations do not define metrics and measure-
ment methods, which makes the research difficult to reproduce and
extend.

Nevertheless, the literature provides valuable research on evalua-
tion metrics and measurement methods [12, 21, 34]. We build upon
such research to provide well-defined metrics and measurement
methods with ShuffleBench.

3 LARGE-SCALE DATA SHUFFLING
We illustrate the use case of large-scale data shuffling with require-
ments for continuous dashboard queries and real-time alerting of
a market-leading cloud observability platform. Using a powerful
query language, it allows internal and external clients to define
complex rules to aggregate and correlate different data sources such
as metrics, events, logs, and traces. From a software architecture
perspective, each registered query can be considered as a runtime
software component, which continuously receives all data records
that are affected by this query. We call these components real-time
consumers. They have to manage state across multiple input records
and might produce outputs. For example, a consumer that performs
an anomaly detection by correlating logs and performance metrics
might produce an output event when it detects an anomaly.

A core requirement for a corresponding query runtime is to
efficiently route data to the respective consumers while also hav-
ing cluster management abstractions, means to scale out the data
processing, fault-tolerant state management, and well-defined pro-
cessing guarantees. State-of-the-art stream processing frameworks
fulfill these properties. They also provide programmatic APIs or
dedicated SQL-like languages to define complex queries on data
streams (see related benchmarks in Section 2). However, those only
have limited relevance for our use case as we are facing a high
amount of queries that have to be executed in parallel, although
each query only requires a very small portion of the overall data
volume. Therefore, it is not required to parallelize or even distribute
the execution of a single query but only to route those data records
to a consumer as needed. Moreover, considering that dedicated soft-
ware components (e.g., anomaly detection models) can include the
logic for operations such as joins or sliding windows, these features
might not be required by the stream processing framework.

In addition to the observability use case described here, we expect
other real-world systems to have similar requirements. For example,
the stateful Function-as-a-Service [1] runtime Apache Flink Stateful
Functions2 is used in different contexts, but based on a very similar
architecture as our benchmark (see the following section).

2https://nightlies.apache.org/flink/flink-statefun-docs-master/
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Figure 1: Overview of ShuffleBench benchmark components
according to the Empirical Standard for benchmarking.

4 THE SHUFFLEBENCH BENCHMARK
We combine the architectural requirements described above with
best practices of the performance engineering community and in-
dustrial consortia [11, 23, 28, 33].

4.1 Benchmark Design
We base our benchmark design on the ACM SIGSOFT Empirical
Standard for benchmarking [11, 30].3 It distinguishes between the
following four components of a benchmark: the qualities to be
evaluated, metrics to quantify these qualities, measurement meth-
ods for these metrics, and task samples to be evaluated with the
measurement methods. As discussed in Section 2, the task samples
of existing benchmarks have several shortcomings, making them
impractical to study our described use case. On the other hand, sev-
eral evaluation metrics, methods, and tools introduced with other
benchmarks are applicable independently of the specific use case.
According to the Empirical Standard, we, therefore, propose a new
benchmark, which, on the one hand, introduces a new task sample
but, on the other hand, takes up existing metrics and measurement
methods that have demonstrated their effectiveness in the litera-
ture. This way, we address benchmark quality attributes such as
relevance, reproducibility, fairness, verifiability, and usability as
required by industrial consortia and the research community [33].

Figure 1 provides an overview of our benchmark’s components.
In the following, we first describe the task sample in terms of its
dataflow architecture to be implemented by different stream pro-
cessing frameworks and a corresponding load generator. Afterward,
we describe the qualities, metrics, and measurement methods to
assess the task sample implementations.

4.2 The ShuffleBench Task Sample
The ShuffleBench task sample consists of a dataflow architecture to
be implemented by different stream processing frameworks and a
load generator to stress the framework. Both are highly configurable
to allow for evaluations in different scenarios.

3https://acmsigsoft.github.io/EmpiricalStandards/docs/?standard=Benchmarking

4.2.1 Benchmark Dataflow Architecture. Awell-suited way to meet
the described use case is a MapReduce-like architecture [8] on con-
tinuous data streams as it can be built with modern stream process-
ing frameworks. Figure 2 depicts our benchmark architecture for a
corresponding stream processing application. It represents the long-
running application as a static dataflow graph, with data moving
along the edges. It can be deployed with multiple instances, which
execute the same processing logic but on different data subsets. The
data processing starts by reading data records from a messaging
system such as Kafka. Kafka topics are partitioned, allowing each
instance of the stream processing application to subscribe to a ded-
icated set of partitions. In general, we cannot assume any specific
partitioning on the data. After ingestion, the matcher service finds
the relevant queries for each record. The matcher logic is wrapped
in a flatMap operation of a stream processing framework that dupli-
cates an incoming record for each relevant query while assigning a
query-identifying key to each duplicate. In a subsequent operation,
the data is re-partitioned among all instances such that all records
with the same query key are forwarded to the same instance. This
is done with an operation of the stream processing framework of-
ten called groupBy. In the next step, the actual black-box query
logic is executed, which is stateful by aggregating multiple records.
We abstract the query logic in real-time consumers, wrapped in
an aggregate operation of the stream processing framework that
manages the state. These real-time consumers adhere to a simple
interface: they consume an incoming record and the previous state
and output the updated state and, optionally, an event. Finally, these
output events are written to another Kafka topic.

4.2.2 Benchmark Implementations. We implemented the proposed
benchmark for the four stream processing frameworks Flink, Hazel-
cast, Kafka Streams, and Spark Structured Streaming. To provide
a fair comparison, the implementation of the matcher service and
the real-time consumers (which would be domain-specific in pro-
duction) are shared among all frameworks. The matcher service is
configured with a set of rules, which define their selectivity, i.e., the
probability that this rule matches a record. The actual stateful aggre-
gations logic is currently the same for each query: Every incoming
record is updates to the state of the respective real-time consumer.
The state size is configurable, but always includes the count of
received records, a checksum, and the associated timestamps of the
first and the last record (see Section 4.3.2). Real-time consumers
emit an output event if the count is divisible by a configured value
to simulate something like a generated alert.

4.2.3 Load Generator. To simulate incoming observability data,
we provide a load generator that creates data records at a config-
urable frequency with random byte content of configurable size.
We decided to use this way of generating data instead of replaying
historical data to make performance evaluations more reproducible
and ShuffleBench applicable to other domains [33]. The load genera-
tor can be deployed in a distributed fashion andwrites the generated
records to Kafka.

4.2.4 Benchmark Configuration Options. Our ShuffleBench imple-
mentations are highly configurable to evaluate frameworks for
different use cases of large-scale data shuffling tasks. This includes
the size of incoming records, the number of different real-time
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Figure 2: The ShuffleBench dataflow architecture at runtime for three stream processing application instances.

consumers, the total selectivity for all real-time consumers, the dis-
tribution of individual selectivities, the real-time consumer’s state
size, and their output frequency. Additionally, all stream processing
frameworks have a wide range of configuration and deployment
options that potentially impact throughput, latency, scalability, and
fault tolerance. Many of them can easily be set with ShuffleBench
to support experimental comparisons.

4.3 Qualities, Metrics and Measurement
Methods

According to requirements from industry that motivated us to de-
sign ShuffleBench, we currently support benchmarking the qualities
throughput, latency, and scalability with ShuffleBench. In the fol-
lowing, we describe our employed metrics and measurement meth-
ods for all qualities in detail. These descriptions, along with our
executable benchmarking software (see Section 4.4) support repro-
ducibility of benchmarking studies conducted with ShuffleBench,
such as our evaluation in Section 5.

4.3.1 Throughput. We supportmeasuring the throughput of stream
processing frameworks in terms of the number of incoming records
that can be processed per second. Note that the throughput in terms
of processed bytes per second can be directly derived from that.
Assuming validated functional correctness, all frameworks process
each record exactly once in the absence of failures, which means
that the output throughput is proportional to the input throughput.

Essentially, two measurement methods for throughput can be
observed in the literature. We refer to them as ad-hoc throughput
and sustainable throughput. As both have their pros and cons, we
support both within ShuffleBench and evaluate them in Section 5.

Both measurement methods have in common that they only
monitor the messaging system. This has the significant advantage
that the throughput measurements do not influence the execution
of the application. In fact, the measurement method is fully inde-
pendent of the benchmarked framework and, thus, can also be used
on arbitrary other task samples, including real-world applications.

Ad-hoc Throughput. Ad-hoc throughput measurements can be
performed by generating and sending a constant number of records

per second to the messaging system and measuring how much of
these can be processed. It has to be ensured that the generated
data volume is at least as high as the processing rate of the stream
processing framework to not limit it. Several studies appear to have
conducted throughput measurements using this approach [20, 26].
In ShuffleBench, ad-hoc throughput is measured by tracking the
rate of committed offsets at the messaging system [24].

The key advantage of the ad-hoc throughput method is that it
can be performed in a short time. However, the obtained through-
put results might not fully reflect the real behavior of the stream
processing framework when being subject to that load [12]. For
example, optimizations such as batching might allow a system to
ingest data at a higher rate when reading from a large backlog
compared to when data is ingested as it is generated.

Sustainable Throughput. Sustainable throughput [21] is defined
as the maximum load a system can sustain without violating perfor-
mance goals. Such a performance goal can be a limit on the event
latency [21, 34] or the maximum tolerable increase in the num-
ber of queued messages [13, 16, 34]. In ShuffleBench, sustainable
throughput is measured by running multiple independent experi-
ments, in which the generated load is increased from experiment to
experiment and performance goals are evaluated [12]. Per default,
we evaluate whether the number of queued messages increases
substantially over time. This can again be obtained by tracking
available message offsets and consumed message offsets at the mes-
saging system [24]. However, we also allow for using custom (e.g.,
use case-specific) performance goals.

The sustainable throughput measurement method overcomes
the limitations of the ad-hoc throughput method. It better reflects
how a tested system would behave in a real-world deployment. On
the downside, however, this method can only find a range in which
the real achievable throughput lies. Moreover, it has significantly
longer execution times compared to the ad-hoc method. Instead of
evaluating a system with one constant load rate, experiments have
to be executed for different load rates.

4.3.2 Latency. There are several different notions of latency in
stream processing [7, 21]. In ShuffleBench, we quantify latency from
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a user perspective bymeasuring how long it takes for an input event
to generate an output event. Although most frameworks collect
some kind of latency metrics, their measurement methods differ,
preventing a fair comparison. Moreover, in contrast to throughput,
we cannot measure latency purely in the messaging system since
input and output events are not natively linked to each other.

In line with van Dongen and van den Poel [34] and Hesse et al.
[18], we measure latency as the time difference between writing
a record to the input messaging topic and the time a record is
written to the output topic. These timestamps can be retrieved in a
framework-independent way as messaging systems such as Kafka
assign each record the current timestamp when appending it to
the log. To correlate both timestamps, we extract the timestamp of
the input record and append it to the record’s payload. Depending
on the framework, this is either done as part of the read operator
(see Fig. 2) or in an intermediate stateless map operation. In the
stateful aggregation step, we use this timestamp and include it in
the state. Since the whole state is emitted as part of an output event,
the final data written to Kafka contains both the time the input
event has been written to Kafka and the time the output event has
been written to Kafka. ShuffleBench comes with a latency exporter
that reads all output events and computes a frequency distribution
of their latency. The latency exporter can be scaled to multiple
instances to also cope with large output data volume.

4.3.3 Scalability. We adopt the Theodolite scalability benchmark-
ing method for stream processing systems in cloud-native environ-
ments [12, 14]. It provides two metrics for quantifying scalability:
The resource demand metric describes how the number of required
computing resources evolves with increasing load, whereas the
load capacity describes how the maximum processable load evolves
with increasing computing resources. The Theodolite measure-
ment method extends the sustainable throughput method to a two-
dimensional search space. It encompasses search strategies two
reduce the number of independent experiments to be executed.

4.4 Open-Source Benchmark Availability
We provide ShuffleBench as free and open-source research software
to the community. ShuffleBench utilizes and extends the benchmark-
ing framework Theodolite [14, 15] to automate the benchmark exe-
cution in Kubernetes-based cloud environments. This includes the
declarative definition of benchmark experiments, automated setup
and teardown of all involved software components (i.e., stream
processing frameworks, load generator, and the messaging system)
as well as the collection of measurement data.

Our benchmark implementations for different stream processing
frameworks as well as the load generator and the latency exporter
are available as source code, Java archive files, container images,
Kubernetes manifests, and Theodolite benchmark manifests. This
allows the community to engage at different levels.

5 EXPERIMENTAL EVALUATION
We employ ShuffleBench to experimentally evaluate the perfor-
mance of Flink (v. 1.17), Hazelcast (v. 5.3), Kafka Streams (v. 3.5),
and Spark Structured Streaming (v. 3.4, in the following simply
referred to as Spark). This evaluation serves two purposes: First, it

compares how different stream processing frameworks compete re-
garding large-scale data shuffling use cases to assist in selecting the
right technology. Second, it demonstrates how ShuffleBench allows
researchers and practitioners to conduct their own experiments
with different configurations of the benchmark.

After a brief description of our experimental setup (Section 5.1),
we conduct a set of experiments. Section 5.2 starts by a baseline eval-
uation of throughput using both measurement methods presented
in Section 4.3.1. Likewise, Section 5.3 reports on our baseline latency
evaluation. Afterward, Section 5.4 repeats these experiments with
a modified deployment, Section 5.5 with different generated record
sizes, Section 5.6 with a different number of real-time consumers,
and Section 5.7 with different total selectivities of the matcher
service. We discuss the results in the context of related work in
Section 5.8 and threats to validity in Section 5.9. We provide a
replication package and the collected data of our experiments as
supplemental material [17], such that other researchers and practi-
tioners may repeat and extend our work.

5.1 Experimental Setup
We conduct our experimental evaluation in a Kubernetes cluster
managed by the Elastic Kubernetes Service of Amazon Web Ser-
vices. The cluster consists of 10 nodes provisioned in the us-east-1
region: 3 m6i.xlarge nodes run the stream processing framework,
3 m6i.2xlarge nodes run one Kafka broker each, and 4 m6i.xlarge
nodes run the load generator instances plus additional benchmark-
ing infrastructure.4 Unless stated differently, we use the following
configurations: We deploy the stream processing application with
9 application instances (3 per cluster node). Each instance is as-
signed 4 GB of memory and a single virtual CPU core, resulting
in a total parallelism of 9. Except for a few adjustments for better
comparability, we test all frameworks with their default configura-
tions. We set up one million real-time consumers that all have the
same selectivity, which sum up to 20%, meaning that each record
is forwarded to 0.2 consumers on average. Each consumer emits an
output event for every tenth record. Generated records have a size
of 1024 bytes. To increase statistical rigor, we run each experiment
for 15 minutes and repeat it three times. We consider this sufficient
as our results in the following sections show no large deviations
across repetitions.

5.2 Baseline Evaluation of Throughput
In Section 4.3.1, we discuss how the ad-hoc throughput method pro-
vides throughput results faster than the more realistic sustainable
throughput method. In this evaluation, we compare the results of
both methods based on experiments. For the ad-hoc throughput
experiments, we generate 1 million records per second and mon-
itor how many are processed per second by the frameworks. For
the sustainable throughput experiments, we generate records with
different frequencies and determine the maximum frequency at
which the number of queued records in the Kafka input topic does
not substantially increase over time (the performance goal, see our
previous work for a detailed explanation of this method [16]). In
the following, we first discuss the results of Flink, Kafka Streams,

4As part of our replication package [17], we also provide the exact setup using estab-
lished Infrastructure-as-Code tooling.
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Figure 3: Baseline throughput results obtained with the ad-hoc measurement method of Flink, Hazelcast, and Kafka Streams
(a); of Spark for different limitations on the maximum number of pulled records per batch (b); and with the sustainable
measurement method of Flink, Hazelcast, Kafka Streams, and Spark (c).

and Hazelcast as they allow for a straightforward interpretation,
followed by a more detailed discussion of the results for Spark.

5.2.1 Results of Flink, Hazelcast, and Kafka Streams. Figure 3a
shows the results of the ad-hoc throughput measurement method
for Flink, Hazelcast, and Kafka Streams. We can observe a clear
ranking inwhich Flink achieves the highest throughput, followed by
Kafka Streams, and a considerably lower throughput of Hazelcast.

We contrast these results by the results of the sustainable through-
put method as shown in Fig. 3c. Considering the results obtained
by the sustainable throughput method as representative of a real
deployment, we can see that the ad-hoc method overestimates the
throughput of Flink and Kafka Streams by up to 20%. For Hazel-
cast, we can see no difference. Despite their overestimation, ad-hoc
measurements are still useful since the ranking of frameworks is
the same with both methods and ad-hoc measurements can be
performed significantly faster. For these reasons, we apply the ad-
hoc method for the throughput measurements in the following
evaluation.

5.2.2 Results of Spark. Unless further adjusted, ad-hoc throughput
measurements are not meaningful in Spark, because Spark ingests
all available data in a batch, processes this batch, and then ingests
the next batch of all available data. Data that is generated at a
larger volume than can be processed leads to ever-increasing batch
sizes and, thus, to ever-increasing batch processing time. How-
ever, Spark allows constraining the maximum number of records
pulled per batch. We experiment with different limits and show
how they impact the achieved throughput in Fig. 3b. In short, the re-
sults demonstrate the intuition that pulling more records increases
the throughput. However, this comes at the cost of high latency.
For instance, pulling in batches of 10 million records achieves a
throughput of approximately 200 000 records per second, but then
data is retrieved only every 50 seconds causing high latency (see
Section 5.3).

With the sustainable throughput method, we determine the maxi-
mum throughput without a persistent increase in queued messages.
As shown in Fig. 3c, Spark achieves a throughput of 270 000 to
280 000 records per second. However, this throughput comes again
at the cost of large batches with processing times – and thus laten-
cies (see Section 5.3) – of several seconds. Smaller data volumes
lead to reduced batch processing times and, thus, lower latency.

In summary, we observe that Spark’s throughput can be in-
creased at the cost of increased latency and latency can be decreased
at the cost of reduced throughput. This means both metrics should
always be considered in relation to each other and providing a
single result value is problematic. Nevertheless, we observe that
with our benchmark, Spark achieves a throughput similar to the
other frameworks only if a latency of a few minutes can be toler-
ated. As we consider this as too long for most stream processing
use cases [21, 32] and to reduce the space of experiment configura-
tions, we limit the maximum number of records pulled per batch
to 1 000 000 in the following throughput experiments.

5.3 Baseline Evaluation of Latency
For our baseline latency evaluations, we generate a constant load of
90 000 records per second as our baseline throughput experiments
in Section 5.2 showed that this is the maximum rate at which all
frameworks are able to process data (see Fig. 3c).

Figure 4 shows a quantile function of the observed latency of
Flink, Kafka Streams, and Hazelcast. We exclude Spark in the fig-
ure as it has a latency of over 10 seconds at every percentile. It
can be seen that Hazelcast processes data with a very low latency
of 8 milliseconds at the 95th percentile. The p95 latency of Flink
(88 milliseconds) and Kafka Streams (183 milliseconds) are consid-
erably higher but still by an order of magnitude lower than Spark’s.

8



ICPE ’24, May 7–11, 2024, London, United Kingdom Sören Henning, Adriano Vogel, Michael Leichtfried, Otmar Ertl, and Rick Rabiser

p0 p20 p40 p60 p80 p100
percentile

0

50

100

150

200

250

300

m
illi

se
co

nd
s

Flink Hazelcast Kafka Streams

Figure 4: Quantile function of the median observed latency
of Flink, Hazelcast and Kafka Streams.

5.4 Evaluation of Deployment Impact
In our baseline experiments, we deploy 9 instances of the stream
processing framework, each limited to one virtual CPU core. Thus,
all parallelization is happening on the level of Kubernetes Pods.
We compare this deployment against deploying 3 instances with
each being limited to 3 cores. This introduces a second level of
parallelization (i.e., within a single instance) while maintaining an
overall parallelism of 9. We scale the assigned memory per instance
proportionally to 12 GB.

Flink, Hazelcast, and Kafka Streams benefit to a small extent from
higher per-instance parallelization as shown in Fig. 5a. However,
Spark’s throughput decreases slightly. Figure 5b shows that the 3-
node deployment has virtually no influence on processing latency
for all frameworks.

5.5 Evaluation of Record Size Impact
In our baseline experiments, we generate data records of 1024-byte
size. While we consider this as a realistic value for our studied in-
dustrial use case, there are certainly use cases that process records
of other sizes. As related benchmarking studies often used consid-
erably smaller records [13, 18, 34], we evaluate the performance
with record sizes of 128 bytes, 256 bytes, and 512 bytes.

Figure 6a shows that all frameworks can process more records
as record sizes become smaller. It is interesting to see that in par-
ticular Hazelcast benefits from smaller record sizes. While with
1024-byte records, Flink achieves 5.3× higher and Kafka Streams
3.8× higher throughput than Hazelcast, Hazelcast achieves 68% of
the throughput of Flink and approximately the same throughput
as Kafka Streams with 128-byte records. It is also worth noting
that records smaller than 256 bytes have only a minimal impact on
Kafka Streams’ throughput.

Fig. 6b shows that the record size only slightly affects the pro-
cessing latency. We can even see a small increase in latency with
smaller records, which may seem counterintuitive. We expect this
to be because data from Kafka is pulled in batches (limited by its
size in bytes). Smaller records imply more records per batch and,
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Figure 5: Experimental results comparing a deployment with
9 instances and one core per instance with a deployment of
3 instances with 3 cores per deployment.

thus, that data is potentially longer queued in Kafka before being
pulled.

5.6 Evaluation of Consumer Count Impact
ShuffleBench allows for configuring the number of real-time con-
sumers. The number of consumers impacts the runtime of the
matcher service as well as the number of state entries and, thus, the
overall state size. Our baseline evaluation used 1 million consumers,
which we now compare to 100 000 consumers. Evaluations with
significantly larger numbers would require more memory and are
therefore not covered in the evaluation.

Figure 7a shows thatwith fewer real-time consumers, the through-
put of Flink and Kafka Streams significantly increases, whereas we
can see no change for Hazelcast. This indicates that the bottleneck
of Hazelcast is unrelated to the number of consumers. With all
frameworks, there is no change in the processing latency when
using fewer consumers as shown in Fig. 7b.
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Figure 6: Experimental results comparing the impact of dif-
ferent record sizes.

5.7 Evaluation of Selectivity Impact
The summed-up selectivity of all real-time consumes describes how
much of the overall input data volume is forwarded to the groupBy
operation of ShuffleBench’s dataflow architecture. Hence, it also
determines the data volume that is re-distributed to a potentially
different application instance. Besides a total selectivity of 20% in
our baseline evaluation, we also compare a 0% and a 100% total
selectivity.

Figure 8a shows the throughput results for all frameworks. All
frameworks except Hazelcast achieve a higher throughput with
smaller selectivity. Hazelcast’s results indicate that its bottleneck is
neither due to the shuffling nor the stateful aggregation. Noticeable
is that Spark’s results throughput significantly reduces from 0%
selectivity to 20% selectivity, but only slightly from 20% selectivity
to 100% selectivity. Figure 8b shows the 95th percentile processing
latency of Flink, Hazelcast, and Kafka Streams for 20% selectivity
and 100% selectivity. There can be no latency results for 0% selectiv-
ity, as no data is shuffled and, thus, no events are output. Hazelcast
shows a very high latency with 100% selectivity as, in this case, it
can not process the generated data volume anymore, which means

Flink Hazelcast Kafka Streams Spark
stream processing framework

0

200k

400k

600k

800k

re
co

rd
s/

se
co

nd

100k 1M

(a) Ad-hoc throughput

Flink Hazelcast Kafka Streams
stream processing framework

0

25

50

75

100

125

150

175

200

m
illi

se
co

nd
s

100k 1M

(b) Latency at the 95th percentile

Figure 7: Experimental results comparing 100 000 with one
million real-time consumers.

that records are queuing up in Kafka. Surprisingly, with higher
selectivity, the latency of Flink and Kafka Streams decreases. We
expect this again to be due to buffering effects in the shuffling and
in the output step.

5.8 Discussion in the Context of Related Work
Across all our experiments, Flink processes data with the highest
throughput, followed by Kafka Streams. Only for small records of
128-byte size, Hazelcast achieves a similar throughput to Kafka
Streams. On the other hand, Hazelcast processes data with about
ten times lower latency compared to Flink, which in turn requires
approximately half the time of Kafka Streams. In our experiments
with Spark, a strong correlation between throughput and latency
can be noted. Engineers and operators can thus choose the right
balance depending on the use case. To process data of a volume
similar to that processed by other frameworks, however, latency in
the order of several seconds up to minutes has to be tolerated.

Flink’s superior performance for many use cases is also reported
in the literature [16, 21, 34]. The throughput achieved with Spark
was not as high (compared to other frameworks) as reported in
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Figure 8: Experimental results comparing a total selectivity
across all real-time consumers of 0%, 20%, and 100%.

some related studies [20, 34]. We believe that this is due to specific
technical aspects of our benchmark and experimental design of
avoiding configuration tuning (see Section 5.9), which can be a
requirement for Spark’s execution in clusters [34]. In the future, we
intend to further investigate Spark’s configurations and their impact
on performance. Likewise, Hazelcast’s low throughput is surprising
and could not be observed in related work [16]. Whether this is only
due to our larger record sizes or there are further particularities in
our benchmark or experimental setup has to be further evaluated.

Hazelcast’s low latency processing was also observed in the
related literature [10, 18] and is underpinned by its design [10].
Also, the strong correlation between throughput and latency in
Spark is reported in the literature [34, 37]. Recent, experimental
approaches in Spark for continuous processing5 to reduce latency
could be subject of an extended evaluation.

5https://spark.apache.org/docs/3.5.0/structured-streaming-programming-
guide.html#continuous-processing

5.9 Threats to Validity
Despite careful research design, there are threats and limitations to
the validity of our experimental evaluation, which we report below.

Threats to Internal Validity. We run all evaluations in a container-
ized environment on a public cloud platform to have a representa-
tive deployment. This means, however, that there are potentially
many factors influencing the performance, which are out of our
control [25, 28]. We address these limitations to some extent by
running individual experiments for a longer time, repeating them,
and assessing their variability. However, to reduce the benchmark-
ing setup’s complexity, we do not re-create the Kubernetes cluster
between two experiments, which means that virtual machines are
not re-provisioned before each experiment. We do not systemat-
ically run experiments at different times of the day or the week
to keep the time required for these experiments manageable. Re-
peating certain experiments at different times, however, did not
show noticeable deviations. To further mitigate these limitations,
we provide our benchmark as open-source software, allowing for
independent replication of our study.

Threats to External Validity. It is important to note that our results
report on the performance of different stream processing frame-
works for large-scale data shuffling use cases. Previous research has
shown that benchmark results of one use case are not necessarily
transferable to other use cases [16, 27, 37]. In Sections 5.4 to 5.7
we conduct throughput experiments with the less representative
ad-hoc measurement method to reduce the overall time required
for these experiments. Section 5.2 quantifies how much this method
overestimates the realistic throughput. We intentionally evaluate
all frameworks primarily using their default configurations. This
approach helps to avoid bias resulting from different degrees of
experience with the frameworks. However, we can only draw lim-
ited conclusions about potential performance improvements that
can be achieved through fine-tuning for specific scenarios. For our
experiments, we focused on a single kind of deployment (containers
in Kubernetes) on a single cloud platform. As we measure perfor-
mance on a high level (macro-benchmarking) using cloud-native
abstraction layers and by setting resource limits for the contain-
ers, we expect no significantly different results in other execution
environments.

6 CONCLUSIONS AND FUTUREWORK
This paper introduces ShuffleBench, our proposal for a new stream
processing benchmark for large-scale data shuffling operations. Be-
sides addressing a different use case than other stream processing
benchmarks, ShuffleBench also overcomes several limitations of
other benchmarks. Our benchmark design is based on requirements
identified from a large cloud observability platform and established
benchmarking metrics, methods, and techniques from the perfor-
mance engineering research community. With ShuffleBench, we
aim to support and foster research on stream processing by pro-
viding a standardized method that researchers and practitioners
can use to compare their implementations, algorithms, and config-
urations. So far, we employed ShuffleBench to evaluate throughput
and latency of Flink, Hazelcast, Kafka Streams, and Spark. Our
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evaluation provides the most recent benchmark results to the re-
search community and serves as a starting point for researchers
and practitioners to conduct further evaluations with ShuffleBench.

Besides growing a community around ShuffleBench, we plan to
support additional qualities such as reliability. In particular, an em-
pirical investigation of the interconnection of throughput, latency,
and fault-tolerance is highly demanded. We are also currently in
the process of supporting and evaluating non-uniformly distributed
record sizes, selectivities, state sizes, and output rates to address
additional industrial requirements.
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ABSTRACT
Several methods of the Java Class Library (JCL) rely on vectorized
intrinsics. While these intrinsics undoubtedly lead to better per-
formance, implementing them is extremely challenging, tedious,
error-prone, and significantly increases the effort in understand-
ing and maintaining the code. Moreover, their implementation is
platform-dependent. An unexplored, easier-to-implement alterna-
tive is to replace vectorized intrinsics with portable Java code using
the Java Vector API. However, this is attractive only if the Java code
achieves similar steady-state performance as the intrinsics.

This paper shows that this is the case. We focus on the hashCode

and equals computations for byte arrays. We replace the platform-
dependent vectorized intrinsics with pure-Java code employing the
Java Vector API, resulting in similar steady-state performance. We
show that our Java implementations are easy to fine-tune by exploit-
ing characteristics of the input (i.e., the array length), while such
tuning would be much more difficult and cumbersome in a vector-
ized intrinsic. Additionally, we propose a new vectorized hashCode

computation for long arrays, for which a corresponding intrinsic
is currently missing. We evaluate the performance of the tuned
implementations on four popular benchmark suites, showing that
the performance are in line with those of the original OpenJDK 21
with intrinsics.

Finally, we describe a general approach to integrate code using
the Java Vector API into the core classes of the JCL, which is chal-
lenging because premature use of the Java Vector API would crash
the JVM during its fragile initialization phase. Our approach can be
adopted by developers to modify JCL classes without any changes
to the native codebase.
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1 INTRODUCTION
In the context of the Java Virtual Machine (JVM), intrinsics [2, 21]
are a complex runtime machinery introduced for implementing
efficient low-level operations.1 Intrinsics are often implemented in
the form of template-generated, assembly-like code or as dedicated
nodes in the intermediate representation (IR) used by the just-
in-time (JIT) compiler. Several methods of the Java Class Library
(JCL) are implemented as intrinsics to improve performance [19]:
instead of relying on the JIT compiler to optimize a pure-Java
implementation, the JIT compiler directly emits machine code as
specified by the intrinsic. In this way, the compilation cost is reduced
since the compiler does not need to perform optimization passes.
Moreover, by leveraging intrinsics, JVM developers can express low-
level computations which are not directly expressible in the Java
language. With the increasing support of vector instructions [1] (i.e.,
special machine instructions leveraging SIMD registers to apply
an operation to multiple data elements in parallel) in common
processors, intrinsics can leverage such instructions to improve
performance even on ordinary hardware. We refer to such intrinsics
as vectorized intrinsics.

1Intrinsics are used for multiple reasons, such as for making low-level resources
accessible or for improving performance. This paper focuses solely on the latter type
of intrinsics, in particular on those making use of vector instructions.
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While intrinsics undoubtedly lead to better performance, im-
plementing them is extremely challenging [8, 50]. In addition to
the very specific knowledge needed to write highly optimized,
template-generated assembly code for a target architecture, imple-
menting an intrinsic is hard, tedious, error-prone, requires a major
development effort, and makes debugging, tuning, and testing very
time-consuming. Moreover, as intrinsics are platform-dependent,
the above effort should be repeated for every architecture that one
wishes to support. This issue is aggravated in vectorized intrinsics,
since even processors of the same architecture may support differ-
ent vector extensions. As an example, x86 processors may support
Streaming SIMD Extensions [24] (SSE), which have been released
in four different versions (SSE1, SSE2, SSE3, SSE4) and Advanced
Vector Extensions [25] (AVX), released in three different versions
(AVX, AVX2, AVX512). To fully leverage vector instructions, de-
velopers need to implement different versions of the vectorized
intrinsics, each making use of the vector instructions supported
by the underlying processor. Due to this complexity and effort
required, in practice, developers implement vectorized intrinsics
only for very common architectures (e.g., x86) and only for selected
methods of the JCL (e.g., commonly and frequently used primitives
on byte arrays such as hashCode and equals), where the complexity
and cost of implementing an intrinsic is justified by a significant
performance gain.

These issues—huge effort in development, debugging, and test-
ing, limited portability, substantial platform dependence of vector
instructions—can be mitigated by replacing vectorized intrinsics
with equivalent platform-independent Java code making use of
the Java Vector API (JVA) [35], which allows developers to express
explicit vector operations from Java code using an object-oriented
API, without resorting to any native code. Using the API, appropri-
ate vector instructions are emitted by the JIT compiler depending
on the vector instructions supported by the architecture; hence, the
same Java code can be executed on multiple platforms, possibly
supporting different vector extensions.

The goal of this paper is to show that in addition to reducing
the effort in understanding, extending, and maintaining the code,
replacing vectorized intrinsics with equivalent Java code using the
JVA results in similar steady-state performance, making the ap-
proach attractive even in production-level JVMs. We present a brief
background on intrinsics in Section 2. As practical use cases, we
apply this approach to the hashCode (Section 3) and equals (Sec-
tion 5) computations for byte arrays. Moreover, as the code is now
easier to extend, debug, and test, we show that it is also easy to
fine-tune the code, exploiting characteristics of the input (i.e., the
array length); fine-tuning would be very difficult to implement in
an intrinsic. Furthermore, we propose a new vectorized hashCode

computation for long arrays, for which a corresponding intrinsic is
currently missing (Section 4). We evaluate the performance of the
tuned implementations of hashCode and equals for byte arrays (but
not the new vectorized methods) using four popular benchmark
suites, showing that they provide similar performance than the
vectorized intrinsics (Section 6). Our implementation is portable
and can be run on any JVM and any architecture supported by
the JVA, whereas the vectorized intrinsics in OpenJDK 21 [14] (the
latest version of one of the most used JVMs worldwide) only work
on selected architectures.

The JVA cannot be used during the fragile JVM initialization
phase, because it would lead to the premature initialization of
classes when the JVM is not yet ready to execute arbitrary Java code.
This is a major obstacle, because many methods of the JCL (includ-
ing hashCode and equals, on which we focus) are already exercised
in the early phases of JVM initialization. This paper proposes a
general approach to solve this issue. We describe our approach to
modify the Java source code of the JCL, such that our Java imple-
mentation making use of the JVA can substitute the use of intrinsics
in core classes of the JCL (Section 7). Our approach does not require
any change in the native codebase.

To summarize, we show a new, practical way to implement prim-
itives in the JCL using the JVA, offering an attractive, more portable,
and easier-to-maintain alternative to the use of vectorized intrin-
sics. Our approach does not require any knowledge of the OpenJDK
native codebase and can be reused by researchers and practitioners
to modify JCL classes. In particular, our work makes the following
contributions:

• We propose and evaluate fine-tuned JVA implementations
of hashCode and equals for byte arrays (Sections 3 and 5,
respectively).

• We propose and evaluate a new vectorized hashCode JVA
implementation for long arrays (Section 4).

• We assess the performance of our new JVA implementa-
tions of hashCode and equals for byte arrays on four popular
benchmark suites for Java (Section 6).

• We propose an approach to modify the Java source code of
the core classes of the JCL (Section 7).

We complement the paper with an overview of related work (Sec-
tion 8), a discussion on the limitations of our approach (Section 9),
and our concluding remarks (Section 10).

2 BACKGROUND
Intrinsic functions (henceforth also called intrinsics for short and
also known as built-in functions) are functions whose implemen-
tations are specially handled by the managed language runtime
system. In particular, the managed language runtime system pro-
vides 1) a default implementation of the intrinsic function, written
in themanaged language, and 2) operating system- and architecture-
specific semantically equivalent optimized implementations of the
intrinsic function. If an optimized implementation is available for
the underlying operating system and architecture, at runtime, the
interpreter and/or the compiler replaces the default implementation
with that optimized implementation. Optimized implementations
often leverage operating system and hardware features that are not
available in the managed language constructs and APIs, such as
vector operations.

Since implementing intrinsics is challenging [8, 50], JVMs im-
plement intrinsics only for some particular architectures and only
for some frequently used methods provided by the JCL. Intrinsic
implementations may vary not only depending on the operating
system and the underlying architecture but also based on the JVM
version, JVM vendor, and JIT compiler the JVM uses. For this reason,
the platform-dependency of intrinsics aggravates the unpredictable
performance of Java code on different architectures.
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In this paper, we conduct our experiments on OpenJDK, a widely
used open-source JVM implementation. OpenJDK specifies two
types of intrinsics [21]: 1) library intrinsics that “may be replaced
with hand-crafted assembly code, with hand-crafted compiler IR,
or with a combination of the two” [22], and 2) bytecode intrinsics
that are “not replaced by special code, but they are treated in some
other special way by the compiler” [20]. In our work, we focus on
intrinsics replaced by the JIT compiler and implemented as hand-
crafted assembly code that leverages vector hardware instructions.
We note that implementing this kind of instrinsics in OpenJDK not
only requires knowledge of the low-level assembly programming
model, but also knowledge of the metaprogramming techniques
used to implement their code generation.

3 VECTORIZED HASHCODE FOR BYTE
ARRAYS

In this section, we present the vectorized implementation and eval-
uation of the hashCode method. In Java, every object and array
supports method hashCode, which returns an integer associated
with the object or array. In this section, we focus on the hashCode

computation for byte arrays, which is used also to compute the
hashCode for Java Strings (as they are internally implemented as
byte arrays). An efficient hashCode calculation for Java String is
very important in multiple scenarios, such as pattern-matching
algorithms [30, 31, 46, 47], data-processing systems [10, 23, 49],
and data compression [18]. Arrays.hashCode is implemented as a
variant of the polynomial rolling hash function [28], computed as
reported in Equation 1.

ℎ𝑎𝑠ℎ (𝑠 ) =
{
0 if 𝑁 = 0∑𝑁 −1

𝑖=0 𝑠 [𝑖 ] · 𝑝𝑁 −𝑖−1 mod𝑚 otherwise
(1)

where 𝑠 is an array of length 𝑁 , 𝑠 [𝑖] is the 𝑖-th element of 𝑠 , while 𝑝
and𝑚 are positive integers. In OpenJDK 21, 𝑝 = 31,𝑚 = 232, and the
computation is performed by a vectorized intrinsic requiring AVX2
vector instructions (which use 256-bit vector registers). We note
that the mod 232 operation is obtained implicitly due to overflows.
The intrinsic has recently been introduced in OpenJDK 21 [13]. We
highlight that our experiments show that the previous implemen-
tation of hashCode (i.e., as simple scalar loop) is not automatically
optimized with the superword auto-vectorization optimization per-
formed by the JIT compiler: as shown in Figure 1, the intrinsic
largely outperforms the pure-Java implementation.

3.1 HashCode Implementation for Byte Arrays
The implementation of the vectorized intrinsic for Arrays. hashCode
in OpenJDK 21 can be found in the link [17]. Due to its complex-
ity, for the sake of clarity, we introduce the recast version of the
intrinsic (i.e., an equivalent version using pure Java code relying
on the JVA) and discuss this version. We note that all our versions
presented in this paper have been thoroughly tested with generated
test cases. The pseudo-code of the recast is shown in Figure 2. Vari-
ables with a bar on top denote vectors. Since the intrinsic relies on
AVX2 instructions, the implementation (using four accumulators)
efficiently processes 32 bytes in each iteration. The AVX2 instruc-
tions can only operate on 8 input bytes at a time, since each byte is
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Figure 1: Performance comparison between the OpenJDK 21
hashCode intrinsic and the byte-to-byte loop in pure-Java code
implemented in the JCL up to OpenJDK 20.

converted to a 32-bit integer (zero extension), resulting in a fourfold
size increase of the data.

The implementation initializes the accumulators (each contain-
ing 8 integers) with zeroes (lines 5–8). Then, it loads the coefficient
representing the constant 3132 (line 9). This constant depends on
the number of bytes processed per iteration (32 in our example) and
is loaded from the POW31 array. Both our implementation and the
intrinsic use pre-computed powers of 31. At position 𝑖 , the POW31

array stores the value 31𝑖 .
The main computation unfolds through the sequence of loading

data (lines 12–15) and accumulating the computed intermediate re-
sults (lines 16–19). The accumulators are updated with the product
of the prior accumulation and the coefficient, adding then the latest
loaded data. Subsequently, the index advances by 32, reinstating the
computation if at least 32 bytes remain. After the loop, each vector is
multiplied with a reversed list storing the powers of 31 (lines 21–24).
Ultimately, an aggregation is applied to all accumulators through
an addition (line 25), yielding the hash value.

Subsequently to the execution of the unrolled vectorized loop, the
code processes eventual residual bytes (up to 31). If such bytes exist
(i.e., the array length is not a multiple of 32), they are aggregated
using a scalar loop that processes 2 bytes in each iteration. This
can be seen in lines 29–31. As in the case of the vectorized unrolled
loop, the intrinsic uses this strategy to reduce the dependencies
between iterations. After the loop, a single remaining byte may still
need to be processed. If so, it is subsequently added to the hash
value (line 33).

During the implementation of the recast version, we observed
two improvements that could be applied to use more vector in-
structions. We describe the improvements in the following text and
implement them in a tuned version of hashCode.

The first improvement regards the computation of hashcode for
arrays of < 32 bytes. In this case, the intrinsic processes all the
input data with scalar operations (processing 2 bytes in each loop
iteration). In our tuned version, we use scalar computation only for
arrays of < 8 bytes, while for lengths from 8 to 31, we use vectorized
instructions relying on a single accumulator.
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1 int hashCode_recast(byte[] s) {
2 int len = s.length;
3 int h = 0;
4 if (len >= 32) {
5 𝑎𝑐𝑐0 = zero(8_INT);
6 𝑎𝑐𝑐1 = zero(8_INT);
7 𝑎𝑐𝑐2 = zero(8_INT);
8 𝑎𝑐𝑐3 = zero(8_INT);
9 𝑚 = load(8_INT , POW31 [32]);
10 int bound = len & ~31; // (length /32) *32
11 for (int i = 0; i < bound; i += 32) {

12 𝑑𝑎𝑡𝑎0 = fromArray (8_BYTE , s, i);

13 𝑑𝑎𝑡𝑎1 = fromArray (8_BYTE , s, i+8);

14 𝑑𝑎𝑡𝑎2 = fromArray (8_BYTE , s, i+16);

15 𝑑𝑎𝑡𝑎3 = fromArray (8_BYTE , s, i+24);

16 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(𝑚).add(𝑑𝑎𝑡𝑎0.convert (...));

17 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(𝑚).add(𝑑𝑎𝑡𝑎1.convert (...));

18 𝑎𝑐𝑐2 = 𝑎𝑐𝑐2.mul(𝑚).add(𝑑𝑎𝑡𝑎2.convert (...));

19 𝑎𝑐𝑐3 = 𝑎𝑐𝑐3.mul(𝑚).add(𝑑𝑎𝑡𝑎3.convert (...));
20 }
21 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(POW31 [31..24]);
22 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(POW31 [23..16]);
23 𝑎𝑐𝑐2 = 𝑎𝑐𝑐2.mul(POW31 [15..8]);
24 𝑎𝑐𝑐3 = 𝑎𝑐𝑐3.mul(POW31 [7..0]);
25 h = 𝑎𝑐𝑐0.add(𝑎𝑐𝑐1).add(𝑎𝑐𝑐2)
26 .add(𝑎𝑐𝑐3).reduce(ADD);
27 }
28 int i = 1 + (len & ~31);
29 for (; i < len ; i += 2) {
30 h = 31 * 31 * h + 31 * (s[i-1] & 0xff) +

(s[i] & 0xff);
31 }
32 if (i == len) {
33 h = 31 * h + (s[i-1] & 0xff);
34 }
35 return h;
36 }

Figure 2: Pseudo-code of the recast version of hashCode for
byte arrays using the JVA.

The second improvement applies for lengths > 32 that are not
multiples of 32. The intrinsic processes the residual bytes (i.e., length
mod 32) in a scalar loop. Instead, we use up to four additional
vector instructions to process 8 bytes at a time. At the end, our
tuned implementation loads the last 8 bytes of the array and applies
a vector mask, setting to zero the vector positions that contain
previously processed bytes to avoid processing them twice. The
remaining (not masked) bytes are finally processed in the same way
as in the loop using only vector instructions.

3.2 Evaluation Methodology and Experimental
Setup

We designed a micro-benchmark to compare the execution time of
the different hashCode implementations for different array lengths.
Our goal is to understand whether our pure-Java implementations
(recast and tuned) achieve similar steady-state performance as the
intrinsic. In this section, we describe our evaluation methodology.
We will use the same methodology in Sections 4.2 and 5.2. All the
experiments in this paper are executed on a machine equipped

with an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, featuring 16
physical cores supporting the AVX512 instruction set (supporting
512-bit vector registers). Hyper-threading and turbo boost are dis-
abled. The machine has 256GB of RAM @ 3200MHz. The kernel is
Linux 5.15.0-25-generic, and the OS is Ubuntu 22.04 LTS. We use
OpenJDK build 21.0.1+12-29.

Our figures report the execution time for each array length from
0 to 512. In each run of the micro-benchmark (within one JVM
process), we perform 40k series of measurements, each series with
513 measurements (on byte arrays of lengths 0–512). In each series,
we execute the 513 measurements in a randomized order, to ensure
that our dynamically compiled Java implementations do not gain
any unfair advantage due to predictable execution paths. Among
the 40k series of measurements, we consider the first 20k as warm-
up, ignoring them.We run the micro-benchmark 5 times in different
JVM processes. Overall, each data point (i.e., execution time) in the
shown figures is the arithmetic mean of 100k measurements (the
20k steady-state measurements for each of the 5 runs). We note that
there is no object allocation during these measurements, and we use
the Epsilon no-op garbage collector [4] to prevent any interference
of the measurements by the garbage collector. In all figures where
the x-axis represents different array lengths, the y-axis shows the
execution time in nanoseconds.

3.3 Evaluation of HashCode for Byte Arrays
Figure 3 presents a comparison of the steady-state performance of
different hashCode implementations: the hashCode intrinsic imple-
mented in OpenJDK 21 and the recast and tuned versions using the
JVA. As the intrinsic only uses AVX2 instructions, the recast and
tuned versions only use 256-bit vector instructions as well. The
figures also show a tuned version that exploits AVX512 (i.e., 512-bit
vector instructions), which was easily written with the JVA. For a
fair comparison with the intrinsic, our focus remains exclusively
on the 256-bit implementation. We show the AVX512 version only
to highlight the potential for further performance enhancement on
processors that support 512-bit vector instructions.

As shown in the figure, the curves of each version exhibit dif-
ferent characteristics. The performance trend of the intrinsic and
the recast is characterized by its main vectorized loop using four
accumulators and the residual computation employing a scalar
loop. This can be seen in the figure, where the shortest execution
times are measured for array lengths that are multiples of 32, for
which the hashCode computation involves only vector instructions.
Then, the subsequent 31 data points in the curve follow a pattern
of increasing overhead due to the scalar loop.

The performance curve of our tuned implementation is also
shaped by its main vectorized loop featuring four accumulators
(for lengths ≥ 32). However, a notable difference lies in the final
phase of the hashCode computation. Here, we substitute the scalar
for loop iterations with vector instructions that process up to 8
bytes at a time. Since often there are less than 8 residual bytes, we
apply a mask to disable unused lanes of the vector instruction. This
approach leads to a discernible pattern marked by four steps within
each 32-byte range. Each step in the range corresponds to the final
vector instructions processing 8 bytes using a mask, accompanied
by extra vector instructions (at most three) every 8 bytes. While
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Figure 3: Performance comparison between the OpenJDK 21 hashCode intrinsic and our pure-Java recast and tuned implementa-
tions.

our optimization performs slightly worse than the intrinsic when
there are only few residual bytes, it shows speedups when more
residual bytes need to be processed.

In our experiments, we observe a different trend between the
intrinsic and the recast version up to an array length of 160; be-
yond this threshold, the two implementations show comparable
performance. This is because for longer arrays, the execution time
is dominated by the loop using four accumulators, which is im-
plemented in the same way in all versions. Compared with the
intrinsic, our experimental results on this micro-benchmark show
an overall speedup (geometric mean of the speedup factors for all
measured lengths) of 0.94× for the recast version and of 1.10× for
the tuned version.

4 VECTORIZED HASHCODE FOR LONG
ARRAYS

In this section, we present and evaluate our implementation of the
vectorized hashCode computation for long arrays. In OpenJDK 21,
this computation has not (yet) been intrinsified. We describe a pure-
Java vectorized implementation to show that using the JVA we can
easily vectorize additional methods in the JCL that do not benefit
from auto-vectorization.

Figure 4 illustrates the hashCode computation for long arrays.
The computation makes use of the same polynomial rolling hash
function we introduced in the previous section (Equation 1), with
the difference that a pre-processing step is performed, consisting
of an XOR operation on the most- and least significant part of each
long element, yielding an integer (line 4).

4.1 HashCode Implementation for Long Arrays
We describe a new pure-Java implementation that exploits 256-bit
vectors to efficiently vectorize the hashCode computation for long
arrays. Figure 5 shows the core part of the proposed implementa-
tion.2 As mentioned before, the interesting aspect is reading the
data in a way to fully exploit the potential of vector instructions.

2For more details on vector operations in our pseudo-code, such as withLane, refer to
the documentation of class Vector and its subclasses [26].

1 public static int hashCode(long[] ls) {
2 int h = 1;
3 for (long l : ls) {
4 int hash = (int)(l ^ (l >>> 32));
5 h = 31 * h + hash;
6 }
7 return h;
8 }

Figure 4: Pseudo-code of hashCode for long arrays in Open-
JDK 21.

The main loop is implemented in lines 6–17. In lines 7–10, we load
4 array elements into a long vector and reinterpret it as an integer
vectors of 8 elements. We perform this operation 4 times, reading 16
long elements (reinterpreted as 32 integers) in total. In lines 11–14,
we 1) perform the XOR operation between each pair of integers origi-
nated from the same long via vector shifts, and 2) merge the results
from the 4 part vectors into 2 data vectors, interleaving the results
in even and odd positions. Finally, in lines 15–16, we perform the
hashCode computation.

4.2 Evaluation of HashCode for Long Arrays
Figure 6 compares the steady-state performance of the default
hashCode implementation in OpenJDK 21 with ours. The method-
ology and experimental setup are the same ones described in Sec-
tion 3.2. As can be seen from the figure, our vectorized imple-
mentation significantly improves performance w.r.t. the default
implementation. The performance improvement is more evident
as the array length increases. Overall, experimental results on this
micro-benchmark show that our JVA implementation outperforms
the JCL implementation by a speedup factor (geometric mean of
the speedup factors for all measured lengths) of 1.92×.

5 VECTORIZED EQUALS FOR BYTE ARRAYS
In this section, we present a vectorized implementation and evalua-
tion of the equals method, which determines the equality of two
arrays. It is extensively employed in applications and libraries, for
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1 int hashCode_long(long[] ls) {
2 int len = ls.length;
3 ... // omitted code for len < 16
4 𝑎𝑐𝑐0 = zero(8_INT);
5 𝑎𝑐𝑐1 = zero(8_INT).withLane(7, 1);
6 for (int i = 0; i <= len -16; i += 16) {
7 𝑝𝑎𝑟𝑡0 = fromArray (4_LONG ,ls,i).asInt();
8 𝑝𝑎𝑟𝑡1 = fromArray (4_LONG ,ls,i+4).asInt();
9 𝑝𝑎𝑟𝑡2 = fromArray (4_LONG ,ls,i+8).asInt();
10 𝑝𝑎𝑟𝑡3 = fromArray (4_LONG ,ls,i+12).asInt();

11 𝑑𝑎𝑡𝑎0 = 𝑝𝑎𝑟𝑡0.shiftLeft ().XOR(𝑝𝑎𝑟𝑡0)
12 .blend(𝑝𝑎𝑟𝑡1.shiftRight ().XOR(𝑝𝑎𝑟𝑡1), mask);

13 𝑑𝑎𝑡𝑎1 = 𝑝𝑎𝑟𝑡2.shiftLeft ().XOR(𝑝𝑎𝑟𝑡2)
14 .blend(𝑝𝑎𝑟𝑡3.shiftRight ().XOR(𝑝𝑎𝑟𝑡3), mask);

15 𝑎𝑐𝑐0 = 𝑎𝑐𝑐0.mul(POW31 [16]).add(𝑑𝑎𝑡𝑎0);

16 𝑎𝑐𝑐1 = 𝑎𝑐𝑐1.mul(POW31 [16]).add(𝑑𝑎𝑡𝑎1);
17 }
18 ... // omitted code for residual (len -i) longs
19 }

Figure 5: Pseudo-code of the vectorized implementation of
hashCode for long arrays using the JVA.
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Figure 6: Performance comparison between the OpenJDK 21
hashCode implementation and our version using the JVA.

example, string equality is internally implemented as arrays equal-
ity. This operation is implemented as a simple loop comparing one
byte in each iteration. The loop could in principle be automatically
vectorized with the superword auto-vectorization of the JIT com-
piler. However, we highlight that our experiments show that such
an optimization is not applied on equals: as shown in Figure 7, the
intrinsic largely outperforms the pure-Java implementation. In this
section, we show that an implementation based on the JVA shows
performance in line with the intrinsic.

5.1 Equals Implementation for Byte Arrays
We focus on the equals implementation for byte arrays, where
equality is determined by performing byte-to-byte comparisons.
The equals implementation starts testing trivial cases, such as the
arrays’ references and their lengths. Subsequently, the implemen-
tation resorts to a byte-to-byte comparison to check whether the
elements are equal, which is implemented as an intrinsic [16].
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Figure 7: Performance comparison between the OpenJDK 21
equals intrinsic and the byte-to-byte loop in pure-Java code
implemented in the Java Class Library.

1 int equals_recast(byte[] s1, byte[] s2) {
2 ... // check if s1 and s2 have same length
3 int len = s1.length;
4 if (len >= 64) {
5 int pos = 0;
6 do {
7 if (!( fromArray (64_BYTE , s1, pos)
8 .cmpEQ(fromArray (64_BYTE , s2, pos))
9 .allTrue ()) return false;
10 pos += 64;
11 } while (pos < len -64);
12 return fromArray (64_BYTE , s1, len -64)
13 .cmpEQ(fromArray (64_BYTE , s2, len -64))
14 .allTrue ();
15 } else if (len >= 32) {
16 return fromArray (32_BYTE , s1, 0)
17 .cmpEQ(fromArray (32_BYTE , s2, 0))
18 .allTrue () &&
19 fromArray (32_BYTE , s1, len -32)
20 .cmpEQ(fromArray (32_BYTE , s2, len -32))
21 .allTrue ();
22 } else {
23 for (int j = 0; j < len; j++) {
24 if (s1[j] != s2[j]) {
25 return false;
26 }
27 }
28 return true;
29 }
30 }

Figure 8: Pseudo-code of the recast version of equals for byte
arrays using the JVA.

Based on the original implementation of the intrinsic, we imple-
ment a recast version using the JVA (see Figure 8). As the intrinsic
employs 512-bit vector instructions if available, our recast version
also uses them. For arrays with lengths from 64, the implementation
iterates over the arrays, comparing them in batches of 64 bytes at a
time (lines 6–11). Subsequently, a final vector instruction is utilized
to compare all residual bytes (lines 12–14). This vectorized com-
parison loads the final vector starting at position len-64 (line 12),
possibly comparing some array elements for a second time.
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Figure 9: Performance comparison between theOpenJDK21 equals intrinsic and our pure-Java recast and tuned implementations.

For arrays with lengths from 32 to 63, the implementation com-
pares the arrays with two 256-bit vector comparisons, i.e., from
position 0 to 31, and from position len-32 to len-1 (lines 16–21).
Arrays with length < 32 are compared using scalar instructions.

We now suggest a few code improvements that could lead to
better performance by exploiting vector instructions also on arrays
shorter than 32 bytes. The core loop described in Figure 8, applicable
for lengths ≥ 64 bytes (lines 6–11), remains unchanged. The code
for lengths from 32 to 63 also remains unchanged, i.e., the two
vector comparisons (32 bytes each). However, we use the scalar
loop for byte-to-byte comparison only for arrays with less than 8
bytes. For arrays with lengths from 8 to 16, our implementation
executes two 64-bit vector comparisons. Finally, for arrays with
lengths from 17 to 31, our tuned implementation executes two
128-bit vector comparisons.

5.2 Evaluation of Equals for Byte Arrays
For evaluating equals, we use again the same methodology de-
scribed in Section 3.2. However, since we have to compare two
arrays, we initially duplicate all the byte arrays. We always com-
pare two identical arrays, meaning that equals has to process all
the array content to find that the arrays are equal.

In Figure 9, we compare the overall steady-state performance of
our implementations (recast and tuned) with the intrinsic. As can
be seen in the graph, the range of lengths where the performance
difference is most visible is between 0 and 32. In this range, both
the intrinsic and the recast versions use scalar computations to pro-
cess short strings. The intrinsic compares multiple bytes reading
integers and shorts out of the byte array, while the recast performs
a byte-wise comparison, explaining their performance difference
in this range. The tuned version uses scalar computation only for
arrays with less than 8 bytes, and only vector instructions other-
wise. Compared with the intrinsic, our experimental results on this
micro-benchmark show an overall speedup (geometric mean of the
speedup factors for all measured lengths) of 0.95x for the recast
version, and of 1.04x for the tuned version.

6 EVALUATION ON BENCHMARK SUITES
In this section, we evaluate steady-state performance of the tuned
hashCode and equals implementations using the JVA that we de-
scribed in Sections 3 and 5, respectively. To modify the Java source
code of the JCL, we employ the approach described later in Sec-
tion 7. We conduct a performance evaluation on popular realistic
benchmark suites for the JVM. We note that our goal is not to
significantly outperform the (already optimized) vectorized intrin-
sics, but to demonstrate that the easy-to-tune pure-Java alternative,
in addition to being easier to implement, test, debug, and main-
tain, can replace the intrinsic implementation without impairing
steady-state performance.

Our evaluation considers the Renaissance [36], DaCapo [7], and
ScalaBench [42] benchmark suites. For Renaissance and ScalaBench,
we use the latest versions of the suites at the time of writing (Re-
naissance GPL v0.15.0 and ScalaBench v0.1.0). For DaCapo, we use
both v9.12-Bach (released in December 2009) and v23.11-Chopin
(released in November 2023). We note that the two DaCapo versions
are substantially different in their workloads. We exclude bench-
marks whose execution on Java 21 is not supported or with known
bugs [40]. We use the default input size. Benchmarks can execute
multiple iterations, which can either be considered as warm-up
or steady-state. We run warm-up iterations until dynamic compi-
lation and GC ergonomics are stabilized, as follows. For DaCapo
and ScalaBench, we follow the approach described by Lengauer
et al. [29], executing 40 warm-up iterations for each benchmark.
For Renaissance, we use the same number of warm-up iterations
as specified in the documentation [37]. All other iterations after
warm-up are classified as steady-state. Our measurements consider
only steady-state iterations, and we execute 10 such iterations for
each benchmark. Finally, we run every benchmark 10 times in dif-
ferent JVM processes, collecting a total of 100 steady-state iterations
(from 10 different JVM processes). For the measurements, we use
the same experimental setup described in Section 3.2, except we
use the default G1 garbage collector [11].

Table 1 reports the execution time of each benchmark when
run 1) with the original vectorized intrinsic as implemented in
OpenJDK 21, and 2) with our tuned implementation using the JVA.
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Table 1: Performance comparison on popular benchmark suites: original OpenJDK 21 with hashCode and equals intrinsics,
vs. modified OpenJDK 21 using our tuned JVA implementation.

Benchmark Intrinsic Vector API Benchmark Intrinsic Vector API

Renaissance
GPL 0.15.0

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

DaCapo
23.11-Chopin

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

akka-uct 6604.54 140.23 6610.62 160.85 -0.09% avrora 3383.00 15.69 3369.85 17.59 0.39%
als 1415.16 11.77 1416.98 13.85 -0.13% biojava 8109.00 124.73 8642.29 89.29 -6.58%
chi-square 621.24 84.75 610.75 86.91 1.69% eclipse 12693.16 53.74 12683.34 45.49 0.08%
dec-tree 740.63 23.93 747.20 24.21 -0.89% fop 583.33 3.00 585.46 3.41 -0.37%
dotty 767.41 15.16 766.05 16.61 0.18% graphchi 5034.84 70.58 4994.41 35.61 0.80%
finagle-chirper 1793.15 25.29 1779.18 27.60 0.78% h2 2679.13 38.83 2686.87 42.92 -0.29%
finagle-http 2068.98 24.63 2112.00 15.25 -2.08% jme 6920.72 2.75 6924.44 2.80 -0.05%
fj-kmeans 1084.49 4.16 1136.04 9.38 -4.75% jython 4279.78 88.23 4296.74 85.05 -0.40%
future-genetic 1851.89 34.66 1866.27 30.41 -0.78% kafka 5046.25 28.54 5008.61 30.20 0.75%
gauss-mix 683.33 51.74 679.78 53.18 0.52% luindex 4900.54 58.55 4899.83 57.11 0.01%
log-regression 711.14 44.19 735.34 58.01 -3.40% lusearch 3137.30 39.01 3149.17 41.59 -0.38%
mnemonics 2667.95 6.47 2766.90 263.81 -3.71% pmd 1539.85 13.91 1615.78 18.57 -4.93%
movie-lens 6478.20 50.63 6492.78 38.31 -0.23% spring 2382.96 183.22 2463.59 91.42 -3.38%
naive-bayes 336.51 29.15 340.15 32.34 -1.08% sunflow 3690.26 357.97 3691.84 328.14 -0.04%
neo4j-analytics 1526.52 16.99 1539.31 29.80 -0.84% xalan 589.07 5.76 601.11 6.10 -2.04%
page-rank 2843.99 56.93 2866.12 52.79 -0.78% zxing 1231.35 7.89 1246.63 9.20 -1.24%
par-mnemonics 2048.16 25.53 2080.03 70.24 -1.56% Geo. mean 3068.70 3101.97 -1.08%
philosophers 2793.10 99.25 2761.93 170.18 1.12%
reactors 9097.17 543.53 9117.86 497.19 -0.23%
rx-scrabble 113.89 11.09 113.73 12.20 0.14%
scala-stm-bench7 810.70 37.92 811.33 50.56 -0.08%
scrabble 87.12 9.08 86.89 8.49 0.27%
Geo. mean 1246.00 1254.88 -0.71%

ScalaBench
0.1.0

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

DaCapo
9.12-Bach

Time
(ms)

Std.
dev.

Time
(ms)

Std.
dev.

Rel.
diff.

apparat 5122.33 169.34 5129.38 145.43 -0.14% fop 175.91 5.38 177.77 4.01 -1.06%
factorie 10716.55 217.71 10852.47 426.89 -1.27% h2 2275.57 116.82 2282.13 120.95 -0.29%
kiama 222.29 17.26 222.62 18.93 -0.15% jython 1286.18 81.78 1297.37 50.33 -0.87%
scalac 761.20 36.63 762.31 35.45 -0.15% luindex 367.44 4.85 369.65 5.06 -0.60%
scaladoc 1281.05 7.72 1269.87 27.39 0.87% lusearch 109.90 7.95 110.39 7.80 -0.45%
scalap 90.10 4.76 90.33 4.62 -0.26% lusearch-fix 111.75 7.12 109.86 7.90 1.69%
scalariform 323.94 18.69 327.00 19.29 -0.94% pmd 482.10 30.15 480.73 29.96 0.28%
scalaxb 180.26 6.64 180.10 6.71 0.09% sunflow 501.29 34.37 493.01 29.16 1.65%
tmt 3217.71 45.83 3279.01 50.93 -1.91% xalan 119.72 1.63 120.96 1.41 -1.04%
Geo. mean 836.92 840.47 -0.42% Geo. mean 343.87 344.11 -0.07%

For fairness, since OpenJDK 21 does not use any intrinsics for
hashCode on long arrays, we do not use the version described in
Section 4 in this evaluation. The execution times reported in the
table represent the arithmetic mean of 100 steady-state iterations
for each benchmark. We also report the standard deviation, the
relative difference of the execution time of the JVA implementation
w.r.t. the intrinsic (i.e., the difference between the execution time
of the intrinsic and the one of the JVA implementation, divided by
the one of the intrinsic) and the overall per-suite geometric-mean
execution times and relative difference.

As one can see from the table, our tuned implementation using
the JVA does not impair steady-state performance w.r.t. the intrin-
sic in the evaluated benchmarks. Overall, our version results in
very similar steady-state performance to the vectorized intrinsic.
Considering the average (geometric mean) of all benchmarks in a

suite, our version results in a relative difference of -0.71% (Renais-
sance), -0.42% (ScalaBench), -1.08% (DaCapo-Chopin) and -0.07%
(DaCapo-Bach). Considering all benchmarks, the average execution
time (geometric mean) relative difference is 0.67%.

Overall, our implementations provide similar steady-state per-
formance than the vectorized intrinsics, but with the benefit of
being written purely in Java, being much more portable, easier
to understand, maintain, and fine-tune. In addition, our approach
avoids writing platform-specific code to exploit particular vector
extensions a processor may support—the JVA automatically uses
the vector instructions supported by the underlying architecture.

7 MODIFYING CORE CLASSES IN THE JCL
In this section, we detail our approach to modify the Java source
code of the JCL, such that our Java implementations making use of
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the JVA can substitute the use of intrinsics in core classes of the JCL
(particularly in class Arrays). Even though the JCL is implemented
as part of the JVM, our approach does not require one to modify the
native code of the JVM and hence can be exploited by developers
without the need to recompile the JVM. We note that our approach
is fully compliant with the JVM specification. We describe our
approach in the context of OpenJDK 21 and we remark that we
evaluated our approach on state-of-the-art benchmark suites in
Section 6.

Modifying core classes in the JCL (such as Arrays) is challeng-
ing [6, 33, 39, 41] since during the early phases of JVM initialization,
many Java features (including the JVA, as well as e.g. the Java Re-
flection API [34]) cannot be used. Modifying JCL methods (such
as Arrays.hashCode and Arrays.equals) to use such features will
cause JVM crashes. The reason is that modified JCL classes may
alter the order in which classes are initialized, leading to premature
class initializations. Moreover, when modifying methods in the
JCL classes, it is crucial to avoid cyclic dependencies that would
lead to an infinite recursion in class initialization. This behaviour
is particularly subtle because a modified method may trigger the
initialization of some classes, and the initializers of these classes
may use (directly or indirectly) the modified method.

To ensure proper JVM initialization, our approach introduces
initialization guards and leverages class redefinition. In particular,
our modified JCL methods make use of a custom JVMInitialization

class that allows checking whether JVM initialization has completed
via its isInitialized static method, which returns a boolean flag.
Below, we describe how our approach enables the use the JVA in
JCL core classes.

7.1 Modified JCL Methods and Initialization
Guards

Wemodify methods in the JCL by inserting our implementation into
the body of the original method implementation, guarded by a con-
ditional invoking the JVMInitialization.isInitialized method. If
this method returns true, our implementation (using the JVA) is ex-
ecuted. Otherwise, the original JCL implementation is used. Thanks
to our guard (that checks whether JVM initialization has completed)
and because the JVM ensures lazy class initialization upon the first
use of a class [32], the classes used by our implementation (i.e., the
classes of the JVA) will not be initialized during JVM initialization.

7.2 Class JVMInitialization
Since Java does not expose an interface to checkwhether JVM initial-
ization has completed, we implement the static JVMInitialization
.isInitialized method, which returns a boolean flag that is tog-
gled right after JVM initialization. This method could be trivially
implemented by storing the boolean flag in a volatile static field and
by setting this field to true in the beginning of an application’s main
method. However, this incurs a serious performance issue: the cost
of a volatile read upon each invocation of the isInitializedmethod
can be significant and jeopardize the optimizations introduced by
our implementations.

For this reason, we implement the flag as a static isInit- ialized
method that initially returns the boolean constant false, and we
use a Java agent [15] to redefine the isInit- ialized method to

return true upon the execution of the agent’s premain method (i.e.,
when the JVM is ready to execute arbitrary Java code). This strat-
egy allows exploiting the branch-elimination optimization of the
JIT compiler, improving performance even further. From the JIT-
compiler perspective, the static isInitialized method returns a
constant and hence only one of either our implementation or the
original JCL implementation will be executed. The compiler will
therefore perform branch elimination and remove the code of the
implementation that will never be executed, increasing the code
size budget for other optimizations, such as method inlining. In the
(unlikely) case that the JIT compiler already optimized the modified
method during JVM initialization, before our Java agent redefines
the isInitialized method, we rely on OpenJDK’s deoptimization
feature to ensure the correctness of our solution. Moreover, the JIT
compiler in OpenJDK will re-compile and optimize hot code after
our class redefinition, ensuring that our initialization guards incur
no overhead in steady state.

Finally, to avoid cyclic dependencies that would lead to infinite
recursions in class initialization, we make the Java agent (which
is allowed to execute arbitrary Java code) initialize all the classes
used by our implementations before redefining the isInitialized

method.

8 RELATEDWORK
In this section, we discuss related work. We first discuss techniques
to improve performance of high-level and managed languages (Sec-
tion 8.1). Then, we detail benchmarks for vector computations in
high-level languages (Section 8.2).

8.1 Portability without Sacrificing Performance
Substantial research effort has beenmadewith the goal of proposing
portable and high-level programming languages, domain-specific
languages (DSL), and libraries without sacrificing performance [3,
48]. As an example, in the “abstraction without overhead” line of
work, [9, 44, 45] show that by leveraging staged compilation [38],
the cost of abstractions can be removed at compilation time, al-
lowing developers to implement high-performance applications in
high-level languages. Within this line of work, an alternative vector
API for Scala and Java has been proposed by Stojanov et al. [43]
to express vector computations with a high-level DSL, showing
that an implementation leveraging the proposed DSL for expressing
vector operations can outperform pure Java code that relies on auto-
vectorization. In contrast, we evaluate our implementations based
on the JVA against vectorized intrinsics, which are not the result of
automatic program transformation, but fine-tuned implementations
carefully written by expert JVM developers.

Generally, the need for expressing low-level operations within
high-level programming languages has been discussed and moti-
vated by Frampton et al. [12]. This work proposes techniques to
safely integrate low-level components within high-level languages,
as done in the JVA. Similarly, we demonstrate that the JVA allows
optimizing the JCL without the burden of writing intrinsics.
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8.2 Benchmarking Vector Computations on
Managed Runtimes

Basso et al. propose JVBench [5], a benchmark suite for the JVA,
showing that by leveraging the API, developers can write appli-
cations that result in higher performance with respect to auto-
vectorization. The Swan benchmark suite [27] has been proposed
for benchmarking vectorized operations in the context of mobile
applications. In contrast to these benchmark suites, we analyze the
performance of the JVA against fine-tuned vectorized intrinsics. To
the best of our knowledge, our work is the first to demonstrate that
the JVA can be used to easily optimize core JCL classes without the
burden of writing vectorized intrinsics.

9 LIMITATIONS
A limitation of our work is that, while the most popular architec-
tures and JVMs support the JVA, not all of them fully support the
API. Nonetheless, this API exhibits continuous performance im-
provements in subsequent versions and enables higher performance
than relying on the JVM’s limited auto-vectorization capabilities [5].
Another limitation is that our evaluation was conducted on a sin-
gle machine and architecture (x86). We plan to experiment more
extensively on a wide range of architectures.

By delegating the generation of vector instructions to the JVA,
the code (if hot) will be processed by the JIT compiler, which may
apply decisions resulting in suboptimal performance. In contrast,
in OpenJDK 21 the code specified in the intrinsic is emitted with-
out undergoing further optimizations, giving more control to the
developers.

Finally, using the JVA incurs extra JIT-compilation costs, while
machine-code generation for an intrinsicmay be faster. Thismay im-
pair the performance of short-running applications, as steady-state
performance may be reached later in the application’s execution.
As part of our ongoing research, we are investigating whether our
approach negatively affects startup performance or not.

10 CONCLUSIONS
In this paper, we support the claim that replacing platform-dependent
template-generated assembly code implemented via vectorized in-
trinsics with equivalent, portable, pure-Java code using the JVA
does not impair steady-state performance, making the approach
attractive even in production-level JVMs. We show this by replac-
ing the vectorized intrinsics of hashCode and equals for byte arrays
with equivalent Java code. Moreover, in addition to reducing the
effort in understanding, extending, debugging, testing, and main-
taining the code, the resulting code is much easier to fine-tune to
further improve performance. We propose code improvements for
hashCode and equals, where tuning is based on the array length;
such tuning would be difficult to implement in vectorized intrinsics.
Furthermore, we proposed a new vectorized hashCode computation
for long arrays, for which a corresponding intrinsic is missing in
OpenJDK 21.

Our evaluation shows that our tuned implementations provide
similar performance than the vectorized intrinsics on four popular
and realistic benchmark suites. Finally, we present a technique
that can be adopted by developers to modify core classes of the

JCL without disrupting JVM initialization; our technique does not
require any changes to the native codebase of OpenJDK.

The findings in this work highlight the potential of the JVA as a
viable alternative for vectorizing other compute-intensive methods
in the JCL using only platform-independent Java code, avoiding
writing complex platform-dependent native code that is hard to
understand, extend, maintain, debug, and test.

As part of our future work, in addition to tackling the limitations
discussed in Section 9, we plan to expand our use cases, replacing
vectorized intrinsics in other commonly executed methods in the
JCL with pure-Java code using the JVA, evaluating the performance
improvements. We also plan to identify methods that could benefit
from vectorization via the JVA and for which a vectorized intrinsic
is currently missing. Finally, we will evaluate more metrics (e.g.,
energy consumption) and hardware architectures (e.g., ARM).
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Figure 1: ‘Complement’ Recommendations service in Myntra. Left: Primary product Added-to-Cart by user and corresponding
‘complement’ recommendations to increase discovery and item count in cart. Right: Comparative graph depicting the improve-
ment in service scalability due to proposed vectorized reformulation of recommendation components.

ABSTRACT
Maximizing cart value by increasing the number of items in elec-
tronic carts is one of the key strategies adopted by e-commerce
platforms for optimal conversion of positive user intent during an
online shopping session. Recommender systems play a key-role
in suggesting personalized candidate items that can be added to
cart by the user. However, it is important to serve a diverse set of
personalized recommendations that ‘complement’ user’s cart con-
tent to practically increase item count in cart and also contribute
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towards product discovery. Borrowed from Quantum Physics, De-
terminantal Point Processes (DPP) are used widely in recommender
systems to diversify personalized product recommendations for
improved user engagement. However, vertically scaling DPP for
recommendation sets, personalized with vector similarity metric
like cosine similarity, to serve large scale real-time concurrent user
requests is non-trivial. We propose a vectorized reformulation of
cosine similarity and conditional DPP implementation to best uti-
lize the highly improved vector computation capabilities (SIMD)
of modern processors. Experimental evidence on real-world traffic
shows that the proposed method can handle upto 15x more con-
current traffic while improving latency. The proposed method also
uses portable SIMD constructs from Python libraries which can
be easily adopted in most available SIMD supported CPUs with
minimal code changes.

CCS CONCEPTS
• Computer systems organization→ Single instruction, mul-
tiple data; • Applied computing→ Online shopping; • Com-
puting methodologies→ Linear algebra algorithms.
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1 INTRODUCTION
‘Add-To-Cart’ (ATC) is a key event in a user session on e-commerce
platforms. ATC indicates positive intent from user to complete a
purchase from current session. However, this also presents a unique
opportunity for the platform to improve cart value by increasing
the number of items in cart and optimize conversion, generally re-
ferred to as cart completion or cart filling. Cart completion has been
a subject of extensive research for decades, evolving continually to
cater to changing customer behaviour and research community’s
understanding of the same. Early works on cart completion works
on the principle of finding likely items to be added to cart based
on previous co-click events [4] and browsing history from a co-
hort of similar users [48]. Though effective, these approaches do
not differentiate browsing patterns and user motivation based on
occurrence of key-events like ATC or ‘Wish-listing’. Close et al.
[15] conducted a detailed study for understanding user behaviour
patterns related to the usage of electronic carts. Building on the
broader patterns of user motivation of adding items in cart beyond
immediate purchase as outlined by the researchers, we can identify
scope of optimizing conversion by increasing the number of items
in cart. Mcauley et al. [38] explored the concept of ‘complement’
and ‘substitute’ in their work, where they claim complements are
items that can be bought alongside items already in cart and substi-
tutes are used for replacing current cart items. For users looking to
take advantage of price promotion or browsing for entertainment
[15], recommending similar items or ‘substitutes’ to those already
in cart can be detrimental to the eventual cart value. In the first
case, user looking for price promotions may chose to replace a cart
item with a new item of lower or same value, which may not lead to
optimizing conversion. In the second case, users looking for enter-
tainment may find it monotonous to keep browsing similar items
which they have already explored. Apart from this, for users with
immediate purchase intent, substitute recommendations from their
cart can induce doubts about their selection, which may lead to
session abandonment. Similar item recommendations can be useful
to users looking for research or information search, but studies [15]
have shown that purchase probability for such sessions are much
lower than the cases mentioned above.

Thus, to optimize conversion through increasing items in cart,
diversification of personalized recommendations to suggest ‘com-
plements’ based on cart-items appears to be the better strategy as
it complements user selections rather than competing. However
naive diversification of personalized recommendations can lead to
degrading quality of suggestion. Diversification should be closely
aligned with user preferences and user journey on platform along
with cart-items. Determinantal Point Process [6, 21, 30] is a popular

method for diversifying personalized recommendations, personal-
ized with vector similarity metric like cosine similarity. However,
one practical consideration in using automated recommendation
system on e-commerce platform [1, 11, 16, 29, 43, 63] is the scale
and concurrency it has to handle in real-time shopping scenarios.
Online recommendation systems can receive millions of requests
per minute (RPM) on high traffic event days. Moreover, most e-
commerce platform will host millions of items in their catalogue
to serve millions of customers. Thus, it is imperative to build a
system that can handle large scale traffic of few million RPM while
also being flexible enough to be deployable without costly hard-
ware requirements. Cosine similarity and DPP [59], although being
an excellent algorithms to consider diversification of personalized
recommendations, but is not scalable vertically, especially when
deployed on CPU-only cloud servers. Tensorized versions of DPP
has been proposed [58] to harness GPU powers in-order to pro-
vide higher order scalability but as per our knowledge, re-thinking
DPP formulation and Cosine similarity implementation to best uti-
lize the untapped compute capacity of SIMD (Single Instruction
Multiple Data) enabled modern CPUs has not been explored previ-
ously in literature. To this end, we propose a reformulation of the
DPP algorithm and vectorized implementation of Cosine Similarity,
tailored for SIMD acceleration on CPU that is highly scalable yet
portable across various available server CPUs (Sec. 3). Proposed,
reformulated DPP reduces number of computation involving 𝑁

candidate recommendations and 𝑘 items from O(𝑥) + O(𝑁 2) to
O(𝑥) + O(𝑁 × 𝑘)), where 𝑁 >> 𝑘 and 𝑁 2 > 𝑥 > 𝑁 3; 𝑥 being the
number of computations for matrix multiplication.

Our proposed diversifying recommendation system (Fig. 1 (Left))
enabled us to reduce hardware requirement by nearly 12 times in
production environment (Fig. 1 (Right)) while also improving the top
99th-percentile (P99) latency under the maximum throughput by 13
times (realtime traffic observations discussed in Sec. 5). Our key
contributions in this work are

• Evaluation of parallel processing strategies for CPU for real-
time concurrent services on e-commerce platform.
• Vectorized implementation of cosine similarity used for user
personalization of recommendations that can leverage the
superior SIMD compute capability of modern CPUs.
• Reformulation and vectorization of DPP, commonly used for
diversification of recommendations, to best utilize the gain
in efficiency with SIMD.
• A portable implementation of vectorized SIMD acceleration
using Python libraries that can be migrated amongst various
CPUs and architectures with minimal to no code changes.
• Provide long-term scalability solution to recommendation
pipelines through SIMD vector optimization instead of par-
allel processing.

2 RELATEDWORK
Recommendation system has been an active area of research for
decades with ever evolving requirements to filter out information
overload and generate optimal set of recommendations for con-
sumers. Early works in recommendation systems started with find-
ing correlations of amongst items in large scale databases from
browsing sequences of users [4]. The widely studied ‘GroupLens’
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project [27, 28, 46] introduced collaborative information filtering in
recommendation systems inspired from the real world news groups.
Sarwar et al. [48] proposed to use item based collaborative filtering
in-place of the conventional user centric filtering, while Shahabi et
al. [49] introduced large scale recommendation system by augment-
ing collaborative filtering with content-based querying. Amazon
also published their report [34] on personalizing shopping with
item-to-item collaborative filtering using co-browsing data in 2003.
Hijikata et al. [23] proposed to use discovery driven collaborative
filtering that for each user recommends undiscovered items with
higher probability while personalizing the ranking based on user’s
discovery till that point of time.

On the other hand, the importance of diversity and maximizing
representation of the entire collection in the recommended subset
gained traction almost at the same time as well. Ko et al. [26] pro-
posed to select the most informative subset of recommendations
by maximizing entropy of the set. Adomavicius et al. [1] use mul-
ticriteria ranking to provide better and diverse recommendations.
Carbinell et al. [7] proposed re-ranking of document search results
to maximize information retrieved. Diversification of search results
and its impact on information filtering was studied widely in the
early 2010s [3, 9, 14, 17, 18, 22, 45, 47]. The impact of diversifica-
tion on auto recommendations was also studied widely at the same
time [55, 61, 62, 64]. Lathia et al. [33] studied relevance of temporal
diversity in recommendations. Chapelle et al. [10] explored com-
bining diversification objective with intent based metric ERR-IA
to evaluate relevance and diversity together. Genre and category
based diversification was also explored for generation better recom-
mendations [43, 54]. Diversification also played a important part
in improving relevance of video recommendations. Covington et al.
[16] use a deep-learning based recommendation model for gener-
ating diverse recommendations. While, Mark et al. [59] used DPP
for personalized diversification of video search results in Youtube.
Another widely adopted diversification strategy are the submodu-
lar functions [42] which operates on the principle of maximizing
information from a subset. Researcher’s in [41, 51] use submodular
functions to diversify recommendations in e-commerce.

Lot of research has been also done to better understand and inter-
pret user-behaviour and inferred signals in e-commerce shopping.
McNee et al. [39] attempted to establish a user-centric metric with
informal arguments to better evaluate recommendation quality.
Close and Kukar-Kinney [15] attempted to breakdown and analyse
various user motivation behind the use of electronic carts. In their
work they identify motivations such as entertainment, research also
to play a major role apart from usual factors like price promotions
and immediate purchase. The data evidence backed hypothesis
from this work helped to identify opportunities to increase cart
items and in effect the gross revenue. Hohnhold et al. [24] proposed
to focus on long term user retention rather than short-term gains.
Mcauley et al. [38] explored item relations based on substitutes and
complements, here substitutes refer to products which can replace
the item already in cart and complements are products which can
be bought along with the item already planned for purchase. Zheng
et al. [63] also explore substitute and complement relations between
items to enrich recommendations list.

Determinantal Point Processes originated in Quantum Physics
[6, 25, 35] and are a natural choice for modelling informative sub-
set selection problem like document summarization, diversifying
search and recommendations. Kulesza et al. [31] parameterized
conditional DPP and attempted to learn DPPs from the resulting
convex and tractable learning formulation. Kulesza et al. also pro-
posed to improve the efficiency of DPP computation with the fixed
size k-DPP formulation [30] and also advocated for using DPPs over
MRF in ML tasks mentioned above for better tractability of the for-
mer. Considerable effort has been invested collectively to improve
the efficiency of the DPP computation [5, 19, 20, 30, 36, 37]. Chen
et al. [11] used DPP to improve recommendations with diversity.
Mark et al. [59] also used DPP to generate diverse video recom-
mendations for Youtube. However, reformulating DPP to reduce
complexity of the algorithm without compromising on precision or
exact solution has not been explored in-depth in literature. In our
work, we introduce a reformulated personalization and DPP based
diversification process, highly scalable for online recommendations
by using vectorized computations efficiently. Proposed recommen-
dation pipeline is able to serve 15𝑥 more traffic than the existing
solutions without comprising on the quality of the results.

3 METHOD
For a given query product 𝑝𝑞 and user 𝑢𝑞 , Yan et al. [60] and Agar-
wal et al. [2] described the process of calculating relevant cross-
category or ‘complement’ recommendations. A product-embedding
vector 𝑒 represents a product 𝑝 present in the product catalogue
C of millions of products. Similarly, an user-embedding vector 𝑣
represents a user 𝑢 of the e-commerce platform in vector space.
Every embedding vector is part of a 𝑘-dimensional vector spaceV
stored in the form of a one-dimensional array in computer memory
(Eq. 1).

𝑒, 𝑣 ∈ V ⊂ R𝑘 (1)

For a query product 𝑝𝑞 with product embedding 𝑒𝑞 , a set of 𝑁 prod-
ucts containing the relevant cross-category recommended products
is generated using the product-embedding vectors 𝑒 inV . This set
which acts as a candidate set of recommendations, is called the re-
call set𝐶 for the query product 𝑝𝑞 . The sequence of products in the
recall set is not personalized according to the user preference as it
does not consider user-embedding vectors. It is essential to suggest
products in a personalized sequence tailored to user preference to
increase the relevance of the recommendations. Each product in
the recall set, represented by 𝑝𝑖 ∀𝑖 ∈ [1..𝑁 ], is assigned a user rele-
vance score 𝑠𝑖 , using user-embedding vector 𝑣𝑞 of user 𝑢𝑞 , and the
product embedding 𝑒𝑖 to personalize the product recommendations.
The personalized recall set is then re-ranked by Determinantal Point
Process (DPP) [35], which uses the relevance scores and product-
embeddings for diversifying the recommendations. The re-ranked
set of products are the recommended ‘complements’ of the product
𝑝𝑞 , personalized to user 𝑢𝑞 .

Fig. 2 shows the workflow for the cross-category-related prod-
uct recommendations. The recommendation workflow is broadly
divided into three steps:- (1) Recall set generation, (2) Personalised
scoring, and (3) Diversified re-ranking.
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Figure 2: ‘Complement’ recommendation service workflow

3.1 Recall Set Generation
This step acts as a filter on a catalogue of millions of products. It
filters out the less relevant products to generate the the recall set
𝐶 , a set of the most relevant 𝑁 products to the query product 𝑝𝑞 .
This step calculates the approximate nearest neighbours (ANN)
of the query product 𝑝𝑞 in the vector spaceV using the product-
embedding vectors 𝑒𝑞 of the query product and remaining products
𝑒𝑙∀ 𝑙 ∈ [1..NC] in the catalogue C .

𝑠𝑖𝑚(𝑔, ℎ) =
𝑁∑︁
𝑖=1

𝑔𝑖 × ℎ𝑖 (2)

The cosine similarity distance Eq. 2 between the embedding vectors
is the metric for the relevance between two products. Distance
between the embedding vector 𝑒𝑞 and embedding vectors 𝑒𝑖∀𝑖 ∈
[1...𝑁 ] of the products 𝑝𝑖 in the recall set𝐶 gives the style relevance
score 𝑟𝑖 for the recommendation as shown in Eq. 3.

∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 }, 𝑟𝑖 =
𝑘∑︁
𝑗=1

𝑒𝑞𝑗 × 𝑒𝑖 𝑗 (3)

User embedding vector 𝑣𝑞 depends on the real time in-session
data and user browsing behaviour. Thus, it is expected to evolve
with each action in a browsing session. Product attributes remain
mostly unchanged over their lifetime, barring few exceptions. This
makes user embeddings more volatile than product embeddings.
This property allows us to calculate the recall set of products, offline,
once a day without risking the consistency of the pipeline. Recall set
is stored in appropriate data-stores like Aerospike [50] and Redis [8].
During online recommendations, recall set 𝐶 for the query product
𝑝𝑞 is fetched from the corresponding data-store and passed into
next step of recommendation generation pipeline.

3.2 Personalised Scoring
The Recall set 𝐶 generated till now is non-personalized. For per-
sonalised recommendations, the candidate recommendations in 𝐶
should be re-scored, taking user affinity into account. The user-
personalized score of a product in the recall set is the distance of
the user embedding vector and product embedding vector in the
𝑘-dimensional space. A combination of the user-personalised score
with the style relevance score of each product acts as input for
re-ranking the recommendations.

Consider, 𝑣 is the user embedding vector, 𝑉 is the row-major
matrix of size𝑁 × 𝑘 with each row representing product embedding
𝑒𝑖 for each product in recall set 𝐶 i.e. candidate recommendation

𝑝𝑖 . 𝑆 is the vector containing user personalised score for every
candidate recommendation. User-personalized score 𝑠𝑖 of product
𝑝𝑖 in the recall set 𝐶 can be computed by Eq. 4.

∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 }, 𝑠𝑖 =
𝑘∑︁
𝑗=1

𝑣 𝑗 ×𝑉𝑖 𝑗 (4)

User and Product embedding are normalized, i.e ∥𝑣 ∥ = 1 and
∥𝑒𝑖 ∥ = 1,∀ 𝑖 ∈ [1..𝑁 ]. The baseline algorithmic implementation is
described in Alg.1

Algorithm 1 Baseline implementation of cosine similarity

Require: (𝑢,𝑉 )
Ensure: 𝑢𝑠𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑆

𝑆 ← {0.0, 0.0, 0.0....0.0}𝑁
𝑖 ← 1
while 𝑖 ≤ 𝑁 do

𝑠𝑐𝑜𝑟𝑒 ← 0.0
𝑗 ← 1
while 𝑗 ≤ 𝑘 do

𝑋 ← 𝑢 [ 𝑗] ×𝑉 [𝑖] [ 𝑗]
𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 + 𝑋
𝑗 ← 𝑗 + 1

end while
𝑆 [𝑖] ← 𝑠𝑐𝑜𝑟𝑒

𝑖 ← 𝑖 + 1
end while

Since each iteration of outer loop in the baseline implementa-
tion as mentioned in Alg. 1 calculates score 𝑠𝑖 for each product 𝑝𝑖 ,
every iteration of outer loop is independent of each other and can
be computed in parallel. This limits the optimal efficiency of the
baseline implementation as it works on one vector element at a
time, increasing the latency of the cosine similarity calculation. For
optimising the latency of the user-personalised score calculation,
parallelism should be incorporated with the goal of the minimum
overhead in data transfer, data copy, context switching and cache
miss. Generally, parallelization is incorporated in the following
fashion:-

3.2.1 Multithreading. This method of parallelization is helpful in
case CPU cores are under-utilised and idle most of the time to share
the compute-heavy work and reduce the latency. In a user-facing
online system, thousands of concurrent users request recommenda-
tions at a given time, so CPU cores are occupied most of the time
to compute recommendations for the users, and there are no free
cores to incorporate more threads. Spawning more threads will
increase the load average of the system due to increase in number
of waiting threads. This will lead to frequent context switching due
to OS scheduler which adds the extra overhead latency of context
switching, thread creation and cache miss. This leads to the scenario
that the amount of time spent on context switching can exceed the
amount of time spent on computation. This behaviour suggests that
multi-threading will not reduce the latency and cannot scale well
for online system involving compute intensive machine learning
workloads. Efficient use of CPU cores is the key to increasing the
throughput, latency per request and performance.
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3.2.2 Register level parallelism/SIMD. Modern processors usually
have a wider register length which can consume more data in a
single instruction cycle. The proposed method is efficient when
the same operation is performed on multiple continuous and in-
dependent data, and the result is stored in multiple independent
yet continuous memory locations. Thus, enabling parallel computa-
tions with added advantage of more cache hits results in efficiently
generating user-personalised scores.

3.2.3 Proposed Cosine Similarity. Since cosine similarity calcula-
tion is a reduction operation, in which dependent data is continuous
in computer memory, the implementation mentioned in Alg.1 can-
not leverage register level parallelism. We propose a batch cosine
similarity operation to calculate similarity between user 𝑢 with
𝑁 products in recall set 𝐶 that is hardware-agnostic, optimized
and can be easily implemented in any high level programming lan-
guage like Python [53]. It is implemented according to instruction
set architecture, processors vector length, cache length and scope,
temporal and spatial locality of data. It is powered by the SIMD
(or vector parallelism) which performs 216× better than baseline
implementation.

The column-major matrix 𝑉 (𝑉 = 𝑉𝑇 , 𝑉 is the original product
embedding matrix 𝑉 ) represents the product embeddings, where
𝑖𝑡ℎ column contains the embedding 𝑒𝑖 for the product 𝑝𝑖 in the
candidate set 𝐶 and 𝑗𝑡ℎ row represents the 𝑗𝑡ℎ feature element
in the embedding of every product in 𝐶 , i.e. 𝑉𝑖 𝑗 represents 𝑗𝑡ℎ

feature element of the 𝑖𝑡ℎ product in𝐶 . Let us consider Intel® Xeon®

Platinum 8171MCPU@2.60GHz processor as the processing unit. It
has a maximum register length of 512 bits, implying it can consume
16 consecutive 32-bit floating point numbers in a single instruction
cycle, essentially processing 16 elements in parallel. In addition to
wide register length, it also has the functionality of Fused Multiply
Add (FMA) in the instruction set, which allows multiplication and
addition in a single clock cycle.

𝑓𝑚𝑎(𝑎, 𝑏, 𝑐) = 𝑎 + 𝑏 × 𝑐

The proposed optimised cosine similarity calculations can be repre-
sented by Eq. 5,

𝑆 =

𝑘∑︁
𝑗=0
( ∀{𝑖 ∈ N, 𝑖 ≤ 𝑁 } 𝑢 𝑗 ×𝑉𝑗𝑖 ) (5)

Algorithm 2 Optimised implementation of cosine similarity

Require: (𝑢,𝑉 )
Ensure: 𝑢𝑠𝑒𝑟 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑆

𝑆 ← {0.0, 0.0, 0.0....0.0}𝑁
𝑖 ← 1
while 𝑖 ≤ 𝑘 do

𝑗 ← 1
while 𝑗 ≤ 𝑁 do ⊲

𝑆 [ 𝑗 : 𝑗 + 16] ← 𝑓𝑚𝑎(𝑆 [ 𝑗 : 𝑗 + 16], 𝑢 [𝑖], 𝑉 [𝑖] [ 𝑗 : 𝑗 + 16])
𝑗 ← 𝑗 + 16

end while
𝑖 ← 𝑖 + 1

end while

The proposed algorithm Alg. 2 ensures the maximum utilisation
of accumulator and CPU registers with the least data transfer, data
copy and cache miss overhead because of FMA instruction, as il-
lustrated in Fig. 3a. It processes 16 elements in a single clock cycle,
which is efficient and has lower latency than other implementations.
It also ensures maximum spatial and temporal locality for cache
hits, reducing the latency. Additionally, the proposed algorithm re-
duces number of total computations bringing down the processing
footprint of each request, enough to localize each request to a single
core of processor. Thus, providing significant scaling opportunity
by enabling multiple instance of computation process to run in a
single node. The number of instances is equal to number of cores
available in the node which is empirically calculated.

3.3 Diversified Re-Ranking
After generating the user-personalized score 𝑠𝑖 from the scoring
layer, the score is merged with the product relevance score 𝑟𝑖 to
obtain the recommendation quality for each product. Let 𝑞𝑖 be the
recommendation quality score for the product 𝑝𝑖 in the recall set𝐶 .

𝑞𝑖 = 𝛽𝑠𝑖 + (1 − 𝛽)𝑟𝑖 (6)

where 𝛽 is personalization hyperparameter which controls the
personalization in recommendations, whose value is derived empir-
ically. The candidate recommendations are then re-ranked ensuring
diversity and relevance in the recommendations, and the top 𝑀

products are shown to the user. The ranking of each product should
maximize the recommendation quality score 𝑞𝑖 and minimize the
repetition of similar products to maximize user engagement and
product discovery. In other words, the cumulative quality score and
the distance between the top𝑀 recommended products should be
maximized jointly. Cosine similarity between two product embed-
ding can be used to calculate the distance between two products.

Let𝑊 be a subset of products sampled from set of candidate
recommendations 𝐶 such that |𝑊 | = 𝑀 ; For each 𝑊 ⊆ 𝐶 , let
P(𝑊 ) be the probability that the user will browse and add products
to cart from the recommended product set𝑊 . P(𝑊 ) should be
maximized to get the most optimal set of top𝑀 recommendations.
This behaviour can be modelled as a Determinantal Point Process
(DPP) as illustrated by Mark et al. [59] and Warlop et al. [58].

The process of diversification in the recommendations comprise
of the following steps:-

(1) Learning the positive semi-definite kernel matrix 𝐿 that can
represent the point process.

(2) Sampling the top 𝑀 products from the candidate from the
DPP kernel matrix.

3.3.1 Learning the DPP kernel. Diversification in the recommended
products considers the quality scores 𝑞 and product-embedding
vectors in recall set 𝐶 .

Let 𝑑𝑖 𝑗 is the cosine similarity distance between the embedding
vector of the 𝑖𝑡ℎ and 𝑗𝑡ℎ product in the candidate set. The kernel
matrix can be parameterized as follows:-

𝐿𝑖 𝑗 = exp(𝛼2𝑞𝑖𝑞 𝑗 )𝑑𝑖 𝑗

𝛼 =
𝜃

2 × (1 − 𝜃 )
(7)
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(a) Optimised cosine similarity workflow

(b) Baseline DPP Implementation

(c) Proposed DPP Implementation

Figure 3: Optimization of cosine similarity and reformulation of DPP Kernel matrix generation

For diagonal elements since 𝑖 = 𝑗 , cosine distance between the same
products will be 1,i.e. 𝑑𝑖 𝑗 = 1. Eq. (7) can be simplified to

𝐿𝑖𝑖 = exp(𝛼2𝑞2𝑖 )
𝐿𝑖 𝑗 = exp(𝛼2𝑞𝑖𝑞 𝑗 )𝑑𝑖 𝑗 𝑓 𝑜𝑟 𝑖 ≠ 𝑗

𝛼 =
𝜃

2 × (1 − 𝜃 )

(8)

𝜃 ∈ [0, 1] is the tunable hyperparameter that controls the recom-
mendations’ relevance and diversity. In our experiments, we use
𝜃 = 0.7, empirically derived, for best results in recommendations in
terms of relevance and diversity. A high value of 𝜃 ensures a higher
priority to the quality score of recommendations as the kernel
matrix will be parameterized heavily on the quality of recommen-
dations. Similarly, a small value of 𝜃 will prioritize the diversity of
recommended products as the kernel matrix will be parameterized
by cosine similarity distance between the embedding vectors.

Constructing the kernel matrix involves getting the cosine sim-
ilarity distance 𝑑𝑖 𝑗 for every (𝑖, 𝑗) pair in candidate recommenda-
tions. Since the embedding vectors are normalized in the candidate
generation phase, 𝑑𝑖 𝑗 is the dot product of vector pair𝑉𝑖 and𝑉𝑗 . Dot
product for every vector pair can be calculated by matrix multiplica-
tion of𝑉 by its transpose𝑉 ⊺ . Let𝐷 is an𝑁×𝑁 matrix in which each
element𝐷𝑖 𝑗 contains the cosine similarity distance between 𝑖𝑡ℎ and
𝑗𝑡ℎ product in recall set 𝐶 . In other words, 𝐷𝑖 𝑗 = 𝑑𝑖𝑠 (𝑝𝑖 , 𝑝 𝑗 ) = 𝑑𝑖 𝑗 .

𝐷 = 𝑉 ⊺ ×𝑉 (9)

OpenBLAS [57] and Intel® MKL [56], which use the BLAS interface
for OS’s kernel-level optimized routines for linear algebra oper-
ations, can be utilized for computation of 𝐷 . Each component of
quality scores for product 𝑝𝑖 , exp(𝛼 × 𝑞𝑖 ), is multiplied by the cor-
responding element of the similarity matrix 𝐷 indexed by 𝑖 to get
the parameterized kernel matrix [12, 59]. The implementation is

explained in Alg. 3 and illustrated in Fig. 3b. Let 𝑥 be number of com-
putations involved in matrix multiplication to generate similarity
matrix 𝐷 . Also, number of computations required to parameterise
similarity matrix 𝐷 to generate kernel matrix 𝐿 is proportional to
𝑁 2 as shown in Alg. 3. Therefore, approx number of computations
of generating kernel matrix from baseline implementation Alg.3
can be estimated to

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = O(𝑥) + O(𝑁 2) (10)

Algorithm 3 Baseline implementation of kernel matrix generation
Require: 𝜃 ⊲ DPP hyperparamter for controlling relevance
Require: 𝑞,𝑉 ⊲ Quality score and Product embeddings
Require: 𝑁 ⊲ Number of candidate recommendations
Ensure: 𝐿 ⊲ Parametrised Kernel Matrix
𝛼 ← 𝜃 ÷ (2 × (1 − 𝜃 ))
𝐿 ← 𝑉 ⊺ ×𝑉 ⊲ Using BLAS matrix multiplication subroutine
𝑖 ← 1
while 𝑖 ≤ 𝑁 do

while 𝑗 ≤ 𝑁 do
𝐿[𝑖] [ 𝑗] ← exp(𝛼𝑞𝑖 ) × exp(𝛼𝑞 𝑗 ) × 𝐿[𝑖] [ 𝑗]
𝑗 ← 𝑗 + 1

end while
𝑖 ← 𝑖 + 1

end while

3.3.2 Proposed DPP. We propose an efficient way to compute ker-
nel matrix which involves less number of computation to generate
kernel matrix than Alg. 3. Let (∗) represents element wise multipli-
cation of a vector and matrix. In case of element wise multiplication
of row vector and matrix, each element of vector is multiplied to
every element of the corresponding columns. Similarly in case of ele-
ment wise multiplication of column vector andmatrix, each element
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of vector is multiplied to every element of the corresponding rows.
Let 𝑆 be the row vector with component of scores, 𝑆𝑖 = exp(𝛼 ×𝑞𝑖 ).
The algorithm Alg. 3 can be represented using (∗) as follows:-

𝐿 = 𝑆⊺ ∗ (𝑉 ⊺ ×𝑉 ) ∗ 𝑆 (11)

Eq. 11 can be further simplified as,

𝐿 = 𝑆⊺ ∗ (𝑉 ⊺ ×𝑉 ) ∗ 𝑆
⇔ 𝐿 = 𝑆⊺ ∗𝑉 ⊺ ×𝑉 ∗ 𝑆
⇔ 𝐿 = (𝑆⊺ ∗𝑉 ⊺) × (𝑉 ∗ 𝑆)
⇔ 𝐿 = (𝑉 ∗ 𝑆)⊺ × (𝑉 ∗ 𝑆)

(12)

The term 𝑉 ∗ 𝑆 represents a matrix with each column is the
embedding vector 𝑒𝑖 of each product 𝑝𝑖 is elongated by the factor of
the component of quality score exp(𝛼×𝑞𝑖 ). Using the simplification
mentioned in Eq. 12, the implementation of kernel matrix creation
can be further optimised by prior computation of 𝑉 ∗ 𝑆 and the
result of the matrix multiplication of the transpose of 𝑉 ∗ 𝑆 with
itself will give the parameterised kernel matrix 𝐿 as illustrated in
Fig. 3c.

Algorithm 4 Proposed Optimised implementation of kernel matrix
generation
Require: 𝜃 ⊲ DPP hyperparamter for controlling relevance
Require: 𝑞,𝑉 ⊲ Quality score and Product embeddings
Require: 𝑁 ⊲ Number of candidate recommendations
Ensure: 𝐿 ⊲ Parametrised Kernel Matrix
𝛼 ← 𝜃 ÷ (2 × (1 − 𝜃 ))
𝑖 ← 1
while 𝑖 ≤ 𝑘 do

while 𝑗 ≤ 𝑁 do
𝑉 [𝑖] [ 𝑗] ← exp(𝛼𝑞𝑖 ) × exp(𝛼𝑞 𝑗 ) ×𝑉 [𝑖] [ 𝑗]
𝑗 ← 𝑗 + 1

end while
𝑖 ← 𝑖 + 1

end while
𝐿 ← 𝑉 ⊺ ×𝑉 ⊲ Using BLAS matrix multiplication subroutine

Since, the number of computations required to parameterise sim-
ilarity matrix𝐷 in Alg. 4 to generate kernel matrix 𝐿 is proportional
to 𝑁 × 𝑘 . Therefore, number of computations of generating kernel
matrix from proposed implementation Alg. 4 can be estimated to

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 = O(𝑥) + O(𝑁𝑘) (13)

For production use cases, since 𝑘 can be treated as constant as it
is independent on number of products in the recall set 𝐶 and for
various practical cases 𝑘 << 𝑁 , the algorithm Alg. 4 works better
than Alg. 3 as it iterates over less number of elements to generate
the parameterised kernel matrix.

3.3.3 Sampling the top relevant recommendations. Sampling the
top𝑀 relevant products involves fetching the optimal set of prod-
ucts satisfying Eq. 7. Since, finding the optimal subset of products
𝑊𝑀 is NP-Hard, a greedy algorithm [12] for submodular maximisa-
tion [42] is used.

4 IMPLEMENTATION DETAILS
We have implemented the proposed workflow of the cross-category
recommendations system using Python3.8 with Numba [32] and
NumPy [52].

• NumPy is a Python library used to store numerical data in
the form of arrays. Internally, NumPy uses low-level func-
tions and kernel libraries for fast mathematical operations.
Also, it stores the arrays in a continuous memory buffer like
any other low-level programming language like C or For-
tran, making it easier to utilize SIMD due to the increase in
memory colocation. User and Product embedding vectors
are stored in the form of NumPy arrays.
• Numba is a JIT(just-in-time) python compiler that compiles
high-level python functions to low-level machine code using
the LLVM compiler library. SIMD capabilities can be utilized
in by translating into low-level machine code according to
embedding vectors memory layout, CPU specification and
available registers on the cloud machines without manually
specifying the compilation flags.

We avoided assembly-level SIMD to make the implementation
portable across systems within x86 architecture. This also makes
the implementation easy to develop, debug and maintain as pro-
grammer does not have to understand the underlying hardware.

5 EXPERIMENTS AND RESULTS
In this section we discuss the benchmarking of the proposed refor-
mulated components and its impact on the whole recommendation
pipeline against the non-optimized baseline method. We bench-
marked the baseline workflow and the proposed workflow and
established the latency and throughput gains on a private recom-
mendation dataset. We also benchmarked the latency of various
compute intensive components and the throughput and latency
gain on baseline and proposed workflows.

5.1 Experimental setup
Recommendation dataset consists of 5000 query products and user
pairs. These query products are randomly selected from a prod-
uct catalogue of 1.5 million products. Each embedding are in 81-
dimensional vector spaceV (𝑘 = 81) and each product have a recall
set of 500 products(𝑁 = 500) and 60 products are sampled as the
top relevant products to recommend to user. The experiments are
performed on Microsoft Azure cloud based virtual machines which
uses Microsoft Azure Cloud Hypervisor based on Microsoft Hyper-
V. The underlying hardware on the virtual machine has Intel® Xeon®

Platinum 8171M CPU with frequency 2.60GHz with 16 cores and
64GB memory.

5.2 Experiments
We evaluate the impact of our proposed method on scalability of
user-facing online services through a series of experiments on
the existing and proposed pipelines. We first evaluate the baseline
process pipeline (P-Base), which is a implementation of the person-
alization and diversification algorithm as described in [59]. P-Base
is agnostic of the concurrency in online services and does not con-
tain any explicit thread or multiprocessing control. We introduce
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Table 1: Latency(in milliseconds) benchmarking of the baseline implementation(P-Base), single threaded baseline
implementation(P-Base-OnlineServ) and proposed implementation(P-Proposed) of recommendation service. KO indicates
request timeout.

Traffic

P-Base P-Base-OnlineServ P-Proposed
Latency Components Latency Components Latency Components
(in ms) (in ms) (in ms) (in ms) (in ms) (in ms)

Mean P95 P99 Cos DPP Mean P95 P99 Cos DPP Mean P95 P99 Cos DPPSim Sim Sim

0.9 k 20.1 43.7 54 3.70 2.78 14.6 24.7 25.2 2.03 1.32 11.1 16.5 19.7 0.052 0.677
3.0 k 98.1 348 555 11.5 50.7 15.1 27.0 29.9 2.14 1.40 11.2 17.2 19.9 0.053 0.678
15.0 k KO KO KO KO KO 16.7 32.7 41.5 2.74 1.63 12.0 19.2 25.3 0.053 0.776
42.0 k KO KO KO KO KO 196 742 1050 4.18 2.28 18.4 41.5 61.3 0.059 0.909
45.0 k KO KO KO KO KO KO KO KO KO KO 20.5 43.5 63.5 0.061 0.936

Table 2: Ablation study (in milliseconds) of individual proposed components of the recommendation pipeline.

Throughput
Latency (in ms)

Baseline Baseline + Vec. Similarity Baseline + Vec. DPP Baseline + Vec. Sim. & DPP
[P-Base-OnlineServ] [P-VecSim] [P-VecDPP] [P-Proposed]
Mean P95 P99 Mean P95 P99 Mean P95 P99 Mean P95 P99

3.0 k 15.1 27.0 29.9 11.9 17.7 19.7 14.6 25.3 28.2 11.2 17.2 19.9
12.0 k 16.5 31.7 40.2 12.6 20.4 25.5 15.1 29.1 36.6 11.7 17.8 22.2
18.0 k 17.3 34.7 47.4 13.6 22.7 30.5 15.9 31.7 41.5 12.0 19.2 26.5
24.0 k 19.5 41.5 62.0 14.6 28.7 31.5 17.4 35.9 49.1 14.1 27.2 29.0
30.0 k 22.6 51.3 75.2 15.1 34.5 34.9 22.1 45.7 64.3 14.5 32.5 33.1
36.0 k 50.9 150.0 217.0 19.4 44.7 49.3 39.1 62.5 78.2 18.2 37.6 41.9

Table 3: Benchmarking the impact of using multithreading in the proposed implementation of the recommendation service.

Throughput
Latency (in ms)

1 Threads 4 Threads 8 Threads 16 Threads
Mean P95 P99 Mean P95 P99 Mean P95 P99 Mean P95 P99

0.9 k 11.1 16.5 19.7 15.0 24.0 26.7 16.6 25.3 33.4 20.1 43.7 54
1.5 k 11.2 16.9 19.8 16.2 25.8 29.7 17.9 34.4 59.3 26.9 75.2 120
3.0 k 11.2 17.2 19.9 18.2 30.6 45.7 27.9 79.1 131 98.1 348 508

optimal multiprocessing conditions, suited to online services han-
dling concurrent requests, to P-Base and establish new pipeline
P-Base-OnlineServ by controlling number of intra and inter process
threads spawned for each request. Finally, we experiment with our
proposed pipeline P-Proposed which contains the thread control
mentioned before and also the vectorized implementation of per-
sonalization (Alg. 2) and diversification (Alg. 4). To analyze the
scalability of the pipelines under consideration we subject each
to varying load of concurrent requests ranging from 900 to 45000
Requests Per Minute (0.9K-45K RPM). We monitor the change of
latency under the increasing throughput of requests for each of the
pipeline and ascertain the breaking-point as the load under which
the pipelines go out-of-service due to congestion and non-serviced
timeout of incoming requests. The metrics used for comparative
analysis of the experiments are average and peak latency of end-to-
end service of a request. Average latency is nothing but the mean
of all observed latency in a observation set and peak latency refers

to the 99th percentile of all observations, also written as P-99. The
permissible limit of P-99 latency is 100ms. The observations are
recorded in Table. 1, where latency numbers in red represents un-
acceptable because P-99 latency exceeds permissible limit and ‘KO’
represents the experiment could not complete at higher level of
concurrency and requests being terminated by system.

5.3 Comparative analysis
Table. 1 shows the observed latency numbers of the P-Base, P-Base-
OnlineServ and P-Proposed under various loads on the system sim-
ulated with the real-world traffic simulator. As mentioned above,
P-Base does not contain any explicit thread control built into it
and runs with out-of-box settings of high level production APIs in
Python. At 0.9K RPM traffic the pipeline runs without any issue,
serving requests in 20.1ms on average and the peak latency lies
around 54ms. However, with increase in the load, the pipeline starts
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(a) Comparison of P-99 latencies (b) Cosine Similarity (c) DPP

Figure 4: a) Comparison of mean and peak P-99 latency of single threaded baseline implementation (P-Base-OnlineServ) and
proposed implementation (P-Proposed). Complete benchmarking including P-Base in inset. Benchmarking of b) Optimization
of cosine similarity and c) reformulation of DPP Kernel matrix generation

to choke up and finally gives away under 3.0K RPM load with aver-
age latency of 98.1ms and the peak latency climbing upto 555ms.
Thus, it can be concluded that P-Base is not vertically scalable. From
our analysis we ascertained the over usage of multi-threaded par-
allelization to be the source of bottleneck in the pipeline. Python
APIs, in general, are designed with goal of achieving optimal per-
formance of single request on dedicated infra. Thus, lift-and-shift
implementation of such APIs in user facing online services that
are expected to handle large concurrency is not suitable. Hence,
we decided to re-establish the baseline after optimizing the multi-
threaded behaviour to make the implementation more suitable to
online services for fair comparison. Next we benchmark the thread
controlled implementation (P-Base-OnlineServ) of Alg. 1 and Alg. 3.
The pipeline becomes much more resilient under scale as it can
easily serve requests in 15.1ms on average under a load of 3.0K RPM.
It is easily able to handle even 15.0K RPM with 16.7ms average and
41.5ms Peak latency. However, breaking-point for P-Base-OnlineServ
occurs around 42.0K RPM traffic. Next we benchmark our proposed
pipeline P-Proposed with vectorized implementation of Alg. 2 and
Alg. 4 and optimal thread control, derived empirically. P-Proposed
performs much better under the basic load of 0.9K throughput with
average serving latency of 11.1ms and peak latency at P99 of 19.7ms.
We also observe that P-Proposed scales efficiently under increasing
load of 3K and 15K RPM load with less than 10% increase in average
serving latency. Under 15.0K RPM, P-Proposed has peak latency of
only 25.3ms which is significantly improved over P-Base-OnlineServ.
We validated the proposed pipeline P-Proposed to be operational un-
der traffic load of 45.0K RPM. Under this extreme load, the pipeline
is still able to serve requests under 20.5ms on average and with peak
latency (P99) of 63.5ms. Fig. 4a shows the latency vs. throughput
plot of P-Base, P-Base-OnlineServ and P-Proposed which visually de-
picts the improvement in vertical scalability between the pipelines.
Considering horizontal scaling to serve production traffic beyond
45k RPM, we can conclude that P-Proposed requires 50-times less
hardware instances than P-Base and 3-times less hardware instances
than P-Base-OnlineServ to support a certain amount of traffic. Next,
we benchmark each of the individual components impacted by our
proposed optimization in P-Proposed. Table. 1 also shows the ob-
served average latency for cosine similarity and DPP calculations in

P-Base, P-Base-OnlineServ and P-Proposed under increasing traffic.
Both cosine similarity and DPP module latency grows aggressively
in P-Base and reaches 11.5ms and 50.7ms on average respectively.
This validates the earlier observations that 3.0K RPM is the breaking-
point traffic for P-Base. At 0.9K RPM traffic, in P-Base-OnlineServ,
latency of cosine similarity computation is 2.03ms while that of
DPP is 1.32ms on average which is acceptable but on the higher side
for a real-time recommendation service. However, with increase
in the traffic, latency of both components increase rapidly. This
causes ‘thrashing’ in the system i.e. more time is wasted in context
switching than computing. This causes congestion and non-served
request queue build-up in the system, leading to rapid increase in
latency. At 42.0K RPM traffic, average latency of cosine similarity
goes upto 4.18ms and DPP latency reaches upto 2.28ms. Thus, it can
be concluded that the baseline implementation of cosine similarity
and DPP are not entirely vertically scalable. However, in contrast,
the cosine similarity and DPP component serving latency in the pro-
posed vectorized implementation P-Proposed is significantly lower
compared to the baseline implementation P-Base-OnlineServ.

In case of P-Proposed, vectorized cosine similarity incurs a aver-
age serving latency of 52𝜇𝑠 under nominal load of 0.9K RPM, which
only increases upto 61𝜇𝑠 under 45.0K RPM traffic. This indicates
the proposed vectorized implementation of Alg. 2 is highly scalable
and can perform with almost constant latency under aggressively
increasing requests traffic. Fig. 4b shows the comparative plots of
mean latency of cosine similarity pipeline. Similarly, the reformu-
lated vectorized DPP operates with average execution latency of
677𝜇𝑠 under 0.9K RPM traffic and is able to constrain the average
latency to just under 1ms (936𝜇𝑠) when subjected to a traffic of
45.0K RPM. Fig. 4c shows the comparative plots of mean latency
of DPP pipeline. Although the plots of DPP component in P-Base-
OnlineServ and P-Proposed seem to be close to each other but that
is due to the unconstrained growth of the DPP latency in P-Base.

Thus, the comparative analysis of critical components of our
proposed method comprehensively support our claims of signifi-
cantly improving the scalability of the diversified recommendation
pipeline. We take a further closer look at the impact of these critical
components later in Sec. 6 by evaluating their influence in isolation.
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6 ABLATION STUDY
In this section, we analyse the results of our ablation study of
the individual components of the proposed method to assess their
individual and collective influence on improving the scalability
of the pipeline. We also evaluate the impact of using traditional
optimization methods like threaded parallelization on our proposed
method.

6.1 Impact of individual components
We analyse the influence of individual proposed components in
improving the scalability of the recommendation pipeline through
a set of ablation experiments. Table. 2 shows the result of the ab-
lation experiments. The behaviour of P-Base-OnlineServ is already
discussed above and noted to be not scalable to a high degree. How-
ever, upon introducing the proposed vectorized Cosine similarity
(Alg. 2) to this pipeline, we observed that the resultant pipeline
P-VecSim becomes significantly more scalable. P-VecSim can serve
with an average and P-99 latency of 19.4ms and 49.3ms respectively
under 36.0K RPM traffic. This shows significant improvement over
P-Base-OnlineServ which have average and P-99 latency of 50.9ms
and 217.0ms respectively under similar conditions. Next, we evalu-
ate the influence of the proposed vectorized DPP (Alg. 4) module.
Upon introducing same to P-Base-OnlineServ, the resultant pipeline
P-VecDPP also becomes readily more scalable. The average and
peak latency of P-VecDPP, 39.1ms and 78.2ms respectively, when
subjected to a traffic of 36.0K RPM, remains decently under con-
trol to keep the pipeline operational. Introducing both vectorized
similarity and vectorized DPP to P-Base-OnlineServ creates our pro-
posed pipeline P-Proposed, which by virtue of including both the
scalable components demonstrates highest scalability. Subjected to
a traffic of 36.0K RPM, P-Proposed incurs average and peak latency
of 18.2ms and 41.9ms respectively, growing only 60% over the aver-
age latency of 11.2ms under 3.0K RPM. The peak latency growth
under maximum traffic is also constrained under only to 3 times
the original peak latency for a 12x growth in traffic. These observa-
tions prove our claims of proposing individual scalable components,
whose sum is even greater than the parts in terms of improving
scalability of the recommendation pipeline.

6.2 Impact of threaded parallelization
We also evaluated impact of using conventional optimization of
multithreaded parallelism on scalability of proposed recommen-
dation system pipeline. Table. 3 shows that the single threaded
pipeline scales most efficiently under increasing traffic with less
than 10% increase in the average serving latency over the range of
loads. However, even with 4 threads per request, the average and
peak latency doubles at 3.0K RPM than the 1-thread pipeline. 8 and
16 threaded implementations cross real-time SLA limits under only
3K RPM load with nearly 7x and 25x growth in peak latency over
1-thread pipeline. Thus, it can be concluded that naive usage of
multithreading without vectorization does not work well in practice
for online recommendation systems.

7 OPEN PROBLEMS AND FUTUREWORK
We have conducted in-depth experiments to evaluate the perfor-
mance of our proposed modification to the similarity and DPP

algorithms to leverage benefits of SIMD multiprocessing in server
and virtual machine environments. Evaluating the performance of
the same algorithms with SIMD multiprocessing in a container-
ized environment e.g. Kubernetes (k8s) is one of the goals of our
future work. We have also been exposed solely to x86 and x86_64
Instruction Set Architecture (ISA) as these are the most commonly
found instruction set in server and cloud VM environments. Evalu-
ating the impact of SIMD multiprocessing on different ISAs such
as ARM also remains an open problem to be addressed in future
publications from this body of work. On the other hand, we have
focused on constituting portable SIMD accelerated method and thus
had to look beyond Assembly level SIMD which becomes bound to
specific CPUs with specific register counts. However, this problem
can be solved alternatively by bypassing the dependency of regis-
ter lengths in Assembly level SIMD and we believe considerable
amount of research scope is present in that area.

8 CONCLUSION
In this paper, we explored the opportunities of moving past con-
ventional optimization strategies like threaded parallelization for
CPU only online recommendation systems and adopting the SIMD
optimizations by redesigning critical components, with motivations
of vectorization, of a ‘complement’ recommendation system. We
experimentally show that vectorized implementation of the well
known blocks like personalization and diversification can be made
significantly more scalable by utilizing SIMD compute powers of
modern day CPUs. We use portable SIMD constructs in Python
to make the implementation easily portable across different CPUs
and architectures. The approach advocated-for in this work can be
extended to many available recommendation systems that are de-
ployed in CPU only servers and can be pivotal shift towards making
efficient large scale e-commerce services. In addition to endorsing
the use in recommender systems, we propose and encourage further
exploration of proposed algorithm in vector similarity operations,
particularly within applications such as vector databases, which
serve as efficient storage and retrieval systems for vector embed-
dings (e.g., Milvus [40], Pinecone [44], ChromaDB [13]). As these
applications are heavily reliant on similarity algorithms of the kind
proposed in this work, we believe further research into same will
help make these applications more optimized and real-time. Fur-
thermore, considering the influence of these applications in the
increasingly popular Generative-AI paradigm, optimizing them
holds the promise of rendering Generative-AI applications more
responsive and suitable for large-scale deployments in real-world
scenarios.
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ABSTRACT
The efficient management of software logs is crucial in software

performance evaluation, enabling detailed examination of runtime

information for postmortem analysis. Recognizing the importance

of logs and the challenges developers face in making informed log-

placement decisions, there is a clear need for a robust log-placement

framework that supports developers. Existing frameworks, how-

ever, are limited by their inability to adapt to customized logging

objectives, a concern highlighted by our industrial partner, Ciena,

who required a system for their specific logging goals in resource-

limited environments like routers. Moreover, these frameworks

often show poor cross-project consistency. This study introduces

a novel performance logging objective designed to uncover po-

tential performance-bugs, categorized into three classes—Loops,

Synchronization, and API Misuses—and defines 12 source code fea-

tures for their detection. We present an Adaptive Logging System

(ALS), based on reinforcement learning, which adjusts to specified

logging objectives, particularly for identifying performance-bugs.

This framework, not restricted to specific projects, demonstrates

stable cross-project performance. We trained and evaluated ALS on

Python source code from 17 diverse open-source projects within

the Apache and Django ecosystems. Our findings suggest that ALS

has the potential to significantly enhance current logging practices

by providing a more targeted, efficient, and context-aware logging

approach, particularly beneficial for our industry partner who re-

quires a flexible system that adapts to varied performance objectives

and logging needs in their unique operational environments.
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Performance; Empirical studies; • Computing methodologies
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1 INTRODUCTION
Logging, as an ubiquitous programming technique, involves the

insertion of code that records key runtime information. Careful

consideration of log placement is imperative, as the data captured

by logs constitute a crucial source of information for postmortem

analysis. In the event of system failures, logs often remain the only

available source of data. For successful log analysis, it is crucial

to have a strong underlying logging, as it directly influences the

quality of the collected logs.

Given the importance of logging, it is crucial to strike a balance

[22]. Logging too little could result in missing essential runtime in-

formation needed for postmortem analysis, making it challenging to

diagnose failures in the field. On the other hand, logging too much

brings its own set of problems. This includes an increased code

volume that requires time for writing and maintenance. Moreover,

it consumes additional system resources, impacting overall system

performance, especially when dealing with high log volumes. Im-

portantly, excessive logging may generate numerous trivial and

unnecessary logs, masking crucial information and complicating

issue identification.

Despite its importance, not all developers possess the neces-

sary expertise to make informed logging decisions [4]. Previous

research has presented various frameworks to aid developers in

making logging decisions. Some frameworks help developers de-

termine which parts of the system to log [4, 22], while others help

to select appropriate log-levels for log statements [10, 11], and to

effectively structure log messages [5, 8]. Mastropoalo et al. [12]

introduced a comprehensive framework that integrates these three

logging aspects using transformer models. However, there are some

limitations towards existing frameworks, 1) they are limited to log-

ging objective of the project that trained on and are not capable

of adapting themselves to a desired logging objective. 2) None of

them have considered performance-bugs as a logging objective. 3)

Poor cross-project performance.

In collaboration with Ciena, we recognized the need for a logging

system that not only adapts to various performance objectives but

also addresses the specific logging needs in resource-constrained

environments. In response, we introduce the Adaptive Logging Sys-

tem (ALS) that leverages reinforcement learning, along with a new

logging objective—Performance Bug Logging Objective—designed

to capture and reveal performance-bugs through logs. This dual

approach of ALS, combining adaptability with a targeted logging

objective, makes it particularly suitable for varied operational needs,
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enabling it to efficiently handle different performance objectives

and logging requirements. Such a system is invaluable in environ-

ments where resource constraints and the need for efficient logging

and performance analysis are critical.

Our contributions in this paper are as following:

• Proposing an Adaptive Logging system being able to adapt

itself to self-defined logging objectives using reinforcement

learning.

• Introducing performance-bugs logging objective to capture
and reveal performance-bugs through logs.

• Creating a dataset that includes static source code features

related to performance-bugs at the function-level for 17 dif-

ferent Apache and Django projects.

• Illustrating the cross-project efficiency of the proposed adap-

tive logging system by evaluating it on unseen environments.

This paper is structured as follows: Section 2 provides a back-

ground on software logging and reinforcement learning. Section

2.3 explores the motivations for our study. Sections 3 and 4 detail

our empirical study on performance-bugs and the ALS framework,

respectively. Section 5 presents our evaluation methodology and

results. Finally, Section 5.4 discusses the study’s limitations and

future directions, and Section 6 summarizes our findings.

2 BACKGROUND AND LITERATURE REVIEW
2.1 Software Logging
The placement of log statements is guided by one or multiple log-

ging objectives chosen by developers. These objectives include

Performance [21], which focuses on minimizing performance over-

head of logs; Unexpected Situations [4], which aim to identify errors;

and Execution Points [4], which track system runtime states and

execution path for root-cause analysis.

Developers face three crucial decisions when implementing a

logging strategy. Firstly, they must determine the most appropriate

location in the source code for logging (Where to log?) [4, 19, 21, 22].
Secondly, they must select the information to be logged and the log

statements to be used (What to log?) [8]. Lastly, they must choose

the appropriate log-level from a range of options including trace,

debug, warn, info, error, and fatal (Which log-level to choose?) [13].
Prior studies have introduced log-placement frameworks to aid

developers. Yuan et al. introduced ErrLog [19], a static program-

ming method that adds logging statements using generic error

patterns. Zhao et al. proposed Log20 [21], a DP-based framework

that recommends near optimal log placements with low overhead.

J. Zhu et al. developed LogAdvisor [22], a machine learning frame-

work that automatically learns common logging rules and provides

guidance.

2.2 Reinforcement Learning
In this part, we present the fundamental ideas of Reinforcement

Learning (RL), a subfield of machine learning (ML), which we utilize

in our research.

Definition. Reinforcement Learning is a goal-directed learning

method that allows agents to solve sequential decision problems

through trial-and-error and interaction [6, 17]. RL aims to deter-

mine the optimal mapping of situations to actions by maximizing a

reward signal that represents the problem’s goal.
A RLmodel consists of two components: Agent and environment.

The Environment provides information on the system state, and the

Agent selects actions based on that information and interacts with

the Environment. The Environment updates the state and returns

a reward after each action, creating a cycle of (state → action →
reward), depicted in Figure 1, until a predetermined terminal state

or timestep is reached.

Environment

Agent

reward rt

rt+1

state st

st+1

action at

Figure 1: The reinforcement learning control loop

Difference from Other Methods. RL differs from other ML tech-

niques such as supervised and unsupervised learning. Supervised

learning requires external knowledge in the form of a training set,

which specifies the correct behavior. However, in RL, this knowl-

edge is not provided and must be acquired through the pursuit of

objectives. In contrast, supervised learning only aims to learn the

correct behavior provided, limiting it to that specific behavior. The

objectives of RL and unsupervised learning are distinct from each

other. Unsupervised learning aims to uncover hidden structures,

while RL aims to maximize a reward signal to reach a specific goal.

The defining feature of RL models is their goal-seeking ability,

which aligns them with the learning processes in humans and ani-

mals. This property provides RL with a high degree of adaptiveness.

Its adaptive nature allows it to continually update and improve

upon its knowledge, even when faced with unseen projects. This

is a capability that is unique to RL, as other ML methods lack this

adaptiveness.

2.3 Research Gaps
While the preceding sections have laid out the fundamental con-

cepts in software logging and reinforcement learning, it is necessary

to identify the existing limitations within these domains. This sec-

tion briefly explains the motivation and research gaps in the current

state of the art of log-placement frameworks, particularly highlight-

ing the areas that remain unaddressed or inadequately tackled by

existing solutions.

Logging Objectives. Traditional log-placement frameworks are

typically limited in their scope, being designed to address specific

logging objectives based on the datasets or environments they were

originally trained in. This rigor presents significant challenges in

dynamic and varied operational contexts, such as resource-limited

environments, like network systems or routers. The logging ob-

jectives can vary greatly depending on the specific performance

requirements and resource constraints of each system.
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For instance, in a resource-constrained environment, the primary

logging goal may be to minimize performance overhead while max-

imizing the utility of each log entry for effective bug detection and

system monitoring. This differs from resource-abundant environ-

ments, where the emphasis may be on capturing comprehensive

data for in-depth analysis. The ability to dynamically adjust log-

placement strategies based on these different goals is crucial for

maintaining system efficiency and reliability, yet it is currently

lacking in existing frameworks [4, 22].

Moreover, the detection of performance-bugs, a critical aspect in

ensuring the smooth operation of resource-limited systems, is of-

ten underrepresented in existing logging frameworks. While these

frameworks primarily focus on capturing system errors and ex-

ceptions to aid in debugging and ensuring system reliability, they

typically do not prioritize the identification and logging of perfor-

mance anomalies. Effective logging of such anomalies is vital for

preemptive maintenance and avoiding system downtimes, making

the need for adaptable and performance-oriented logging frame-

works even more essential.

Therefore, there is a strong need for log-placement frameworks

that are not only adaptable to a broad spectrum of logging objec-

tives but also sensitive to the unique demands of resource-limited

settings. This adaptability is essential for tailoring logging strategies

to effectively balance performance, resource utilization, and diag-

nostic needs, thereby enhancing the overall resilience and efficiency

of the system.

Implementation Method. The complexity of log-placement, in-

fluenced by multiple factors such as system architecture, opera-

tional context, and specific performance requirements, poses signifi-

cant challenges for a comprehensive and adaptable implementation.

Traditional methods like LogAdvisor [22], while effective in certain

settings, are limited by their lack of flexibility and cross-project

accuracy. This constraint limits their effectiveness across diverse

projects, particularly when transitioning from one domain or tech-

nology stack to another.

To address these limitations, we propose the Adaptive Logging

System, which leverages Reinforcement Learning—a form of ma-

chine learning that excels in making decisions under uncertainty

and adapting to new environments. By employing RL, ALS can dy-

namically learn from the specific characteristics and requirements

of each project, continually refining its log-placement strategy to

maximize efficiency and relevance. This capability enables ALS to

provide tailored logging solutions that maintain high levels of accu-

racy and utility across various projects and environments, aligning

with the diverse and evolving needs of modern software develop-

ment.

3 LOGGING FOR PERFORMANCE-BUGS
To introduce performance-bugs as a logging objective, we must

first gain a clear understanding of what they are. This understand-

ing will enable us to subsequently establish appropriate metrics

and features for their description. To achieve this, we conducted

an empirical study of existing studies on performance issues. We

have categorized performance issues into three distinct categories

(Loops, Synchronization Issues and API Misuses) and devised 12

static source code features to characterize each of these categories

Table 1: performance-bugs and their defined features.

Categories Features

performance-bugs

Loops

- number-of-loops

- nested-loop-level

- loop-input-dependent-level

Synchronization issues

- number-of-defined-threads

- number-of-started-threads

- number-of-join-threads

- number-of-defined-locks

- number-of-acquired-locks-threads

- number-of-released-locks

API misuses

- number-of-usage-of-extra

- number-of-usage-of-order-by

- number-of-usage-of-select-related

(refer to Table 1). In the following parts of this section, we will

provide detailed explanations for each category along with their

corresponding features.

3.1 Loops
When addressing performance-bugs, loops create a challenging

context for their occurrence. This is because loops have the potential

to worsen the impact of performance-bugs, often accumulating

issues across multiple iterations of the loop [3, 15, 16]. What’s even

more significant is that a large portion of performance-bugs occur

within loops that depend on input data, accounting for nearly three-

quarters of such cases [9]. This highlights the importance of paying

close attention to loops in our efforts to mitigate performance-bugs.

We have established three distinctive features to encapsulate the

vital aspects concerning loops, aimed at characterizing pertinent

factors for integration into our RL model. These features are as

follows:

(1) Number of Loops (number-of-loops): This feature quanti-

fies the number of distinct loop constructs defined within a

given function. This feature only counts the outer loops in

case of having nested loops. For example, if a code snippet

contains one nested loop (with a nesting level of 2) and one

non-nested loop, the total number of loops in the snippet is

4, but the Number of Loops metric for the snippet is 2.

(2) Nested Loop Level (nested-loop-level): As a descriptor of
loop complexity, this feature indicates the total number of

loops within a function, including any nested loops. Using

the previous example of a nested loop with a nesting level

of 2 and a non-nested loop, the Nested Loop Level value here
would be 4.

(3) Loop Input Dependency Level (loop-input-dependent-
level): This feature identifies dependent variables, which are

variables that rely on a function to determine their values,

within the loop declaration. It provides information about

the count of these dependent variables if any are found.

3.2 Synchronization Issues
Synchronization challenges can arise in concurrent programming,

leading to performance issues [1, 7]. These problems often stem

from the improper use of synchronization techniques, especially

when selecting the wrong types of locks. Among the notable syn-

chronization challenges, two stand out: deadlocks and race condi-

tions.
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Race conditions happen when two different threads try to change

the same information at the same time without following a specific

order. On the other hand, Deadlocks occur when several threads

get stuck in their work because they are all waiting for something

that another thread in the same group is using. We have identified

six unique attributes related to synchronization challenges. These

features are customized for Python’s Thread library:

(1) Number of Thread Objects (number-of-defined-threads):

This attribute indicates the count of threads that are defined

within a given function.

(2) Number of start() Function Calls (number-of-started-

threads): Following the creation of a Thread object, its acti-

vation is initiated by invoking the start() function associated

with the created object. This feature quantifies the instances

of start() function calls, representing thread activation within

a specific function.

(3) Number of join() FunctionCalls (number-of-join-threads):

The join() function, when invoked, causes the calling thread

(typically the main thread) to wait until the thread on which

join() is called terminates. This feature quantifies the in-

stances of join() function calls.

(4) Number of Lock Objects (number-of-defined-locks): This

attribute signifies the count of locks defined within a given

function.

(5) Number of acquire() FunctionCalls (number-of-acquired-

locks-threads): The acquire() method is used to acquire a

lock. When a thread invokes acquire() for a lock, it gains

ownership of the lock if it is available. If the lock is cur-

rently held by another thread, the calling thread will enter

a blocking (waiting) state until the lock becomes available.

Subsequently, when the thread successfully acquires the lock,

it is able to execute the critical section of code that should be

accessed by a single thread at a time. This attribute records

the frequency of this method being called for a lock within

a specific function.

(6) Number of release() Function Calls (number-of-released-

locks): The release() method is employed to release a lock that

the calling thread currently possesses. Upon the completion

of the critical section of code protected by the lock, the thread

is expected to invoke lock.release() to release the lock. This

action enables other waiting threads to acquire the released

lock. This attribute quantifies the instances of this method

being called for a lock within a specific function.

3.3 API Misuses
API misuse refers to the incorrect use of an Application Program-

ming Interface (API), which violates the implicit usage constraints

set by the API. These constraints are in place to prevent errors and

exceptions that can occur when the API is not used as intended.

API misuse is a common cause of software bugs, crashes, and vul-

nerabilities [2, 9, 14, 20]. Guoliang Jin et al., [9] assert that more

than one-quarter of software bugs are linked to API misuses. Based

on our empirical study, we have categorized API misuses associated

with performance-bugs into three distinct groups: Object-Relational

Mapping (ORM) APIs, Deep Learning APIs, and Machine Learning

Cloud API misuses. However, for the scope of this study, we focus

exclusively on examining ORM API misuses, with a specific em-

phasis on Django ORM API misuses. We prioritize Django ORM

because our projects primarily involve Python. The exploration of

the other two categories is deferred to future research, as each re-

quires a separate study to accurately identify the necessary features

for precise characterization.

When it comes to Django ORM
1
API misuses there are some

common misuses which can cause performance issues and need to

be avoided [18]:

• Making complex queries: The more complex the query, the

harder it is for the ORM to transform it into an actual data-

base query. This can cause performance regressions, espe-

cially when dealing with large datasets. To avoid this, it is

recommended to keep queries as simple as possible and avoid

using sub-queries unless absolutely necessary.

• Retrieving too much data: When querying the database, it

is vital to fetch only the required data. Retrieving excessive

data can result in performance problems, particularly with

large datasets. In Django ORM, there is a built-in method

called select-related() that allows you to retrieve all relevant

data in a single query instead of making multiple database

queries. However, it is important to exercise caution and

avoid overusing this method, as it can lead to fetching too

much data and cause performance regression.

• Not using database-level constraints: Sorting records after

fetching data from the database instead of sorting the data-

base once can cause performance regressions. It is recom-

mended to use database-level constraints instead of using

order-by() to sort records at the query level.

Following three features represent the occurrence of threeDjango

ORM functions which overusing them could potentially lead to one

one of the performance issues mentioned above.

(1) extra() (number-of-usage-of-extra): Overusing extra() can

make queries more complex by using sub-queries.

(2) order_by() (number-of-usage-of-order-by): Overusing order

by() instead of using database-level constraints can lead to

performance issues.

(3) select_related() (number-of-usage-of-select-related): Overus-

ing select related() can also lead to retrieving too much data.

4 ADAPTIVE LOGGING SYSTEM (ALS)
To address the research limitation mentioned earlier, this study pro-

poses an Adaptive Logging System, which utilizes Reinforcement

Learning to provide a comprehensive log-placement framework.

The adaptiveness of the system offers two key benefits: (1) it allows

for the definition of any desired logging objective by modeling it

into the RL’s reward function, and (2) it ensures project indepen-

dence of the framework by eliminating low cross-project accuracy.

ALS takes Python source code files as input and guides devel-

opers in identifying which functions in the provided source code

should be logged to capture performance issues, along with the

recommended log-level. In Figure 2, we can observe that ALS com-

prises three primary modules: web scraping, feature extraction,

and an RL model. We will explore each of these modules in greater

1
https://docs.djangoproject.com/en/3.2/topics/db/optimization/
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Figure 2: Adaptive logging system overview

detail in the subsequent parts of this section. The source code and

training dataset for ALS are accessible via our git repository
2
.

4.1 Web Scraping
Since ALS relies on an RL model at its core, the collection of a

substantial amount of data is crucial for effective model training.

Additionally, ALS is specifically designed for Python, requiring

primary source code files to be in .py format. Manual data collection

becomes impractical due to this requirement. The ALS web scraping

module is designed to address these challenges.

This module’s task is to download Python files from a given list

of GitHub repositories using git command-line tool (PyGithub
3
). It

accomplishes this in two main steps:

(1) clones each of the GitHub repositories to a specified local

directory.

(2) Then, it scans through these cloned repositories to identify

Python files and saves them in a separate directory.

4.2 Feature Extraction and Data Collection
This module has the important task of carefully extracting the fea-

tures we defined in our previous discussion in part 3. However,

successfully implementing it presents a significant challenge. This

challenge revolves around obtaining the necessary access to com-

prehensively analyze the components of the source code.

To overcome this challenge, we have utilized Python’s Abstract

Syntax Tree (AST) library4. This advanced library provides us with
the tools to explore the complex structures of the source code. This

allows us to gain the required perspective to extract the specific

static features accurately and with precision.

The process of building our dataset by collecting and extracting

relevant features involves three distinct phases. In the following,

2
https://github.com/amirmahdiKhosravi/Adaptive-Logging-System

3
https://pygithub.readthedocs.io/en/stable/introduction.html

4
https://docs.python.org/3/library/ast.html

we offer a comprehensive explanation of each of these crucial steps

in our dataset preparation process.

Function Extraction (Phase 1). In the first step, we identify and

isolate individual functions from the source code of the projects

under investigation. For this, the feature extraction module takes

the source code as input, generates its AST, and searches "Function-

Def" nodes in the generated tree to find the functions in the source

code. The module do the same thing to every Python file obtained

through web scraping, resulting in a comprehensive list of function

nodes that serve as the foundation for our subsequent analysis and

feature extraction.

Function Identification (Phase 2). Subsequently, in the second

step, we assign meaningful and distinctive identifiers to each ex-

tracted function. This step is essential to facilitate seamless access

to the origin source code which these functions belong to, laying

the groundwork for subsequent in-depth investigations.

We follow a three-part approach: combining the function’s name,

the name of the file where the function is located, and its position

(index) in the list of functions. Then, we compute the hash value

of this combined string using the "hashlib" library
5
. This process

generates the final, unique identifier (ID) for the function.

Feature Extraction (Phase 3). The third and final step involves

the extraction of relevant features from the previously mentioned

functions. These extracted features are then integrated into our

dataset. Importantly, each row within the dataset is dedicated to

a single function, along with its corresponding set of extracted

features, ensuring a comprehensive and organized representation.

With the list of function nodes obtained from the preceding

phase, we iterate through this list, conduct feature searches, extract

the identified features, and seamlessly incorporate them into the

5
https://docs.python.org/3/library/hashlib.html
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dataset. The methodology employed for this process remains con-

sistent across all the features, involving a systematic traversal of

the AST.

4.3 RL Model
The RL model is the core component of ALS. It enables ALS to adapt

itself to different defined logging objectives through trial and error.

It is divided into two main parts: the Agent and the Environment,

which interact with each other to make decisions and learn from

their interactions. This section focuses on detailing the various

components of the RL model.

Environment. It is where the agent operates. It includes every-
thing outside the agent and serves as the backdrop for the agent’s

actions and interactions.

To accurately describe the environment, it is crucial to identify

its key components: the observation space, action space, and reward

function. By precisely defining these three essential elements, we

enable the RL model to make informed decisions and take suitable

actions within this well-defined environment.

• Observation Space Observation space is the part that mod-

els the space in which the agent interacts. In our study, it is

to demonstrate functions within the source code files. To rep-

resent functions as our observation space we take advantage

of the collected dataset in 4.2, as each row of it represents a

function by its related features. Equation 1 shows the obser-

vation space of the environment in the timestep t (𝑆𝑡 ). It is
a 1-dimensional Box

6
containing 12 features of our dataset.

Also, our environment here is deterministic, meaning that

the probability of the agent ending up in next state (𝑆𝑡+1),
while it is in 𝑆𝑡 taking action 𝐴𝑡 , is 1 (Equasion 2). The next

state here is the next function of our dataset that the agent

needs to take an action upon. Upon reaching the end of the

dataset and the last function (terminal state), signifying the

end of an episode, the agent seamlessly transitions back to

the starting state of the environment—the first function of

the dataset—to initiate a new episode of learning.

𝑆𝑡 = [𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3, ..., 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒12] (1)

𝑃 (𝑆𝑡+1 |𝑆𝑡 , 𝐴𝑡 ) = 1 (2)

• Action Space It represents all the possible actions which

the agent can take within the environment. In this study we

defined a discrete action space which contains 5 different

actions. These actions are defined in a way that makes it pos-

sible for the agent to make decision about either a function

should be logged, and if so, what log-level should be chosen

for it.

Of the six existing log-levels (Trace, Debug, Info, Warn, Error,

Fatal), we excluded Error and Fatal from the set of log-levels

that our agent can select. This decision was based on the

observation that Error and Fatal are primarily associated

with runtime behavior, whereas our model relies solely on

static source code features to make logging decisions.

6
https://stable-baselines.readthedocs.io/en/master/index.html

Equation 3 presents the action space of our environment.

This set encompasses 5 distinct actions, each uniquely iden-

tified by a numerical assignment (Action ID). It is important

to note that while there is an action labeled as "not-log," we

deliberately omitted a separate "log" action. This decision

was made because actions associated with specific log-levels

inherently indicate the logging action. For example, selecting

the "Trace" action implies that the corresponding function

should be logged at the Trace level.

𝐴 = {0 : 𝑛𝑜𝑡_𝑙𝑜𝑔, 1 : 𝑇𝑟𝑎𝑐𝑒, 2 : 𝐷𝑒𝑏𝑢𝑔, 3 : 𝐼𝑛𝑓 𝑜, 4 :𝑊𝑎𝑟𝑛} (3)

• Reward Function The reward function guides the agent

toward the goal it aims to achieve through its actions. To

appropriately define the reward function, we need to incor-

porate our logging goal—deciding whether to log a function

and the appropriate log-level—into it. This is accomplished

through three main steps:

– Step 1: We establish our fundamental rules for achieving

our logging goal. These rules include: 1) logging functions

that exhibit potential performance-bugs by examining

performance-bug features in the observation space, and 2)

assigning lower verbosity log-levels to performance-bugs

with higher significance. This ensures that we capture

all important information about performance-bugs, even

when monitoring logs with the lowest verbosity. For this

purpose, we assigned Trace and Debug log-levels to Syn-

chronization issues, and Info and Warn log-levels to API

misuses and Loops, respectively. If a function does not fall

into one of these categories, it will not be logged.

– Step 2: Based on the rules established in the previous

step, we classify the actions performed by the agent into

three distinct categories: "Good", "Intermediate" and "Bad".

This categorization is determined through a comprehen-

sive assessment of potential action outcomes: 1) Good:

In scenarios where the agent’s decision fully aligns with

the criteria defined in the previous step, we provide the

agent with a positive reward. For example, when a func-

tion exhibits potential synchronization issues based on

its feature set in the observation space, the correct action

is "Trace". The agent’s action is deemed "Good" if it also

selects "Trace" as the action. 2) Bad: Conversely, if the

agent opts to log a function that should not be logged, or

fails to log a function that should be logged based on the

features extracted from the observation space, it incurs a

negative reward as a punitive measure. 3) Intermediate:

Any scenario falling outside the ”Good” or ”Bad” classifi-

cations is deemed ”Intermediate.” For example, if the agent

correctly decides to log a function but selects an incorrect

log-level, or if the action should have been categorized as

”IDK” but the agent selects a different action, it does not

receive a positive reward, as its behavior remains subopti-

mal. However, the negative reward incurred in such cases

is comparatively smaller than the penalty associated with

”Bad” behavior.

– Step 3: The agent’s reward depends on the category of

its action and falls within a range of -4 to +2. We offer a
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detailed breakdown of this reward scale for each possible

category (good, bad, and intermediate) in the following

section: 1) Good Reward (𝑅𝑔): When the agent’s action

is categorized as ”good,” it receives an immediate reward

of +1 (dense reward), supplemented by a sparse reward

ranging from 0 to 1. The amount of the sparse reward de-

pends on the function’s vulnerability to performance-bugs,

which is determined by the features within the function

(𝑆𝑡 ). To compute the sparse reward, we employ the Sig-

moid function, with the coefficient providing adjustability

for the slope of the Sigmoid curve (detailed elaboration

is presented in chapters 4 and 5). Equation 5 shows the

reward function for this specific category, denoted as 𝑅𝑔 .

ST is the sum of the 12 features in the vector 𝑆𝑡 . 2) Bad
Reward (𝑅𝑏 ): The reward for the ”bad” category is rela-

tively straightforward, with the agent receiving the lowest

reward within the range. In instances where the agent’s

action is categorized as ”bad,” it incurs a negative reward

of -4 (𝑅𝑏 = 4). 3) Intermediate Reward (𝑅𝑖 ): It is cal-
culated as the negative absolute value of the difference

between the action ID of the chosen action and the ac-

tion that was intended to be selected. For instance, if the

intended action is ”Trace” (action ID = 1), but the agent

selects ”Warn” (action ID = 4), the reward will be -3. This

relationship is depicted in Equation 6.

𝑆𝑇 =

11∑︁
𝑓 =0

𝑆𝑡 [𝑓 ] (4)

𝑅𝑔 (𝑆𝑇 ) = 1 + 1

2

( 1

1 + 𝑒−𝛾𝑆𝑇
) (5)

𝑅𝑖 = −|𝑠𝑢𝑝𝑝𝑜𝑠𝑒𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝐼𝐷 − 𝑡𝑎𝑘𝑒𝑛𝐴𝑐𝑡𝑖𝑜𝑛𝐼𝐷 | (6)

Agent. In this study, our primary focus is not on creating new

RL algorithms. Instead, we choose to use well-established RL algo-

rithms that already exist and apply them in our custom-designed

environment. To make this possible, we rely on the Stable Base-

lines library, known for its high-quality implementations of Rein-

forcement Learning algorithms, all of which are based on OpenAI

Baselines6 . Therefore, our approach involves making use of these

pre-built and thoroughly developed algorithms from the Stable

Baselines library. In part 5, dedicated to evaluation, we perform a

comparative analysis to identify the most effective algorithm for

our specific application.

5 EVALUATION
Our goal in this part is to thoroughly assess the practical usefulness

and effectiveness of the Adaptive Logging System (ALS) in real-

world scenarios by subjecting it to real-world software projects

ranging from large-scale web applications to more specialized soft-

ware, reflecting the diverse challenges faced by industry practi-

tioners, such as those at Ciena. We will specifically explain how it

performs in two distinct case studies, each offering its own set of

challenges and opportunities.

In the upcoming sections, we detail our evaluation process. Sec-

tion 5.1 explains our experimental setup, covering data collection,

Table 2: Dataset information

Project Names Number of Python files Number of Functions

Training

Apache Projects

- Kibble

- Libcloud

- Allura

- Spark

1421 56755

Django Projects

- Connect

- Chat-app

- TrackTV

Testing

Apache Projects

- Avro

- Beam

- Cloudstack

- IoTDB

- PLC4X

- Thrift

- Yetus

2814 36729

Django Projects

- Django Website

- Djangogirls Website

- Django-jet

Total 4235 93484

choice of RL algorithms, and libraries. Section 5.2 is the core, exam-

ining each case study, including ALS performance utilizing different

RL methods and evaluations across projects. These sections show-

case ALS performance in diverse scenarios.

5.1 Experiment Setup
In this study, we provide a detailed account of our data collection

process, shedding light on the datasets that serve as the foundation

for our case studies. Then we shift our focus to configuring the RL

model, using established RL algorithms from the Stable-Baselines

library
7
, which is implemented based on the OpenAI Baselines

8
.

Data Collection. To prepare our dataset for training and testing

the RL model of ALS, we have utilized the first two modules of

the ALS framework. We conducted our experiments on a diverse

set of 17 projects (Table 2), encompassing 11 Apache projects and

6 Django-based projects. The inclusion of Django projects was a

deliberate choice, aimed at introducing diversity into our dataset,

given that certain features, such as Django ORM API Misuses, tend

to be less prevalent in Apache projects. These projects were selected

based on their continued active status, ensuring their reliability as

representative samples of ongoing software development projects.

As illustrated in Table 2, our dataset is partitioned into two dis-

tinct groups: training and testing. The training set is dedicated to

training the RL model and comprises a larger volume of data, with

56,755 unique functions. The Testing dataset, explored in forth-

coming sections, serves as the basis for our second case study and

contains 36,729 functions. This approach not only ensures that our

RL model is well-prepared with an extensive training dataset but

also facilitates the assessment of its cross-project performance, as

both datasets encompass a mix of Apache and Django projects. This

diverse dataset allows us to evaluate the adaptability and effective-

ness of our RL model on a wide array of software projects.

RLModel and Algorithms. With our experiment dataset in place,

the next step involves configuring the RL model. For its environ-

ment we use our own environment which we defined in 4.3. On the

other hand, for the agent, we use well-established RL algorithms

available in the Stable-Baselines library.

7
https://stable-baselines.readthedocs.io/en/master/index.html

8
https://github.com/openai/baselines
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Table 3: Stable-Baselines algorithms and features

A2C ACER ACKTR DDPG DQN GAIL PPO SAC TD3 TRPO

Discrete Action Support Yes Yes Yes No Yes Yes Yes No No Yes

Box Observation Support Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

On/Off Policy On On On Off Off Off On Off Off On

For our RL model, we selected Deep Q-Network (DQN), Advan-

tage Actor-Critic (A2C), and Proximal Policy Optimization (PPO)

based on their proven efficacy in complex decision-making tasks.

DQN’s stability in discrete action spaces, A2C’s balance between

policy and value-based methods, and PPO’s robustness in varying

environments make them ideal for evaluating ALS’s performance

in log-placement.

Table 3 presents an overview of the built-in model-free RL al-

gorithms integrated into the stable baselines framework. Within

this set of algorithms, there are a total of 11 options at our disposal.

However, due to the discrete nature of our action space, three of

these algorithms, namely DDPG, SAC, and TDT, are not compatible.

It is noteworthy that among the remaining nine algorithms,

only DQN and GAIL operate as off-policy algorithms, while the

remainder are on-policy methods. This distinction is pivotal as it

affects the manner in which these algorithms update their policies

based on historical data.

This experimental setup, encompassing a diverse dataset and a

range of RL algorithms, is specifically designed to test ALS’s core

objectives. The varied dataset ensures ALS’s adaptability to different

software architectures, while the selection of RL algorithms allows

us to assess the system’s effectiveness in making accurate log-

placement decisions under varying conditions.

5.2 Case Studies
To evaluate feasibility of ALS and to see whether it fulfills our

research goals we defined two different case studies which we

introduce and explain in more details in the following. We used the

reward received by the model as the evaluation metric, which we

illustrate by demonstrating the learning curve of the RL model.

ALS and Different RL Methods. This case study is to assess how
well ALS performs with various combinations of RL algorithms.

For this we test the RL model by setting three different RL methods

(DQN, A2C and PPO) to its agent and demonstrate the learning

curve of each of them while they are applied on the training en-

vironment (dataset). This case study is to evaluate the following

aspects of the ALS:

• The effectiveness and functionality of the ALS in adapting

itself to the defined logging objective.

• A comprehensive assessment of the performance of various

RL algorithms, shedding light on how effective suitable each

of them are for our environment.

Cross-project Evaluation. In this case study we apply the three

agents that have been previously trained on the training environ-

ment on the testing environment which includes functions from

projects that the agents have not been introduced to. This case

study is to evaluate the cross-project performance of the ALS.
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Figure 3: RL model’s learning curve for DQN
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Figure 4: RL model’s learning curve for A2C
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Figure 5: RL model’s learning curve for PPO

5.3 Results and Discussion
Figures 3, 4 and 5 illustrate the outcomes of our first case study

for DQN, A2C, and PPO, respectively. The broken vertical lines

mark the end of each episode. Each model interacted with the

environment across eight episodes. Initially, in the early timesteps,

all three RL methods incurred negative rewards, signifying their

initial struggle to make appropriate logging decisions, resulting

in negative rewards. However, by the end of the first episode, all

three models display a positive trend in reward values, showing

44

ICPE ’24, May 7–11, 2024, London, United Kingdom Amirmahdi Khosravi Tabrizi, Naser Ezzati-Jivan, & Francois Tetreault



Re
w

ar
d

Number of Timesteps

Figure 6: Evaluating DQN on testing environment
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Figure 7: Evaluating A2C on testing environment
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Figure 8: Evaluating PPO on testing environment

their capability to learn effective logging decisions and receive

positive rewards. Notably, among the examined RL methods, DQN

demonstrates the most stable results.

The results of our second case study are presented in Figures

6, 7 and 8. Observing the results, all three models exhibit a posi-

tive reward trend from the initial episode, even though they are

being evaluated in a testing environment containing functions not

encountered during their training. This underscores the reliable

cross-project performance of ALS. The rationale behind this lies

in the nature of RL methods, distinct from supervised learning;

RL methods do not attempt to imitate the behavior of the training

data or projects they encounter. Instead, they leverage this data

to acquire more generalized knowledge applicable across diverse

environments. In this context, DQN demonstrates the most stable

results in the second case study.

Further analysis of these results reveals insights into the adapt-

ability and effectiveness of different RL methods within ALS. The

superior stability of DQN, for instance, suggests that its approach

to learning and decision-making is particularly well-suited for the

complexities of log-placement in varied software projects. This sta-

bility is critical when deploying ALS in real-world environments,

where consistent performance is key to maintaining system re-

liability and efficiency. Additionally, the positive reward trends

across all models highlight ALS’s overall robustness and potential

as a scalable solution for diverse logging needs. These findings are

significant for industry applications, where adaptable and reliable

logging strategies are essential for optimizing system performance

and minimizing downtime, particularly in resource-constrained

settings like those encountered by companies such as Ciena.

In summary, our evaluation results demonstrate: 1) ALS’s func-

tionality and its ability to adapt to a predefined logging objective,

2) its reliable cross-project performance, and 3) the compatibility

of DQN as the most stable RL method for our environment, outper-

forming A2C and PPO in terms of stability.

The adaptability and effectiveness of ALS in diverse settings, as

demonstrated by our evaluations, are particularly pertinent for our

industrial partner, Ciena. In their resource-limited environments,

the ability of ALS to dynamically adjust log-placement strategies

is critical for maintaining system efficiency and reliability. These

attributes of ALS not only meet the specific requirements of Ciena

but also exemplify the system’s potential for broader application

in similar industrial contexts, where flexible and efficient logging

solutions are critical.

5.4 Limitations
While our proposed Adaptive Logging System framework, utilizing

Reinforcement Learning, effectively achieved its predefined logging

objective of identifying performance-bugs, we identified certain

limitations during the evaluation. These limitations open avenues

for further enhancements:

(1) Covered Programming Languages: At present, ALS is

limited to use in Python projects. This limitation arises from

the tool
9
we use to search the Abstract Syntax Tree of the

source code, which is designed specifically for Python. To

enhance the feature extraction module of ALS, future studies

could explore either using more comprehensive tools that

support other programming languages or leveraging Large

LanguageModels (LLMs) such as GPT-4
10
, alongwith feature

extraction models like Jina
11
.

(2) Dynamic Performance Features: The current iteration
of ALS focuses on specific performance-related logging ob-

jectives. Future versions could benefit from incorporating

dynamic performance metrics, such as CPU and memory

9
https://docs.python.org/3/library/ast.html

10
https://openai.com/gpt-4

11
https://huggingface.co/jinaai/jina-embeddings-v2-base-code
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overhead, which were not explored in this study. Integrating

these metrics into the RL model’s reward function could

enable ALS to tackle more complex performance logging

objectives, enhancing its applicability in various software

environments.

(3) RLModel Architecture: In our study, ALS employs a single

RL agent for both logging decisions and log-level determina-

tion. Future research might explore a dual-agent approach,

with one agent dedicated to logging decisions and another

to log-level determination. This two-tiered approach could

provide more precise control and potentially improve overall

effectiveness.

These limitations highlight areas for potential improvement and

demonstrate the evolving nature of adaptive logging systems in the

field of software performance engineering.

6 CONCLUSION, AND FUTURE DIRECTIONS
In this research, we developed the Adaptive Logging System, a novel

logging framework that utilizes Reinforcement Learning to adapt

dynamically to varying logging objectives, with a focus on identi-

fying and mitigating performance bugs. Our approach began with

an empirical study categorizing performance bugs into three main

types: Synchronization issues, Loops, and API misuses. This classifi-

cation guided the definition of 12 distinct static source code features,

which formed the basis of our dataset. Training ALS’s RL model on

this dataset, we evaluated its performance across 17 Django and

Apache projects. The results were promising, demonstrating ALS’s

effectiveness in adapting to different logging objectives. Notably,

the Deep Q-Network (DQN) model showed the most stable results

in terms of learning curve, performing well in both training and

cross-project evaluation scenarios.

The adaptability and robustness of ALS, while particularly ben-

eficial for Ciena in their resource-limited settings, extend its sig-

nificance to a wider range of industrial applications. The system’s

ability to tailor its logging strategies is not only essential for Ciena’s

operational efficiency and reliability but also indicative of its poten-

tial impact in broader software logging and performance evaluation

contexts.

However, this research study has certain limitations. The selec-

tion of RL algorithms and the scope of our dataset, while extensive,

may not fully capture the array of scenarios in different software

environments. Moreover, our focus was primarily on function-level

decisions, without delving into more detailed log-level determina-

tions.

Looking forward, there are several opportunities to expand this

research. One avenue of interest is the potential integration of ALS

with LLMs, where ALS could serve as the RLHF (Reinforcement

Learning from Human Feedback) reward model to optimize LLMs

for logging solutions. Another possibility is integrating ALS with

existing logging frameworks, which could lead to a more compre-

hensive logging solution. By combining ALS’s dynamic adaptability

with the proven capabilities of language models and traditional sys-

tems, this approach could greatly enhance the overall effectiveness

of software logging practices.

We further collaborated with them to develop an adaptive log-

ging system for their resource constrained environment. This paper

discusses our first steps in that direction, both defining a logging

system that solves their challenges and evaluating that system on

open source systems. This work is defined as a first gate towards

testing a system in production. In such a project, ALS’s effectiveness

in operational environments would be validated more accurately,

and essential feedback from users and developers would be gath-

ered. This feedback is vital for fine-tuning ALS, ensuring it meets

the complex demands of real-world applications. Future plans in

this regard include extensive deployment and evaluation within

Ciena’s operational context, aiming to demonstrate the system’s

practical utility and inform further development.

Further development could also involve incorporating dynamic

performance metrics such as CPU and memory usage into the

RL model, offering a more detailed understanding of system de-

mands. Moreover, exploring a dual-agent architecture in the RL

model—dividing responsibilities between logging decisions and log-

level determination—could potentially refine the system’s precision

and efficiency.
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ABSTRACT
Software applications can produce a wide range of runtime software
metrics (e.g., number of crashes, response times), which can be
closely monitored to ensure operational efficiency and prevent
significant software failures. These metrics are typically recorded
as time series data. However, runtime software monitoring has
become a high-effort task due to the growing complexity of today’s
software systems. In this context, time series forecasting (TSF)
offers unique opportunities to enhance software monitoring and
facilitate proactive issue resolution. While TSF methods have been
widely studied in areas like economics and weather forecasting, our
understanding of their effectiveness for software runtime metrics
remains somewhat limited.

In this paper, we investigate the effectiveness of four TSF meth-
ods on 25 real-world runtime software metrics recorded over a
period of one and a half years. These methods comprise three re-
current neural network (RNN) models and one traditional time
series analysis technique (i.e., SARIMA). The metrics are gathered
from a large-scale IT infrastructure involving tens of thousands
of digital devices. Our results indicate that, in general, RNN mod-
els are very effective in the runtime software metrics prediction,
although in some scenarios and for certain specific metrics (e.g.,
waiting times) SARIMA proves to outperform RNN models. Addi-
tionally, our findings suggest that the advantages of using RNN
models vanish when the prediction horizon becomes too wide, in
our case when it exceeds one week.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution; Extra-functional properties; • Computing
methodologies → Neural networks.
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time series forecasting, software monitoring, runtime software
metrics
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1 INTRODUCTION
As software systems grow in complexity, the task of ensuring soft-
ware quality becomes increasingly challenging. Today software
systems constantly evolve, with frequent daily software releases
[46], and they operate under highly variable workloads [5], which
make them susceptible to unforeseen software failures [5, 55, 58].
In such a dynamic environment, traditional proactive strategies,
such as software testing, are often insufficient for ensuring consis-
tent operational efficiency [45, 58]. For this reason, monitoring is
emerging as a key activity for maintaining operational efficiency
of software systems [12, 23, 32].

Modern software applications can produce large volumes of
runtime metrics, which are typically stored as time series data in
specialized databases [23], (e.g., Prometheus [15]). Dedicated moni-
toring teams continuously analyze these time series to identify and
mitigate potential software issues [12]. However, the vast volume
of collected data can make manual analysis costly and potentially
ineffective. To address this challenge, researchers started to de-
velop automated techniques that can facilitate the identification of
software issues or aid in the debugging process [1, 6, 16, 19, 25, 53].

Despite these advancements, significant opportunities in the
realm of data analysis remain unexploited. Time series forecasting
(TSF), in particular, presents a promising avenue for enhancing
the current practices in software monitoring. Indeed, the ability to
predict future trends in runtime software metrics could facilitate
the adoption of proactive measures, potentially preventing signifi-
cant software failures or optimizing resource allocation. Runtime
software metrics are notoriously difficult to analyze, due to their
inherent instability [5, 20, 38, 54]. However, recent advancements
in TSF have demonstrated its successful application across diverse
fields, including economics [7, 50], meteorology [11], and health-
care [48]. Moreover, TSF has recently begun to gain attention also
in the software domain [3, 10, 31, 35]. For instance, Amin et al. [3]
employed AutoRegressive Integrated Moving Average (ARIMA)
models to predict reliability a software system based on testing
results. Krishna et al. [35] used time series analysis to forecast bug
reports and enhancement requests in software projects. Bauer et al.
[10] proposed the use of TSF in self-aware systems.

Despite these efforts, to date there is still little knowledge about
the effectiveness of TSF methods for the prediction of runtime soft-
ware metrics. With this paper, we aim to fill this gap by presenting
an empirical assessment of multiple TSF methods on runtime soft-
ware metrics. The study aims at addressing the following research
questions:
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RQ1 How effective are TSF methods when applied to predict short-
term runtime software metrics?

RQ2 Do TSF methods exhibit diverse forecasting accuracy over dif-
ferent classes of runtime software metrics?

RQ3 To what extent does forecasting accuracy degrade when applied
to predict longer-term runtime software metrics?

To answer our research questions, we investigate the forecasting
accuracy of four TSF methods, including a seasonal autoregressive
moving average model (SARIMA) and three different recurrent
neural networks, namely: fully-connected recurrent neural net-
works (FC-RNN), long-short memory networks (LSTM), and gated
recurrent unit networks (GRU). The evaluation is performed on
25 real-world runtime software metrics that are categorized into 3
classes (i.e., crash rate, hang time, and waiting time) and gathered
from 8 different software applications, resulting in a total of 14,575
individual data points. These metrics were recorded over a period
of one and a half years on the large-scale IT infrastructure of a com-
pany1, which comprises thousands digital devices. In this study, we
distinguish between short- and long-term software metrics. This dis-
tinction refers to the distance of the forecasting target with respect
to the current week of the software metric under analysis.

We show that, overall, RNN models are more effective than
SARIMA and naive baselines, with FC-RNN providing the best
forecasting accuracy. Nonetheless, our evaluation underscores the
lack of a “silver bullet” method that outperforms all others across
the considered metrics. For instance, we found that when deal-
ing with specific classes of metrics, such as application waiting
times, SARIMA offers the most accurate prediction. Furthermore,
we found that benefits of using RNN models are valuable until the
forecasting horizon does not exceed approximately one week.
The main contribution of this work are:

• A first empirical assessment of TSF methods when applied
to runtime software metrics.

• An investigation of how different TSF methods behave when
applied to different classes of metrics.

• A sensitivity analysis of TSF on runtime software metrics
while varying forecasting horizons.

Paper Structure. The remainder of this paper is organized as
follows. Section 2 provides background on TSF within and outside
the software domain. Section 3 outlines the experimental design
used for our empirical study. In Section 4, we detail our research
questions alongwith the corresponding findings. Section 5 discusses
potential threats to validity, and Section 6 concludes this paper.

2 BACKGROUND
Over the years, a vast variety of phenomena have been captured
and modeled by leveraging the concept of time series, which can be
defined as an ordered sequence of data points gathered at regular
time intervals. Time series forecasting (TSF) approaches aim at pre-
dicting future evolution of the variable of interest by learning from
its historical data while looking for patterns, trends, and seasonal-
ity in the data. Due to the easy porting of the time series concept,
the effectiveness of TSF methods has been widely investigated in

1Due to privacy concerns, the company choose not to reveal itself.

diverse areas, such as medicine, environment, system engineering,
finance and more [3, 8, 17, 22, 44, 47, 50, 63]. Forecasting techniques
can be differentiated between one-step-ahead and multistep-ahead
ones. In the first case, the goal is to predict just the next value of the
time series, whereas multiple values are predicted simultaneously
in the second case. Generally, the number of forecast values that
are generated at a time is denoted as the forecasting horizon.

Earliest techniques relied on straightforward heuristics as they
evolved over time in more complex statistical models, such as Ex-
ponential Smoothing [13] and Autoregressive Integrated Moving
Average (ARIMA) models [14]. The wide popularity of machine
learning techniques, also driven by the increasing availability of
data, has induced a strong interest in artificial neural networks
(ANNs) for this purpose [27]. Some studies also explored the combi-
nation of statistical models and deep learning models, for instance
Zhang et al. leveraged statistical models to fit the linear part of the
time series and ANN to model the residual part [65].

Usually, a time series is fed into a neural network by creating
consecutive shifted input windows to predict the datapoint(s) that
follows the input sequence, thus modeling the task as a super-
vised learning problem. As dealing with sequential data is a very
frequent task in machine learning, several neural network architec-
tures have been expressly designed for sequence prediction, such as
recurrent neural networks (RNN). Examples of most popular RNN
are Long Short-Term Memory (LSTM) [26, 28, 47] and Gated Recur-
rent Unit (GRU) [18] models. Despite the extensive employment of
TSF techniques, the No Free Launch Theorem [62] denies the possi-
bility to build and select a single method that outperforms all the
others across all time series, and for this reason a comprehensive
evaluation of several models is often needed for the forecasting
effectiveness.

Motivated by the necessity of studying the behavior of software
applications over time [24, 56], and driven by the vast amount of
data produced by modern software applications, researchers have
started to apply TSF methods in software contexts, with the goal of
anticipating potential issues that may arise from software evolu-
tion [3, 10]. For instance, Jia et al. [31] applied a hybrid prediction
framework, namely DGRU, to predict software aging and determine
the optimal rejuvenation time. Krishna et al. [35] proposed a model
to predict the number of bug reports and enhancement requests
that are going to be generated in the next month by exploiting the
history of issue reports. Amin et al. [3] investigated the employ-
ment of ARIMA models in order to predict software reliability as an
alternative solution to fight the Software Reliability Growth Models
(SRGMs) limitations. Other researchers have explored the use of TSF
for enabling proactive autonomous decisions in self-aware systems.
For instance, Bauer et al. [10] conducted a preliminary investiga-
tion into how TSF methods can be integrated within self-aware
systems. Additional research has investigated the exploitability of
TSF in predicting Quality of Service (QoS) attributes [30, 52, 60].
For example, Syu et al. [52] conducted an empirical study on TSF
methods applied to web services quality attributes.

Albeit considerable work has been carried out on the application
of TSF methods in specific software contexts, their application on
runtime software metrics and the derived benefits/drawbacks in
a broader monitoring environment should be more thoroughly
investigated. To fill this gap, we conducted an empirical evaluation
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of TSF methods on several runtime software metrics (by varying
nature) gathered from a large IT infrastructure.

3 EXPERIMENT DESIGN
In this section, we describe our experiment design, including the
dataset, the TSFmethods (and baselines) we studied, and the specific
experimental procedures we used to gather metric predictions.

3.1 Dataset
Our dataset consists of 25 distinct runtime software metrics col-
lected from the IT infrastructure of a large company, which includes
more than 30k digital devices with heterogeneous hardware and
software configurations. For each of the 25 metrics, the dataset
provides a time series of daily observations collected over a period
of one and a half years, thus resulting in a total of 583 measure-
ments per metric. Each metric (i.e., times series) concerns to a
specific runtime aspect of a particular software application. For
example, one metric might represent the crash rate of a specific
web browser, while another could indicate the hang time of a par-
ticular email client. The dataset encompasses 8 distinct software
applications from a diverse array of types, including web browsers,
communication platforms, and word processors. Each application
was monitored on 3 different runtime aspects, which we refer to as
metric classes. In the following, we describe the semantics of each
metric class.

• Crash rate denotes the average number of observed crashes
of an application per hour of use. It is calculated by dividing
the total number of observed application crashes within the
IT infrastructure by the cumulative hours of application
usage across all devices.

• Hang time represents the percentage of application usage
time during which the application remains in a “hang” state,
i.e., when the application is unresponsive and not perform-
ing any active processing tasks. This runtime aspect can
be critical for diagnosing potential issues within software
applications.

• Waiting time is defined as the time users spend in waiting
for an application to respond while it is actively running.
This metric encompasses periods when the application is un-
responsive, known as the “hang” state, as well as application
and network loading times. It reports the percentage of the
total application usage time that is spent in a “waiting” state
across all devices within the IT infrastructure.

As a result, the dataset contains 24 time series (i.e., 3 for each of
the 8 software applications), plus an additional one that reports the
crash rate related to operating system failures, such as blue screen
of death [36] or kernel panics [49].

Due to privacy concerns, we cannot make publicly available the
dataset used in our study.

3.2 Models and Baselines selection
For our empirical study, we selected four TSF methods, includ-
ing one autoregressive moving-average model and three recurrent
neural network models. We chose these types of models because

they have been successfully applied to time series analysis in pre-
vious research [3, 22, 26, 31]. Specifically, our selection comprises
the following TSF methods: (i) Seasonal Autoregressive Integrated
Moving Average (SARIMA) [59], (ii) Fully Connected Recurrent
Neural Network (FC-RNN) [40, 64], (iii) Long Short-Term Memory
(LSTM) [28] and (iv) Gated Recurrent Unit (GRU) [18].

SARIMA is an extension of the autoregressive integrated moving-
average (ARIMA) model [14] that addresses the seasonal fluctua-
tions often observed in time series data. It is based on the integration
of additional seasonal terms, which allow the model to capture both
short- and long-term dependencies, as well as repetitive patterns
that occur at fixed intervals. This versatility makes it suitable for
forecasting time series where the data exhibit periodicity.

FC-RNN is a variant of neural networks where the outputs are
fed back into the network as inputs, thus forming directed cycles.
This creates a recurrent connection pattern that allows the network
to maintain a state that can theoretically hold information about
previous inputs indefinitely. The term “fully connected” denotes
that each neuron in a given layer is connected to every neuron in
both the preceding and subsequent layers.

LSTM is a specialized form of RNN designed to address the chal-
lenge of learning long-term dependencies. Unlike standard RNNs,
LSTMs include a series of gated cell states that regulate the flow of
information. These gates control the persistence and updating of
information within the cell state. This architecture allows LSTMs to
effectively retain important information over extended sequences
while discarding irrelevant data, thus making them particularly
suitable for TSF.

GRU is a particular form of RNN, introduced to solve the vanish-
ing gradient problem inherent to traditional RNNs. GRUs simplify
the LSTM approach by combining the forget and input gates into
a single “update gate” [18], while also merging the cell state and
hidden state. This results in a more streamlined model that requires
fewer parameters without sacrificing performance.

To aid the interpretability of results, we compare the forecasting
accuracy of TSF models with the ones of two naïve baseline models,
namely seasonal naïve (sNaïve) and seasonal monthly mean (sMM).

sNaïve operates on the assumption of temporal recurrence, by
repeating the last observed values for future forecasts. In other
words, this method projects the most recent seasonal data forward
to the next equivalent season, thus assuming cyclical repetition.
For instance, when predicting values for the upcoming week, the
method simply replicates the observations from the previous week.
This method is commonly used as baseline for comparative analysis
in TSF studies [9, 22, 27, 34, 43, 52].

sMM leverages recent seasonal weekly trends to forecast future
values. Specifically, it computes predictions by calculating the mean
of data points that correspond to the sameweekday in the preceding
month. For example, to forecast the value for an upcoming Monday,
sMM would average the values from all Mondays in the last month.
Domain experts from the company that provided the dataset have
recommended this baseline approach, as it reflects the established
analytical practices of their software monitoring team.
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3.3 Experimental procedure
To account for the distinct characteristics of the TSF methods in-
vestigated in our study, we adopt two distinct procedures tailored
specifically for the RNN and SARIMA models, respectively.

SARIMA evaluation. For SARIMA, we independently create one
model instance for each of the 25 time series (i.e., runtime software
metrics). The fitting process in SARIMA models consists of estimat-
ing the (𝑝, 𝑑, 𝑞) (𝑃, 𝐷,𝑄)𝑠 parameters, where: 𝑝 and 𝑃 represent the
order of the autoregressive (AR) terms for the non-seasonal and sea-
sonal parts respectively; 𝑑 and 𝐷 denotes the degree of differencing
needed to render the series stationary on both non-seasonal and
seasonal levels; 𝑞 and 𝑄 indicate the order of the moving average
(MA) terms for the non-seasonal and seasonal components; and 𝑠
denotes the seasonality period of the time series data. To estimate
the 𝑑 and 𝐷 parameter, we considered the number of times we
applied differencing to obtain a stationary time series according
to the ADFuller [21] test. The best values of (𝑝, 𝑞, 𝑃,𝑄) have been
searched by fitting the model with all the values ranging from 0
to 3 for each parameter, and by selecting the parameters config-
uration that gave the lowest Akaike Information Criterion (AIC)
[2, 51] value after the model fitting. We set the 𝑠 parameter to 7,
which corresponds to a one week seasonality. The fitting process is
performed using the initial 467 consecutive measurements of the
time series (i.e., 80% of the data points), with the remaining 20% of
the measurements reserved for assessing the forecasting accuracy
of the model. For the evaluation, starting from the initial input win-
dow of 467 consecutive measurements, we progressively increase
the input window by one time unit and use the model to forecast
the subsequent 14 measurements. This methodology enables us to
simulate a realistic scenario of progressive forecasting, in which
the model is continuously tested as new data becomes available in
the time series. As a result, we obtain for each time series a set of 89
forecast segments 𝐹 , each consisting of 14 predicted measurements.

RNN evaluation. To train the RNN models, instead, we employ a
sliding window segmentation technique [29], which divides a longer
time series of measurements into smaller, overlapping segments of
fixed size. Specifically, we use a sliding window of 28 consecutive
measurements (i.e., 4 weeks) to generate multiple overlapping seg-
ments. The initial 14 measurements serves as the input segment
(or look-back period), whereas the remaining measurements form
the forecast segment. Following the best practice for deep-learning
models [42, 63], we scaled the data using the z-score normalization
technique, thus ensuring that the data falls within a comparable
range. Specifically, we standardize each of the 28 measurements
within the window segment by using the process outlined in Equa-
tion (1):

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖𝑛𝑝𝑢𝑡

𝜎𝑖𝑛𝑝𝑢𝑡
(1)

where 𝑧𝑖 is the standardized value of the 𝑖𝑡ℎ data point of the win-
dow segment, 𝑥𝑖 is the original data point value, 𝜇𝑖𝑛𝑝𝑢𝑡 is the mean
of the input segment measurements, and 𝜎𝑖𝑛𝑝𝑢𝑡 is their standard
deviation. We use the mean and standard deviation of the input seg-
ment, instead of the entire window of 28 measurements, to ensure
that our evaluation process reflects realistic forecasting scenarios,

where future measurements (i.e., the forecast segments) are not yet
known.

To evaluate a RNN model, we independently train one model
instance for each of the 25 time series, by using the initial 72%
consecutive window segments (i.e., 394 segments) for training, the
subsequent 8% for validation (i.e., 19 segments), and the remaining
20% for testing (i.e., 89 segments). For the RNNmodels under consid-
eration (i.e., FC-RNN, LSTM, GRU), the neural network architecture
is designed as follows. The first layer of the architecture consists of
14 units of the specific RNN type (either FC-RNN, LSTM, or GRU).
The architecture includes a second layer composed of another 14
units of the same type, which is encapsulated within a bidirectional
layer. Finally, the processed information is channeled through a
fully connected layer with 14 units, by employing the hyperbolic
tangent (tanh) activation function to produce the final output. We
use the Adam optimizer [33] with an initial learning rate of 0.001,
using the mean absolute error (MAE) as the loss function. Addition-
ally, we implement a reduce-on-plateau strategy, which decreases
the learning rate when no improvement is observed in the valida-
tion loss for 20 epochs. The training is conducted for a maximum
of 500 epochs, with an early stopping mechanism that terminates
the process if no improvement in the validation loss is observed
for 50 consecutive epochs. The best model is selected basing on the
lowest validation loss observed throughout the training epochs. As
a result of the evaluation process, similarly to SARIMA, we obtain
for each RNN model and time series a set of forecast segments 𝐹 ,
each consisting of 14 measurements.

Notation. For notational convenience, we use 𝐹 𝑖 to denote the
forecast segment that aims to predict the time series data points
beginning from the 𝑖th position. For instance, 𝐹 500 represents the
forecast segment predicting data from the 500th to the 513th position
of the time series. Additionally, we use 𝐹 𝑗 to denote the 𝑗 th element
of the forecast segment, with 1 ≤ 𝑗 ≤ 14. Figure 1 graphically
illustrates the example presented above (𝐹 500). The black circles
represent the data used as input by the models and the red ones are
the predicted measurements.

Forecast Segment F500

500 513

F500
14F500

1

time 
series

Figure 1: Forecast segment within the time series.

Ultimately, for each TSF method and time series, we obtain 89
forecast segments 𝐹 𝑖 , with 482 ≤ 𝑖 ≤ 570, where 482 denotes the
starting position of the first forecast segment appearing in the time
series, and 570 denotes the starting position of the last forecast
segment of the time series.

Implementation details. The experiment has been implemented
in Python. The SARIMAX class of statsmodels2 library has been used
for implementing SARIMA models. RNNs have been implemented
using SimpleRNN (for FC-RNN models), LSTM and GRU classes of
Tensorflow3.

2https://www.statsmodels.org/stable/index.html
3https://www.tensorflow.org/
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4 RESEARCH QUESTIONS AND FINDINGS
In this section, we describe in detail the research questions and
experimental results of our empirical study. For sake of clarity,
we address each research question in a separate subsection. Each
subsection is structured as follows: we first outline the objective of
the research question, then we describe the methodology used to
gather the answers, and finally we discuss the results.

4.1 RQ1: How effective are TSF methods when
applied to predict short-term runtime
software metrics?

Objective. With the first research question, we want to study the
effectiveness of TSF methods in predicting short-term runtime soft-
ware metrics. Specifically, our focus is on evaluating the accuracy
of these methods in “one-step-ahead” forecasting, which entails
predicting runtime software metrics for the immediate next day.

Methodology. To address this research question, we employ a
commonly used metric for measuring forecasting accuracy, namely
SMAPE (Symmetric Mean Absolute Percentage Error).

The values of SMAPE range from 0% to 200%, where 0% indicates
perfect forecasting accuracy, while 200% represents the worst accu-
racy. Given that the aim of this research question is to evaluate the
forecasting accuracy of TSF methods in predicting next-day met-
rics, we calculate the SMAPE by focusing exclusively on the first
element of each forecast segment 𝐹 𝑖 , i.e., the next-day prediction.

Formally, given a time series 𝑌 and a particular TSF method, we
calculate the corresponding SMAPE as follows:

SMAPE =
100%

𝑛 − 𝑘 + 1

𝑛∑︁
𝑡=𝑘

��𝐹 𝑡1 − 𝑌𝑡
��

1
2

(��𝐹 𝑡1 �� + |𝑌𝑡 |
) (2)

where 𝑘 and 𝑛 denote the positions of the first and last elements
of the time series used for evaluation (specifically, 𝑘=482 and 𝑛=513
in our case). 𝐹 𝑡1 denotes the first element of the forecast segment 𝐹 𝑡

(i.e., the next-day prediction of the TSFmethod for the 𝑡𝑡ℎ element of
the time series), and 𝑌𝑡 denotes the actual time series measurement
at position 𝑡 .

As a result of this process, for each TSF method, we obtain 25
SMAPE results, i.e., one per time series.

In order to assess (and compare) the forecasting accuracy of
different TSF methods, we plot the SMAPE distribution of each
TSF method using box plots, and report the associated descriptive
statistics (e.g., mean, median). Additionally, we conduct an analysis
to determine whether each TSF method outperforms the naive base-
lines. Indeed, the practical applicability of a TSF method may be
questioned if it does not improve upon these baselines. To accom-
plish this, we employ the Wilcoxon signed-rank test [61] for each
pair of <TSF method, baseline> to compare their respective SMAPE
values. We set the significance level at 0.05, meaning that differ-
ences with p-values below this threshold are considered statistically
significant. In addition to the Wilcoxon signed-rank test, we utilize
the common language effect size [39], in the version proposed by
Vargha and Delaney (𝐴12) [57], to assess the magnitude of the dif-
ferences observed. Given two related paired samples 𝑋 and 𝑌 , the

common language effect size is the proportion of pairs where 𝑋 is
higher than 𝑌 .

𝐴12 = 𝑃 (𝑋 > 𝑌 ) + .5 × 𝑃 (𝑋 = 𝑌 ) (3)
The𝐴12 value, which ranges from 0 to 1, is interpreted using the

thresholds provided by Vargha and Delaney [57]. A 𝐴12 value of
0.5 suggests that there is no significant difference in forecasting
accuracy between the TSF method and the baseline. A value of 𝐴12
larger than 0.5 indicates that the TSF method is likely to yield more
accurate forecasts than the baseline, i.e., lower SMAPE. Specifically,
the magnitude of the difference is considered as small (S+),medium
(M+) and large (L+) if the 𝐴12 value is greater than or equal to 0.56,
0.64 and 0.71, respectively. Conversely, a value of 𝐴12 lower than
0.5 indicates that the TSF method yields worse forecasting accuracy
than the baseline. In this case, the effect size is considered as small
(S−), medium (M−) and large (L−) if the 𝐴12 value is lower than or
equal to 0.44, 0.34 and 0.29, respectively. We consider comparisons
that report 𝐴12 larger than 0.44 and lower than 0.56 as negligible,
and therefore not meaningfully different.
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Figure 2: RQ1. SMAPE distribution for each TSF Method.
Boxplots are highlighted in red for RNN models, grey for
SARIMA and white/silver for the baselines.

SMAPE Statistics

Mean (𝜇) Median (�̃� ) Std Dev (𝜎 ) Min Max

sNaïve 19.53 16.88 14.23 3.23 55.54
sMM 18.52 15.76 15.77 2.62 70.65

SARIMA 28.75 15.48 33.02 2.09 116.95
FC-RNN 14.09 12.64 10.31 2.44 44.30
LSTM 15.14 13.65 10.94 2.27 43.99
GRU 14.26 13.48 9.91 2.49 40.82

Table 1: RQ1. SMAPE descriptive statistics for TSF methods
and baselines.

Results. We reported the results concerning the SMAPE distri-
bution of TSF methods in Figure 2 and Table 1. A first observation
is that RNN-based methods demonstrate promising forecasting
accuracies, as evidenced by their average SMAPE values: 14.09%
for FC-RNN, 15.14% for LSTM, and 14.26% for GRU. Among them,
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sNaïve sMM

SARIMA 0.50 (-), p=0.596 0.48 (-), p=0.164
FC-RNN 0.63 (S+), p=<0.001 0.57 (S+), p=0.001
LSTM 0.59 (S+), p=<0.001 0.55 (-), p=0.027
GRU 0.60 (S+), p=<0.001 0.56 (S+), p=0.006

Table 2: RQ1. Results of the comparison between TSF meth-
ods and baselines. Each cell is formatted as “𝐴12, 𝑝-𝑣𝑎𝑙𝑢𝑒”,
where 𝐴12 represents the Vargha-Delaney effect size, and the
p-value is the result of the Wilcoxon signed-rank test. The
interpretation of the 𝐴12 value is also provided in brackets.
Comparisons where TSF methods outperform baselines with
statistical significance (𝑝-𝑣𝑎𝑙𝑢𝑒< 0.05) and a non-negligible
effect size are highlighted in bold.

FC-RNN appears to be the most effective, by providing the lowest
median and mean SMAPE values. These results are comparable to,
or even better than, those reported in recent TSF research [9, 10, 37].
From Figure 2, it can be observed that RNN-based methods (shown
in red in Figure 2) demonstrate better forecasting accuracy than
baselines, as indicated by their lower SMAPE values. In support
of this, we also notice in Table 1 that RNN models show consider-
ably lower mean and median SMAPE values than those provided
by baselines. For example, if we compare the worst-performing
RNN model in terms of mean and median SMAPE (i.e., LSTM) with
the best-performing baseline (namely, sMM) we still observe an
improvement in mean (18.52% versus 15.14%) and median (15.76%
versus 13.62%) values. Another interesting result is that RNN-based
methods exhibit higher stability in forecasting accuracy when com-
pared to other approaches, i.e., the prediction error tends to vary
less from one time series to another. Indeed, as shown in Table 1,
RNN-based methods exhibit lower standard deviations in SMAPE.
Specifically, among RNN-based methods we observe a maximum
standard deviation of 10.94% (LSTM), which is notably lower than
the 14.23% and 15.77% standard deviations observed for sNa"ive
and sMM baselines, respectively. This observation is remarked by
Figure 2, which displays a narrower inter-quartile range (IQR) for
RNN-based methods that is also more shifted towards the bottom,
thus indicating lower errors. This suggests that RNN-based meth-
ods provides more accurate and stable prediction than baselines.
Further confirmation of this finding comes from the results of the
Wilcoxon signed-rank test presented in Table 2. Both FC-RNN and
GRU demonstrate statistically significant improvements over the
baselines (𝑝 < 0.05), with a non-negligible effect size (𝐴12 ≥ 0.56).
Additionally, LSTM outperforms sNaive with a small effect size.
These results indicate considerable benefits in employing RNN for
TSF of short-term runtime software metrics.

An analysis of Figure 2 reveals that SARIMA results in the widest
SMAPE IQR, thus indicating significant variation in its forecast-
ing accuracy. This observation is further supported by the data in
Table 1, which shows SARIMA having the highest standard devia-
tion, at 33.02%, among all evaluated methods. Moreover, SARIMA
provides the worst average forecasting accuracy, with an average
SMAPE of 28.75%. While these results might suggest that SARIMA
is poorly suited for predicting short-term runtime software met-
rics, a closer examination of its SMAPE distribution reveals some
interesting insights. For example, as shown in Table 1, SARIMA

achieves the lowest minimum SMAPE value (2.09%) and its me-
dian SMAPE (15.48%) is lower than those of the naive baselines.
Additionally, Figure 2 shows that SARIMA provides the lowest first
quartile in SMAPE. These observations indicate that SARIMA per-
forms quite well on a specific subset of time series, potentially even
outperforming other approaches on these instances.

Summary. RNN-based methods are more effective in predict-
ing short-term runtime software metrics, with FC-RNN being the
most effective one (average SMAPE of 12.64%). FC-RNN and GRU
outperform both baselines with statistical significance (𝑝 < 0.05)
with non-negligible effect sizes (𝐴12 ≥0.56). SARIMA is less stable
in forecasting accuracy, by exhibiting SMAPE values that signif-
icantly vary from one time series to another (standard deviation
of 33.02%). To answer RQ1, our analysis demonstrates that TSF
methods, particularly RNN-based methods, are quite effective in
accurately predicting short-term runtime software metrics. These
findings highlight the potential benefits of applying TSF methods
into real-world software monitoring contexts.

4.2 RQ2: Do TSF methods exhibit diverse
forecasting accuracy over different classes
of runtime software metrics?

Objective. The second research question aims to assess the fore-
casting accuracy of TSF models for each class of runtime software
metric (i.e., crashes rate/hang times/waiting times). We want to study
whether TSF methods perform consistently across diverse metric
classes or their accuracy varies significantly depending on the spe-
cific class of metric being forecasted.

Methodology. To address this research question, we reuse the
SMAPE values previously calculated for RQ1. However, rather than
examining these values in aggregate, we group them per metric
class.We investigate the forecasting accuracy of TSFmethods across
each metric class by analyzing their corresponding SMAPE distribu-
tions through box plots, and by examining the associated descriptive
statistics. For each metric class, we also compare the forecasting
accuracy of TSF methods with naive baselines using Wilcoxon
signed-rank test. This is done for each <TSF method, baseline> pair
to determine if there is a statistically significant difference in their
SMAPE values. Additionally, we employ the Vargha-Delaney 𝐴12
to assess the effect size.

Results. The SMAPE distribution computed over all the metric
classes is depicted in Figure 3, and the associated descriptive statis-
tics are reported in Table 3. We examined the results in two ways:
(i) by evaluating the general forecasting accuracy of TSF methods
on individual software metric classes, and (ii) by analyzing how
each TSF method behaves in relation to each software metric class.

With the first analysis, we want to study how TSF methods
collectively perform when applied to different classes of metrics. In
Figure 3, we observe that SMAPE box plots for same metric classes
exhibit similar behavior across various TSF methods. For instance,
when observing the SMAPE distribution related to waiting time,
we notice significantly lower errors compared to those reported
for other metric classes. This can be observed in both Figure 3
and Table 3: the IQR, mean, and median of SMAPE for waiting

53



Time Series Forecasting of Runtime Software Metrics: An Empirical Study ICPE ’24, May 7–11, 2024, London, United Kingdom

Baselines TSF Methods

sNaive sMM SARIMA FC-RNN LSTM GRU
Metric Class SMAPE Stat

Crash Rate

Mean (𝜇) 24.48 24.05 38.76 17.40 19.07 17.95
Median (�̃� ) 18.55 15.76 18.24 13.56 14.70 14.97
Std Dev (𝜎 ) 16.40 20.88 37.06 9.72 11.21 9.82
Max 55.54 70.65 116.95 32.51 39.83 35.10
Min 6.12 5.07 4.55 5.24 5.03 5.33

Hang Times

Mean (𝜇) 21.62 18.33 39.32 16.24 16.52 15.86
Median (�̃� ) 19.02 16.61 34.91 13.44 14.01 13.40
Std Dev (𝜎 ) 14.31 13.18 36.52 12.70 12.33 11.48
Max 50.65 46.35 116.26 44.30 43.99 40.82
Min 5.65 3.98 3.64 3.97 4.09 4.07

Waiting Times

Mean (𝜇) 11.87 12.50 6.91 8.20 9.34 8.53
Median (�̃� ) 8.72 8.78 4.19 5.90 6.34 6.86
Std Dev (𝜎 ) 8.85 9.98 5.77 6.01 7.38 6.03
Max 28.39 29.99 17.28 18.04 21.77 19.08
Min 3.23 2.62 2.09 2.44 2.27 2.49

Table 3: RQ2. SMAPE descriptive statistics for TSF methods and baselines grouped by software metric class.
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Figure 3: RQ2. SMAPE distribution of TSF methods grouped
by metric class.

time are consistently lower than those reported for other metric
classes, regardless of the TSF method employed. This suggests
that time series pertaining to the same metric classes may share
common characteristics that influence the forecasting accuracy of
TSF methods, thus leading to consistently better or worse outcomes.
Indeed, time series related towaiting time appear significantly more
predictable than those related to crash rate or hang time. Both hang
time and crash rate show larger and more dispersed (i.e., higher
standard deviation 𝜎) SMAPE values, with crash rate looking as
the hardest to predict. A possible motivation for this result could
be that waiting time metrics exhibit a seasonal pattern that recurs
over time, while crash rate (or hang time) metrics are influenced by
more unpredictable factors, such as unexpected software bugs or
hardware malfunctions.

In our second analysis, we investigate the forecasting accuracy
of various TSF methods for each class of runtime software metric. In
Figure 3 we observe that RNN-based methods, i.e., FC-RNN, LSTM,
and GRU, perform generally well across the different metric classes.
RNN-based methods show lower (or comparable) SMAPE distribu-
tions than those reported by naive baselines. This is confirmed by

the results of the Wilcoxon signed-rank test, reported in Table 4.
For instance, FC-RNN outperforms sNaive in all the metric classes
with a statistically significant difference (𝑝 < 0.05) and a medium
effect size (𝐴12 ≥ 0.64). LSTM also outperforms sNaive with a small
effect size (𝐴12 ≥ 0.56) on crash rate and hang time. GRU, similarly,
outperforms sNaive with small and medium effect sizes on crash
rate and hang time, respectively. Compared to the sMM baseline,
both LSTM and GRU report statistically significant lower SMAPE
values on hang time and waiting time, with either small or medium
effect sizes. Overall, FC-RNN demonstrates the best forecasting ac-
curacy across the different metric classes, by providing statistically
significant improvement over both naive baselines in all metric
classes, except on crash rate when compared to sMM.

Another noteworthy result concerns the diverse forecasting ac-
curacy provided by SARIMA over different metric classes. By ex-
amining Figure 3, we observe that SARIMA provides substantially
different SMAPE values over different metric classes. For instance,
while it reports relatively high errors for crash rate and hang time
(e.g., average of 38.79% and 39.32%, respectively), considerably low
SMAPE values are reported for waiting time (e.g., average of 6.91%).
This diversity is remarked in the comparison with naive baselines.
According to Table 4, SARIMA outperforms both sNaive and sMM
on waiting time with statistically significant difference, and large
and medium effect sizes, respectively. However, for other metric
classes, SARIMA does not provide any improvement over the base-
lines. Even more, it provides worse forecasting accuracy than sMM
on crash rate. Nonetheless, by analyzing both Figure 3 and Table 3,
we can notice that SARIMA provides the best forecasting accuracy
on waiting time among different TSF methods, with the lowest
mean and median values (respectively, 6.91% and 4.19%). This may
suggest that such method performs particularly well when deal-
ing with more predictable time series that show recurring patterns,
while it may not fit well on more irregular runtime software metrics,
such as crash rate or hang time.

Summary. When collectively analyzed, TSF methods exhibit di-
verse forecasting accuracy depending on the class of runtime soft-
ware metric. For instance, TSF methods show higher effectiveness
when dealing withwaiting timemetrics, while they are less effective
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Software Metric Class

TSF Method Baseline Crash Rate Hang Times Waiting Times

SARIMA sNaive 0.42 (-), p=0.129 0.36 (-), p=0.312 0.73 (L+), p=0.008
sMM 0.38 (S− ), p=0.008 0.34 (-), p=0.148 0.70 (M+), p=0.008

FC-RNN sNaive 0.65 (M+), p=0.004 0.64 (M+), p=0.008 0.69 (M+), p=0.008
sMM 0.52 (-), p=0.496 0.59 (S+), p=0.008 0.64 (M+), p=0.016

LSTM sNaive 0.60 (S+), p=0.012 0.62 (S+), p=0.008 0.61 (-), p=0.109
sMM 0.53 (-), p=0.57 0.56 (-), p=0.055 0.59 (-), p=0.109

GRU sNaive 0.59 (S+), p=0.02 0.64 (M+), p=0.008 0.61 (-), p=0.055
sMM 0.52 (-), p=0.652 0.58 (S+), p=0.023 0.62 (S+), p=0.023

Table 4: RQ2. Results of the comparison between TSF methods and baselines over each class of metric. Each cell is
formatted as “𝐴12, 𝑝-𝑣𝑎𝑙𝑢𝑒”, where 𝐴12 represents the Vargha-Delaney effect size, and the p-value is the result of the
Wilcoxon signed-rank test. The interpretation of the 𝐴12 value is also provided in brackets. Comparisons where TSF
methods outperform baselines with statistical significance (𝑝-𝑣𝑎𝑙𝑢𝑒< 0.05) and a non-negligible effect size are highlighted
in bold.

on classes of metrics more closely related to software malfunctions,
such as hang times and crash rate. RNN-based methods demonstrate
the most consistent effectiveness across different metric classes,
with FC-RNN being the most effective one. However, when deal-
ing with classes of more predictable metrics, such as waiting time,
SARIMA has been shown to be the most effective.

4.3 RQ3: To what extent does forecasting
accuracy degrade when applied to predict
longer-term runtime software metrics?

Objective. The goal of this research question is to assess how
forecasting accuracy decreases when predicting longer-term run-
time software metrics. The TSF methods that we consider are able
to generate multi-step ahead forecasts. This means that, at any
given time, a TSF method can be queried to predict (for instance)
the runtime software metrics of the next 14 days. It is expected that
near-term predictions (e.g., for the forthcoming days) will generally
be more accurate than those for longer terms (e.g., the following
week). Through this research question, we aim to evaluate the ex-
tent to which the accuracy decreases as the forecasting horizon is
progressively extended.

Next Day

Forecast Segment

Forecast Segment

Offset (h = 6)
One Week 
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Figure 4: RQ3. Three representative offset scenarios: next day
(ℎ = 0), one week ahead (ℎ = 6), and two weeks ahead (ℎ = 13).

Methodology. To achieve this research goal, we introduce the
concept of offset (ℎ), which we define as the number of days be-
tween the last time step used as input and the forecast target. This
essentially simulates scenarios where, at a given moment, the goal

is to predict the metric for a specific future day. For example, an
offset ℎ = 0 indicates a scenario where the forecast target is the
next day, while an offset ℎ = 6 corresponds to a scenario where the
goal is to predict runtime software metrics for the same day in the
following week. Figure 4 graphically illustrates the concept of offset
and forecast target. The first scenario represents the case where
the goal is to predict the metrics of next day (ℎ = 0), the second
scenario targets predictions for the same day in the following week
(ℎ = 6), and the third scenario uses the same day of two weeks
ahead as forecast target (ℎ = 13).

For each specific offset ℎ, we calculate the SMAPE of a given TSF
method applied to a particular time series 𝑌 as follows:

SMAPE =
100%

𝑛 − 𝑘 + 1
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2
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where 𝐹 𝑡1+ℎ represents the (1 + ℎ)𝑡ℎ element of the forecast
segment 𝐹 𝑡 , corresponding to the prediction for the 1+ℎ steps ahead
day (i.e., the forecast target). 𝑌𝑡+ℎ indicates the actual measurement
observed in the time series on that particular day. For example, with
a ℎ = 6 offset, SMAPE is calculated by considering exclusively the
errors at the 7th elements across all forecast segments of the time
series. This corresponds to assessing the forecasting accuracy of a
TSF method in predicting the runtime software metric for the same
day in the following week.

As results of this process, for each TSF method, we compute 350
SMAPE values, corresponding to each combination of time series
and offset ℎ, with 0 ≤ ℎ ≤ 13.

We employ box plots and line plots to illustrate the relationship
between SMAPE and the offset ℎ. The analysis of these plots aids
in gaining a better understanding of how forecasting accuracy
degrades as the forecasting horizon is extended.

Results. Figure 5 displays the SMAPE distribution of each TSF
method for three representative offset scenarios: next day (ℎ=0),
one week ahead (ℎ=6), and two weeks ahead (ℎ=13). Figure 6 shows
the trend of the mean SMAPE of each TSF method as the offset ℎ
increases. Figure 7 reports the same information for each metric
class, separately.
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Figure 5: RQ3. SMAPE distribution of TSF methods under three representative offset scenarios: next day (ℎ = 0), one week ahead
(ℎ = 6), and two weeks ahead (ℎ = 13).
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Figure 6: RQ3. Relationship between mean SMAPE and offset
(ℎ).

Figure 6 clearly highlights an increasing trend in the mean
SMAPE as the offset increases. This increasing trend is also ob-
servable in individual classes of metrics, as shown in Figure 7. By
looking at Figure 5, we can also notice that the SMAPE tends to
become more variable as the offset increases, thus indicating less
stability in forecasting accuracy on long-term predictions. This is

particularly visible in RNN-based methods, which show an IQR
that consistently increases with each offset scenario.

Another interesting outcome of our analysis concerns the com-
parison of the forecasting accuracy of TSF methods with the base-
lines. Specifically, upon examining Figure 6, we notice a critical
offset beyond which RNN-based methods begin to achieve compa-
rable or even worse forecasting accuracy than the ones of baselines.
This specific turning point is observed at approximately a week
ahead (ℎ ≈ 7). A similar behavior is also observable on each in-
dividual class of runtime software metric, as shown in Figure 7.
Nonetheless, each class of metric exhibits slightly different patterns.
For instance, in Figure 7, we notice that mean SMAPE of RNNs
begin to exceed those of baselines at offset ℎ = 9 on crashes rate,
instead RNNs start to exceed baselines error at offset ℎ = 6 for wait-
ing times, . This finding is also evident in Figure 5, where a clear
degradation is observed in the SMAPE distribution, moving from
the next day to the one week ahead scenario. Overall, these results
suggest that the benefits of employing RNNs for predicting runtime
software metrics vanish when the prediction target exceeds the
current week. Our results highlight the importance of accounting
for the changing dynamics of runtime software metrics, thus out-
lining the necessity of incorporating recent temporal patterns. In a
practical software monitoring context, this emphasizes the need to
regularly update predictions as new data becomes available.

Another interesting observation is that, albeit RNN models ex-
hibit similar behavior, in some cases they start to exceed the base-
lines at different offsets. For example, by looking at Fig. 7, we noticed
that LSTM start to exceed the sMM on hang time as early as offset is
equal to ℎ = 3, while for FC-RNN this happens at offset ℎ = 6. Fur-
thermore, on hang times, GRU outperforms the baselines across the
entire offset range, although from offset ℎ = 6 its SMAPE becomes
very similar to that of sMM. This reveals that the choice of the
specific RNN model can have non-trivial impact on the forecasting
accuracy of longer-term runtime software metrics.

We then examined the accuracy of TSF models in detail for each
class of software metrics. In line with the findings discussed in
RQ2, Figure 7 reveals that predictions for waiting times metrics
consistently displayed lower errors than other metric classes, even
in longer-term forecasts, with a maximum mean SMAPE of 16%. It
is interesting to note that SARIMA, which is the best-performing
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Figure 7: RQ3. Relationship between mean SMAPE and offset (ℎ) grouped by metric class. The first row displays results for
SARIMA, while the second row shows the results of RNN-based methods.

method for waiting time according to RQ2, shows here a similar
behavior to that of RNN-based methods. In fact, we observe that
SARIMA only begins to underperform the baselines when the offset
exceeds one week (ℎ = 6).

Summary. By answering RQ3, our findings reveal that short-
term forecasts are consistently more accurate than longer-term
ones. Namely, the SMAPE values demonstrate a rising trend as the
offset increases. Our results suggest that the advantages of using
TSF methods vanish if the offset exceeds approximately one week.
These findings offer practical insights into the suitability of TSF
methods for predicting long-term runtime software metrics.

5 THREATS TO VALIDITY
Construct validity. A potential threat to construct validity in

our study pertains to the selection of TSF methods. The choice of
different TSF methods might yield different results. To mitigate this
threat, we selected well-established TSF methods, by including a
traditional autoregressive moving average model and three types
of recurrent neural networks. Another threat concerns the choice
of a metric for assessing the effectiveness of the TSF methods.
The forecasting accuracy of the studied methods was evaluated
using SMAPE, which is a widely accepted scale-independent error
measure. However, it is important to note that other error metrics
could partially alter the study outcomes.

Internal validity. The implementation of RNN and SARIMAmod-
els in our study was carried out by using tensorflow and statsmodels,
respectively. The choice of these specific libraries might introduce
biases that could potentially influence the study results. Nonethe-
less, these are well-established libraries in the field of data anal-
ysis. The choice of hyper-parameters can significantly affect the
forecasting accuracy of TSF methods. Different hyper-parameter

configurations might lead to different outcomes. To mitigate this,
we tried to maintain consistent hyper-parameter settings across dif-
ferent TSF methods wherever feasible. For example, all RNN-based
methods were configured with an identical number of layers and
units, while utilizing the same optimizer. Furthermore, we applied
uniform early stopping strategies and epochs.

External validity. The results of our empirical study may not
generalize to other different runtime software metrics. However,
our analysis was based on a dataset comprising 25 different runtime
software metrics collected from 8 distinct software applications,
which span three metric classes (i.e., crash rate, hang times, and
waiting times). To the best of our knowledge, there are no other
TSF studies that have utilized a dataset involving such diversity in
runtime software metrics.

6 CONCLUSION
In this empirical study, we investigated the effectiveness of pop-
ular TSF methods for predicting runtime software metrics. Our
results demonstrate that: (i) TSF methods are indeed effective for
short-term predictions, with RNN-based methods emerging as the
most effective ones; (ii) no single method offers the best forecasting
accuracy across all runtime software metrics; (iii) the benefits of ap-
plying TSF methods diminish when the forecasting horizon extends
beyond the current week. We encourage future research to expand
upon the depth and breadth of our study scope. For instance, future
studies could delve into hyper-parameter tuning and explore further
TSF methods, including multivariate ones that can simultaneously
consider multiple runtime metrics. Additionally, given the rapid
expansion of transfer learning in various domains [4, 41, 66], the
investigation of the application of pre-trained TSF models for pre-
dicting runtime software metrics is a promising avenue for future
research.
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ABSTRACT
Industry and academia have strong incentives to adopt virtual-
ization technologies. Such technologies can reduce the total cost
of ownership or facilitate business models like cloud computing.
These options have recently grown significantly with the rise of
Kubernetes and the OCI runtime specification. Both enabled vir-
tualization technology vendors to easily integrate their solution
into existing infrastructures, leading to increased adoption. Making
a detailed decision on a technology selection based on objective
characteristics is a complex task. This specifically includes the in-
strumentation of performance characteristics that are an important
aspect for a fair comparison. Moreover, a subsequent quantifica-
tion of the isolation capability based on performance metrics is not
readily available.

In this paper, we instrument and determine the OCI runtime
isolation capability by measuring virtualized system resources. We
hereby build on two previous contributions, a proven isolation
measurement workflow engine, and meaningful isolation metrics.
The existing workflow engine is extended to integrate OCI runtime
instrumentation as well as the novel isolation metrics.

We indicate a quantifiable distinction between the isolation ca-
pabilities of these technologies. Researchers and industry alike can
use the results to make decisions on the adoption of virtualization
technology based on their isolation characteristics. Furthermore,
our extended measurement workflow engine can be leveraged to
conduct further experiments with new technologies, metrics, and
scenarios.

CCS CONCEPTS
•General and reference→Performance; •Computingmethod-
ologies → Modeling methodologies.
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1 INTRODUCTION
Virtualization technologies are consistently driving the vision of
a software-defined infrastructure. Implementing virtualization is
motivated by various factors, from facilitating business models
like cloud computing to potentially reducing total ownership costs.
Since the early days of Virtual Machines (VMs)[5], the landscape
has been massively enriched by novel approaches such as container-
ization and other lightweight virtualization concepts. The rise and
growing market share of the Kubernetes container orchestration en-
gine, as well as the definition of the Open Container Initiative (OCI)
specification, led to an increasing number of tools, methodologies,
runtimes and engines in the domain of virtualization. This enabled
virtualization technology vendors to implement their runtimes ac-
cording to the OCI specification to be utilized interchangeably with
orchestrators like Kubernetes [14]. For industry and academia alike,
this vast number of options makes it difficult to objectively decide
on what technology to utilize. The rapid expansion in this area
makes it hard to stay abreast of all the most recent developments.

Comparing different virtualization technologies is a multidimen-
sional decision problem with criteria ranging from security consid-
erations, isolation capabilities, the type of virtualization, and many
more. Various research studies are conducted on the comparison
of virtualization technologies in several aspects, from impact on
startup times[16], security considerations[15], to performance and
isolation analysis[12].

Due to this mentioned rapid extension of the virtualization land-
scape, we need effective means to make informed decisions based
on objective metrics. Multi-criteria decisions are typically complex
and can hardly be reduced to a single metric [3]. Thus, we focus
on the single distinct “isolation” metric to compare virtualization
technologies against each other.

In systems with multiple competing workloads, isolation effi-
ciency can be quantified by the impact that a disruptive workload

60

https://orcid.org/0000-0002-4896-7830
https://orcid.org/0009-0003-4288-8407
https://orcid.org/0000-0002-7270-7959
https://orcid.org/0000-0002-5451-3480
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3629526.3645044
https://doi.org/10.1145/3629526.3645044
https://doi.org/10.1145/3629526.3645044


ICPE ’24, May 7–11, 2024, London, United Kingdom Simon Volpert et al.

has on its competing but behaving counterpart. Therefore, it is
necessary to measure the performance characteristics of the dif-
ferent resources that are contended. To objectively analyze these
characteristics for different runtimes, the instrumentation across
all technologies has to be done from a black-box perspective. It
needs to acquire similar performance metrics for all technologies
and requires low instrumentation overhead. We take advantage of
extended Berkeley Packet Filter (eBPF) to get an unobstructed view
of the performance characteristics. For the sake of acquiring similar
metrics for all technologies and simplification of implementation,
we focus on OCI compliant virtualization runtimes.

In this work, we answer the following research questions.

RQ 1 (instrumentation). How can performance and derived
isolation characteristics of OCI compatible runtimes be instrumented
and subsequently measured?

RQ 2 (automatability). How can the instrumentation across dif-
ferent OCI runtimes be conducted in an efficient and uniformmanner?

RQ 3 (comparision). How do the isolation capabilities among
OCI compatible virtualization technologies compare?

This paper uses an existing benchmark-based evaluationmethod-
ology that supports the instrumentation of performance degrada-
tion and the determination of isolation capabilities. More precisely,
we present the following contributions.

C 1 (isolation determination framework). We release the
codebase of the evaluation framework including the extensions de-
veloped during the work on this paper [20]. This relates to RQ 1 and
RQ 2 and enables fellow researcher to perform similar measurements
for their usecases.

C 2 (comparison). We present a comparison (RQ 3) of three
distinct OCI compliant virtualization technologies regarding their
isolation capabilities.

The remainder of this paper is structured as follows. In section 2
we briefly present the fundamentals of this work. This includes
eBPF, OCI and a discussion of isolation and its quantification. This
is followed by a description of the methodology in section 3 and
lays the foundation for the answer to RQ 1. The methodology
is followed by some important details of the implementation in
section 4. It discusses the remaining aspects of answering RQ 1
and additionally answers RQ 2. Section 5 gives a brief overview of
the technologies involved in the experimental setup. This setup is
used to generate the final results in section 6 which closes RQ 3.
We finish with a discussion in section 7, a review of related work
in section 8 and a final summary in section 9.

2 BACKGROUND
This section explains fundamentals that are essential for the further
course of this work.

2.1 eBPF and Instrumentation
This section briefly highlights eBPF and Linux profiling. A more
detailed description is available in the previous work of the fellow
authors [2, 21].

eBPF enables the execution of verified code within a special
VM that runs as part of the Linux kernel. It hereby extends the
capabilities of the initially developed Berkeley Packet Filter (BPF)
developed at a Berkeley Laboratory [13]. Apart from executing
functions when receiving network packets, it can now observe and
react to a multitude of event sources as part of the Linux profil-
ing subsystem. Those specifically include Performance Monitoring
Counters (PMCs), tracepoints, kernel, and user functions.

While these events are technically not part of eBPF, it still enables
an approachable exploitation of them. The typical lifecycle of an
eBPF program is visualized in Figure 1 as presented by Gregg [6].

verifier

BPF

maps

(b) kprobes

(a)
tracepoints

(c) uprobes
...

BPF
bytecode

statistics

per-event
data

(i) generate

(ii)
load

(iii)
perf output

(iii)
async read

𝐾𝑒𝑟𝑛𝑒𝑙𝑈𝑠𝑒𝑟

Figure 1: eBPF internals and Linux instrumentation accord-
ing to [6]

The following paragraphs briefly describe the previously men-
tioned Linux profiling subsystem instrumentation points that are
relevant to this work.

(a) Tracepoints. Tracepoints are static kernel instrumentation
points[19]. They are defined and implemented by the kernel devel-
opers and issue an event once a specific call occurs. They further
include counters that are specific to hardware, like CPU instrumen-
tation.

(b) Kprobes. Kprobes are similar to tracepoints, yet not statically
defined [7]. They allow dynamic hooks into any kernel function
call. As this depends on the kernel function name, this is not stable
across kernel releases.

(c) Uprobes. Similar to kprobes, uprobes can dynamically instru-
ment user space function calls. In practice, this requires available
debug symbols [4].

2.2 Open Container Runtime
The “OCI”1 is part of the “Linux Foundation”2 that develops open
standards for container-based virtualization. These open standards
take the form of specifications. In the context of this paper, the “run-
time specification” is of particular importance. Figure 2 highlights
1https://opencontainers.org/
2https://linuxfoundation.org/
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the complete container virtualization toolchain from user input to
running the actual (v) container. Mavridis and Karatza [12] describe
this structure and the accompanying technologies in detail.

A (iv) runtime that implements the (iii) OCI runtime specifica-
tion can be utilized by (ii) container engines that provide a respec-
tive interface. Popular technologies that implement this interface
include containerd3, Podman4 and CRI-O5. The engines offer an
Application Programming Interface (API) that can be used by (i)
user-experience-oriented container management and orchestration
tools such as Docker6 or Kubernetes7.
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Figure 2: OCI ecosystem

As Figure 2 suggests, there aremany combinations of tools within
this chain possible, as each segment is individually interchangeable.
Specifically, the widely adopted Kubernetes orchestrator created a
large amount of the so-called “Kubernetes distributions” that bun-
dle toolchains in an opinionated use case-driven manner. Popular
examples are SUSE’s8 k3s9 and RedHat’s10 OpenShift11.

Another popular example for OCI compliant technology combi-
nations is the container UX solution Docker. While docker initially
started out as a full stack container solution including engine and
runtime, it open sourced its components (containerd, runc) and
now focusses on its role as management and orchestration tool.

2.3 Isolation Terminology
Isolation is a state that occurs when two workloads share and thus
compete for a resource. The degree to which they influence each
other describes isolation. If they have a strong impact on each other,
the isolation is low and vice versa. [9, 11, 24]. This work follows
the isolation definition of Krebs et al. [9] who define performance
isolation as follows:

Definition 1 (Isolation). Performance isolation is the ability of
a system to ensure that tenants working within their assigned quota
3https://containerd.io/
4https://podman.io
5https://cri-o.io/
6https://docker.com/
7https://kubernetes.io/
8https://www.suse.com/
9https://k3s.io/
10https://www.redhat.com/
11https://www.openshift.com/

(i.e., abiding tenants) will not suffer performance degradation due to
other tenants exceeding their quotas (i.e., disruptive tenants).

In a similar context and especially in cloud computing, related
work regularly uses the term “noisy neighbor”. This noisy neighbor
describes a disruptive tenant that negatively impacts another tenant.
According to Longbottom [10], it is defined as follows:

Definition 2 (Noisy Neighbor). A workload within a shared
environment is utilizing one or more resources in a way that it impacts
other workloads operating around it.

2.4 Isolation Quantification
Throughout this work, we assume two distinct workloads𝑊𝑎 and
𝑊𝑑 . The workloads themselves enact a certain amount of resource
utilization.
𝑊𝑎 describes the abiding, behaving workload that stays within

its assigned limits and utilizes a constant amount of resources.𝑊𝑑

on the other hand, defines a disruptive workload that misbehaves in
one way or another. It may do so by actively trying to disturb other
workloads as a “Noisy Neighbor” or by inadvertently negatively
impacting other workloads due to an error.

A simple and natural approach to the quantification of isolation
is the calculation of a “performance loss rate” [8, 11, 17, 24]. It
describes the amount of performance degradation of 𝑊𝑎 when
affected by𝑊𝑑 on a fixed amount of workload.

Therefore, the baseline performance of a workload𝑊𝑎1 in an
uncontended environment is measured. Subsequently, the same
workload plus an additional disrupting workload 𝑊𝑑 is started,
resulting in workload performance𝑊𝑎2 . Both workloads compete
against resources.

The isolation performance loss rate 𝐼𝑝𝑙𝑟 as the rate between the
difference of both performance measurements can then be deter-
mined as shown in Equation (1). Slightly changing the perspective,
𝐼𝑢𝑙𝑟 refers in Equation (2) to the utilization loss rate relative to the
maximum possible utilization 𝑅𝑛𝑚𝑎𝑥

that a resource 𝑅𝑛 can achieve.

𝐼𝑝𝑙𝑟 =
|𝑊𝑎1 −𝑊𝑎2 |

𝑊𝑎1
(1) 𝐼𝑢𝑙𝑟 =

|𝑊𝑎1 −𝑊𝑎2 |
𝑅𝑛𝑚𝑎𝑥

(2)

In addition to this simplified model, further distinctions can be
made. As part of his dissertation, Krebs et al. developed a model
that included a graphical representation of isolation characteristics.
It incorporates several interesting isolation points of interest along
the range of values [9]. On the basis of those, additional metrics
can be derived. Their graphical representation is adopted here and
is presented in Figure 3.

In the following, we briefly iterate over theirmost notablemetrics
in the context of this paper.

Generally, this model also assumes static workload𝑊𝑎 . In con-
trast to the performance loss rate as described above, the disruptive
workload𝑊𝑑 increases its load over time and as a consequence
impacts𝑊𝑎

The x-axis𝑊𝑑 in Figure 3 represents the amount of workload
the disruptive tenant causes, whereas the y-axis𝑊𝑎 represents that
for the abiding tenant.
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𝑜𝑛−

𝐼𝑠𝑜𝑙𝑎𝑡𝑒𝑑
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𝑊𝑎

Figure 3: Visualization of theoretical and practical behaviour
in isolation scenarios

The green line denoted with “isolated” shows a perfectly isolated
𝑊𝑎 , which is not affected by𝑊𝑑 at all. No amount of𝑊𝑑 has an
impact on𝑊𝑎 .

In contrast, the blue line indicated with “non-isolated”, shows
how workload𝑊𝑎 decreases, while workload𝑊𝑑 increases. For this
case, no isolation occurs at all and𝑊𝑑 is clearly prioritized.

In reality, the actual graphical representation is represented by
the red line denoted by “Possible Measurement”. It will lie some-
where between the aforementioned green and blue lines.

With the graphical representation in Figure 3 in mind, various
interesting isolation points can be identified. Moreover, these offer
the potential to derive additional useful metrics. The following
briefly iterates on the said points as defined by Krebs et al. [9].

Reference points. The reference point𝑊𝑑𝑟𝑒𝑓 marks where the
disruptive tenant starts to degrade the abiding tenant. In conse-
quence𝑊𝑎𝑟𝑒𝑓 defines this point from the perspective of𝑊𝑎 .

Degradation points. 𝑊𝑑𝑏𝑎𝑠𝑒 highlights the point where𝑊𝑎 is
fully degraded and thus reduced to zero if𝑊𝑎 was not isolated.
The same is true for𝑊𝑑𝑒𝑛𝑑 , marking the point where an arbitrary
isolation would cause that degradation to zero. Finally, the cross
section of𝑊𝑎𝑏𝑎𝑠𝑒 and𝑊𝑑𝑏𝑎𝑠𝑒 marks the respective workload for
that arbitrary isolation that would otherwise be zero if no isolation
had taken place.

Krebs et al. give an example for an isolation metric based on
degradation points. They describe the difference between𝑊𝑑𝑒𝑛𝑑
and𝑊𝑑𝑏𝑎𝑠𝑒 in relation to𝑊𝑎𝑟𝑒𝑓 . This relation is shown as 𝐼𝑒𝑛𝑑 in
Equation (3). Its value is zero if no isolation happens, and the higher
this value gets, the better the isolation is. As this value tends to ∞,
the authors suggest to rather use𝑊𝑎𝑟𝑒𝑓 as a reference resulting in
values between [0, 1]. This is in Equation (4).

𝐼𝑒𝑛𝑑 =
𝑊𝑑𝑒𝑛𝑑 −𝑊𝑑𝑏𝑎𝑠𝑒

𝑊𝑎𝑟𝑒𝑓

(3) 𝐼𝑏𝑎𝑠𝑒 =
𝑊𝑎𝑏𝑎𝑠𝑒

𝑊𝑎𝑟𝑒𝑓

(4)

The authors further argue that these metrics are sufficient only
for systems that degrade linearly. They therefore propose two ad-
ditional integral-based metrics. Equation (5) describes the relation
between the area under the measured curve and the area under
the curve of the non-isolated workload starting from𝑊𝑑𝑟𝑒𝑓 . Equa-
tion (6) describes the same relation but starting from𝑊𝑑𝑏𝑎𝑠𝑒 to an
arbitrary point beyond𝑊𝑑𝑏𝑎𝑠𝑒 . The latter could be the highest value
on𝑊𝑑𝑏𝑎𝑠𝑒 . Both values range between [0, 1].

𝐼𝑖𝑛𝑡𝐵𝑎𝑠𝑒 =

(∫𝑊𝑑𝑏𝑎𝑠𝑒

𝑊𝑑𝑟𝑒𝑓

𝑓𝑚 (𝑊𝑑 )𝑑𝑊𝑑

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

𝑊 2
𝑎𝑟𝑒𝑓

/2
(5)

𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 =

(∫ 𝑝𝑒𝑛𝑑
𝑊𝑑𝑟𝑒𝑓

𝑓𝑚 (𝑊𝑑 )𝑑𝑊𝑑

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

𝑊 2
𝑎𝑟𝑒𝑓

·
(
𝑝𝑒𝑛𝑑 −𝑊𝑑𝑟𝑒𝑓

)
−𝑊 2

𝑎𝑟𝑒𝑓
/2

(6)

Not every metric described here will ultimately be useful for this
work. Although we will elaborate on their applicability in section 4.

3 METHOD
This section presents the underlying method applied to gather
isolation metrics. It starts by briefly summarizing this work’s goal
and follows by discussing the applied scenarios, instrumentation,
and isolation quantification methods.

3.1 Goals
To reiterate our research questions, our aim is to measure the iso-
lation of certain OCI based virtualization technologies. Therefore,
we isolate them against each other in specific scenarios that are
presented in the upcoming section. To achieve this, we instrument
them directly on the host as in outside their virtualization envi-
ronment. This enables us to collect high-resolution performance
metrics of any involved process. This instrumentation is possible by
leveraging eBPF. The actual isolation quantification follows related
work. We decide to determine different metrics in order to compare
and discuss them in conclusion.

3.2 Scenarios
We analyze the characteristics of isolation among tenants in four
distinct scenarios. Each scenario consists of an abiding and a disrup-
tive workload according to the model presented by Krebs et al. [9].
The abiding workload statically utilizes a resource and is contended
by a disruptive workload. This disruptive workload continuously in-
creases its workload until it reaches its final utilization. An overview
of all scenarios is presented in Table 1. In this table, 𝑙𝑎 and 𝑙𝑑 de-
scribe the resource limits for 𝑤𝑎 and 𝑤𝑑 compared to the total
available resources.𝑤𝑎 and𝑤𝑑 describe the relative utilization of
the respective workloads within these limits.

For each scenario, the abiding workload utilizes a static amount
of resources, whereas the disruptive workload increases linearly
over time. This enables us to measure every possible combination of
workloads between a static abiding and a linear disruptive workload.
Plotting both on distinct axes results in a graph similar to Figure 3.

The runtime of each scenario is sensibly chosen depending on
the maximum degree of utilization, its maximum capacity, and the
time it takes to utilize it. The linear increasing disruptive workload
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Table 1: Isolation scenarios with workload and their limits

name 𝑤𝑎 𝑙𝑎 𝑤𝑑 𝑙𝑑

harmony 100 % 50 % 100 % 50 %
escape 100 % 50 % 150 % 50 %
overcommitting 100 % 50 % 100 % 75 %
steal 50 % 50 % 100 % 75 %

evenly utilizes its resource over the experiment runtime and thus
subdivides into fitting steps whose size and degree of isolation
depend on the same characteristics as the total runtime. The ex-
periments themselves are each repeated at least 10 times and the
physical server involved is fully reset in between to mitigate any
residue and thus impact from previous experiment runs [18].

harmony. In this scenario, two workloads fully utilize their
assigned resources. The assigned resources are imposed through
limits and evenly distributed throughout the resource as a whole,
resulting in 50% for both. In practice, this means that the capacity
planning performed previously adhered strictly to the combined
available resources. This is a typical use-case for scenarios where
no overcommitting or dynamic resource sharing happens. From a
theoretical point of view, no resource contention should occur, and
thus both workloads should not interfere with each other.

escape. This scenario is similar to the harmony one with only
one exception. Here, the disruptive workload tries to escape its own
imposed limit. Such scenarios occur when a workload accidentally
or on purpose tries to exceed its allocated resources. In consequence,
we can see two different things. One being whether the limit can
actually be imposed and the workload is not able to exceed its limit,
and the other being whether it is able to have an impact on the
abiding workload in either case. In an ideal case, there should be
no impact whatsoever.

overcommitting. Overcommitting is something that typically
happens in cloud scenarios. As briefly mentioned in section 1 this
may be part of their business model. In this scenario, we set a
higher total limit for a resource than is physically available. To
consider the worst case, both workloads use 100% of resources
within their own limit. Again, considering the cloud computing use
case, this most likely leads to a violation of customers Service Level
Agreement (SLA). As both workloads stay within their limits, it is
not deterministic how the workloads will behave. Nevertheless, it
is still interesting how degradation occurs and whether different
virtualization technologies behave differently.

steal. This is an extension of the “overcommitting” scenario.
Although the limits still exceed the total available resource, work-
loads no longer use them fully. The abiding workload purposefully
utilizes only half of its granted resources, while the disruptive still
fully uses the resource until its limit. The combined workloads fully
utilize all available resources, however. Essentially, this scenario
tests whether the disruptive workload can steal free available re-
sources from the abiding one. Some virtualization technologies may
allow this, whereas others may strictly assign resources and block
them.

3.3 Instrumentation
The method for resource instrumentation is based on the principles
designed by [21]. In summary, this implies that the instrumentation
must follow two essential functions. It (i) must occur outside of the
virtualization technology to get a holistic view of the unobstructed
resources. Furthermore, (ii) needs to be independent of virtualiza-
tion technology to allow a fair comparison. This means that the
instrumentation points need to be reasonably similar. Therefore,
the uprobes as outlined in section 2.1 are not applicable.

eBPF has made it possible to access any kind of Linux instru-
mentation while promising low instrumentation overhead. The
overhead can be kept low, as it can be performed within the ker-
nel, reducing the amount of overhead induced by frequent kernel
userspace interactions significantly.
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(𝑖𝑖)
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(𝑖𝑖𝑖)
instrument
and filter

Figure 4: Instrumentation of processes controlled by OCI
runtimes

As the instrumentation happens outside the virtualization tech-
nology, the following issues need to be solved. The process to do is
highlighted in Figure 4.

We first need to (i) identify and distinguish virtualization tech-
nology instances that compete for resources. We further need to (ii)
identify the actual process that consumes the resources. Finally, we
need to (iii) find an appropriate instrumentation point that correctly
profiles the resource in question.

When it comes to network resource profiling, the eXpress Data
Path (XDP) feature of eBPF offers an efficient way of instrumenting.
XDP provides an API to implement functions that are attached
directly to network interfaces and allow stateless processing of
incoming packets. It promises fast networking functionality, as it
allows bypassing the Linux netfilter stack. State handling, including,
but not limited to, packet counting and stateful connection tracking,
can be achieved by leveraging eBPF maps that can be accessed by
the named XDP function, as well as by user-space applications.

3.4 Isolation Quantification
In section 2.4 we presented and briefly discussed several useful
metrics to quantify isolation. However, not all are desirable or even
applicable to our scenarios as shown in section 3.2.
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For example, 𝐼𝑝𝑙𝑟 in Equation (1) is widely applied in scientific
work, but that may also be due to it being straightforward and
comparatively simple. For these reasons and to compare it with
another metric, we still calculate it. In order to do so, we need
to pick a performance degradation point in an isolation diagram
like Figure 3. Here, we choose the performance degradation where
the disruptive workload is at its maximum. Another viable option
would be the highest degradation of the abiding workload observed.
However, we did not observe a significant difference between these
possible points and therefore neglected them.

In section 2.4 we cite Krebs et al. [9] who argues that metrics like
𝐼𝑝𝑙𝑟 are only sufficient for linearly degrading resources. However,
this is not always the case, as we can see in our results in section 6.
They therefore suggested integral-based ones. However, some met-
rics assume that we have a disruptive workload that is capable of
fully degrading the abiding one. Our scenarios do not force that,
and depending on the resource, the respective resource scheduler
might not allow this. As a consequence, we decide to use the 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒
metric in Equation (6). This metrics calculation only regards the first
point of degradation and the highest applied disruptive workload.

In section 7 we reiterate the correlations for these metrics and
discuss their respective applicability retrospectively. We therefore
introduce a simple isolation similarity metric 𝑆𝐼 between 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒
and 𝐼𝑝𝑙𝑟 that describes how similar they are to each other on a scale
from [0, 1] where 1 is exactly the same and 0 very different.

4 IMPLEMENTATION
The evaluation process is based on the evaluation framework pre-
sented in [21]. Some aspects are extended to enable answering the
research questions. In particular, this involves updates to the load
generation and instrumentation details.

Compared to the initial work, the three notable changes are
(i) new scenarios as presented in section 3.2, (ii) new isolation
metrics as described in section 3.4 and new technologies as shown
in section 5.2.

4.1 Workflow
The whole process of load generation and data acquisition for every
possible combination of scenario and technology relies on the eval-
uation framework. The abstract process of a conducted experiment
is briefly highlighted below.

It follows the workflow highlighted in Figure 5. Here, the process
begins with the (i) spawning of a virtualization technology process.
Within this (ii) load is generated by the respective load generation
tools. Afterwards, the (iii) profiling process on the host system is
started in parallel. This profiling supervises and profiles the virtual-
ization technology process. Upon success, data is (iv) acquired and
(v) stored on external storage.

4.2 Load generation
The original load generation process needs several changes in order
to enact the previously mentioned scenarios. Specifically, the static
load generation at several distinct interesting points is changed
to a linear load generation phase. This improvement still includes
all previous configurations and extends them with a configurable
number of points.

Host
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Profile
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(𝑖)
Spa
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(𝑖𝑖) Ex
ecute

(𝑖𝑣) Acquire

(𝑣) Store

Figure 5: Flow of an abstract measurement

Benchmarking and load generation tools that are scientifically
trusted do not commonly offer the possibility to gradually increase
the load over given amount of. We therefore separate the load
generation into multiple intervals with configurable resolution. By
doing so, we can achieve a nearly linear behavior of load generation,
as highlighted in Figure 6.

𝑊𝑎

𝑊𝑑𝑖𝑑𝑒𝑎𝑙

𝑊𝑑𝑟𝑒𝑎𝑙

𝑡

𝑊

Figure 6: Visualization of linear load generation highlighting
ideal and real𝑊𝑑

Here, the axis describes the workload over time showing the
abiding constant workload𝑊𝑎 as well as the theoretically ideal
disruptive workload𝑊𝑑𝑖𝑑𝑒𝑎𝑙 and the actual real disruptive workload
𝑊𝑑𝑟𝑒𝑎𝑙 .

4.3 Instrumentation
In practice, the process structures of distinct virtualization tech-
nologies are very different. Adding a new technology to this work-
flow engine would involve a small implementation effort based
on process structure investigations. To give an example, the pro-
cess structure of loosely isolated container technology like docker
with runc is visible in detail, whereas it is mostly abstracted for
hypervisor-based virtualization like KVM. In the latter case, we
cannot see processes running within the virtual machine from the
outside.

The following Table 2 presents all the instrumentation points
for the technologies observed in this work and the process filter
necessary to sort the process trees of competing tenants. We specif-
ically avoided kprobes, as they are significantly less stable than
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instrumentation resource description
hardware:cycles CPU Hardware counter reporting

CPU cycles
tracepoint:kmem:
rss_stat

Memory Tracepoint called when Resi-
dent Set Size (RSS) counters
change

tracepoint:block:
block_io_start

Disk Tracepoint called when block
operation request is queued for
execution

XDP Network Network interface specific
functions executed upon
incoming network packet

Table 2: Instrumentation points list

tracepoints. This is no hard requirement, though, and extensions
of this framework might make their usage necessary.

To measure the throughput on a network interface, we imple-
ment an XDP function that increments time-based buckets in an
eBPF-map. After a finished run, all buckets are then extracted by a
user-space application for further analysis. The OCI specification
dictates the use of veth-pairs to be OCI compliant. This allows us to
perform black-box measurements of network isolation capabilities,
independent of the OCI runtime under test.

5 EXPERIMENTAL SET-UP
5.1 Physical nodes
The experimental setup consists of 7 physical servers. They are
arranged symmetrically and consist of identical components. The
CPUs are two Intel CPUs of the model “Intel(R) Xeon(R) CPU E5-
2630 v3” with a basic clock frequency of 2.40 GHz and a maximum
clock frequency of 3.20 GHz. The memory attached to those CPUs
have a total of 16 · 16 = 256 GiB DDR4 memory clocked at 2133
MHz available. The disk involved at the Input Output Operations
Per Second (IOPS) isolation tests is a Samsung SM843TN, rated
with 15000 IOPS “random write” performance. The server types
involved are six experiment nodes for parallel execution and one
control node that provides bare metal provisioning for the workflow
control engine.

The networking between all involved nodes is realized by Mel-
lanox Technologies Network Interface Card (NIC) of the “MT27800
ConnectX-”5 family. These are capable of a network throughput
rate of 50𝐺𝑏𝑖𝑡/𝑠 . Nevertheless, as described during the results in
section 6.4 they are not used for the actual network resource exper-
iments. Here we use on-board network cards that only provide a
maximum throughput of 1𝐺𝑏𝑖𝑡/𝑠 , as otherwise there would be no
resource contention for hypervisors that do not offer bandwidths
beyond a few 𝐺𝑏𝑖𝑡/𝑠

Notable other software components involved are listed in Table 3.
All of these are part of the automated experiment workflow engine
as described in section 4.1.

5.2 Selected Virtualization Technologies
Based on the components deconstructed of virtualization technolo-
gies, we can roughly separate them into categories [21]. Although

name version note
Fedora CoreOS 39 Operating system version
Linux Kernel 6.5.6 Kernel used by the operating system

Fedora CoreOS
k3s v1.28.4 Rancher Kubernetes Distribution
Argo Workflow v3.5.0 The workflow engine to orchestrate

experiments and scenarios
bpftrace v0.19.0 Profiling tool based on eBPF and bcc
stress-ng 0.13.05 Load generator for CPU and mem-

ory
fio 3.28 Load generator for disk I/O
iperf3 3.10.1 Load generator for network I/O
podman 4.7.0
gvisor 20231023 with the systap platform
kata 3.2.0 with the virtio-fs storage driver

Table 3: Software version list

there are not necessarily strict categories for their isolation capa-
bilities, they are sufficient for a rough starting point. Thus, for this
work we select three popular engines including OCI compatible con-
tainer runtimes that each fit into those proposed categories. More
specifically, the technologies are Podman12, gVisor13 and Kata14.
Figure 7 shows a hierarchical representation of those choices.
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(ii) crun

crun

sandbox
based

docker

(iii) gVisor

runsc

Figure 7: Virtualisation Classification Overview

Naturally, these technologies offer many possible configurations.
In this paper, we use their most recent releases as of date, as well
as the upstream default configuration. Table 3 gives an overview
over these details in the bottom part. Here, we distinguish between
the container runtime as defined in Figure 2 and the container
runtime’s binary name for reference.

crun. This container runtime, developed by RedHat, adheres to a
more conventional approach. It leverages namespaces and cgroups
for isolation, offering an alternative to runc, often bundled with
containerd. Notably, it does not differentiate between the runtime
and binary name, hence also referred to as “crun”.

12https://podman.io/
13https://gvisor.dev/
14https://katacontainers.io/
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gVisor. Originated at Google15 gVisor promises a stricter iso-
lation among workloads. Although this technology also builds on
namespaces and cgroups, they further improve isolation by filtering
Linux system calls [26]. This “sandbox” approach reimplements
fundamental Linux capabilities within the user space to gain more
control and thus improve isolation [22]. The runtime “runsc” is
bundled with gVisor itself.

Kata. This independent OpenSource engine leverages hypervi-
sor based virtualization to achieve isolation. Moreover, it also uses
cgroups and namespaces where applicable. Similarly to the tech-
nologies mentioned above, Kata also bundles its container runtime
“runk”.

6 RESULTS
This section presents and discusses the results of the isolation mea-
surements. Therefore, we present an overview in Table 4 that con-
tains all isolation metrics determined based on the measurements
we performed.

Table 4 consists of two multi-indexes. The vertical ones describe
all permutations of virtualization technologies as described in sec-
tion 5.2 and the scenarios we presented in section 3.2. Horizontal
indices describe all permutations of resources that are instrumented
as part of the workflow in section 4.1 and all isolation metrics dis-
cussed in section 3.4.

The number of results is too numerous to discuss every isolation
characteristic in detail. As a consequence, we select interesting as-
pects for every resource and discuss them in the following sections.
One thing all technologies have in common is that they allow grant-
ing unused resources to other workloads. In every steal scenario,
the disruptive workload is able to allocate resources that could have
been exclusively granted to the abiding one, without negatively
impacting it. For this reason, we do not discuss this scenario further
in the detail sections below.

The figures “Isolation” and “Timeline” presented throughout the
remainder of this section are aligned to Figure 3 and Figure 6, respec-
tively. The isolation figures furthermore highlight the changepoint
discussed in section 3.4 with an orange circle and highlight the area
under the abiding but disturbed workload. This tries to give a better
idea of what the 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 metric will look like, since this is part of
Equation (6).

6.1 CPU
Reviewing the isolation metrics in the CPU column of Table 4, it is
evident that CPU isolation is comparatively good and stable across
the different virtualization technologies.

Considering a typical scenario like the escape one for the gVisor
CPU, we can see that there is a slight degradation visible. However,
𝑆𝐼 indicates that our two isolation models slightly disagree. To
understand the reasoning behind this, we investigate the time and
isolation charts.

According to the escape scenario, both workloads fully utilize the
CPU together. In fig. 8b we can see the steadily increasing workload
𝑊 of the disruptive workload until it tries to escape its limit. We
can see that this is not possible. However, as soon as the disruptive

15https://www.google.com/
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Figure 8: gVisor CPU Escape Scenario
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Figure 9: Kata CPU Escape Scenario

workload reaches its limit, the abiding workload starts to degrade.
This might be due to the fact that the CPU scheduler needs to take
efforts to keep the disruptive workload from exceeding its limit,
implying less available CPU time for the abiding workload.

In contrast, the same scenario for the Kata CPU isolation looks
slightly different. In fig. 9b we cannot observe a significant degra-
dation over the course of the experiment. The fact that there is no
change point above our threshold detected in fig. 9a, has a huge
effect on the areas under the graphs of the calculated 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 . This
can be neglected, though, as these cut each other out by building a
ratio as highlighted in Equation (6).

6.2 Disk
As visible in Table 4 it is imminent that disk isolation has problems
for our scenarios. An immediately visible aspect is the fact that
disk isolation for gVisor is not present. This is because it, at the
time of writing, does not support directly passing block devices
into its container. This is a mandatory requirement as we generate
and measure direct block operations.

Apart from that observation, the disk isolation for the remaining
technologies is arguably bad. Considering Podman, for example,
yields bad results in almost every scenario with 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 < 0.5 and
𝐼𝑝𝑙𝑟 even worse.

This is clearly reflected in the respective time and isolation charts
in Figure 10, taking the overcommitting scenario as an example.
Here we can see that as soon as the disruptive workload starts, the
abiding is almost reduced to zero. Interestingly, it starts to regain
its workload over time, which will quickly be impacted by the ever-
increasing disruptive workload, though. This behavior is a good
example of how changing or specifically increasing the workload
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Table 4: Isolation metrics comparison

Resource cpu disk memory network
Metric 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼 𝐼𝑖𝑛𝑡𝐹𝑟𝑒𝑒 𝐼𝑝𝑙𝑟 𝑆𝐼

Technology Scenario

gvisor

escape 0.89 0.85 0.96 n/a n/a n/a 0.99 0.99 1.00 n/a n/a n/a
harmony 0.99 0.99 1.00 n/a n/a n/a 0.99 0.99 1.00 1.00 1.00 1.00
overcommit 0.94 0.89 0.95 n/a n/a n/a n/a n/a n/a 0.76 0.87 0.87
steal 1.00 0.99 1.00 n/a n/a n/a 1.03 1.00 0.97 0.95 1.00 0.95

kata

escape 0.95 0.99 0.96 0.86 0.95 0.90 0.99 1.02 0.97 n/a n/a n/a
harmony 0.99 0.99 1.00 0.60 0.93 0.64 1.00 1.02 0.99 1.00 1.00 1.00
overcommit 0.88 0.80 0.92 0.44 1.04 0.43 n/a n/a n/a 0.96 0.94 0.98
steal 1.00 1.00 1.00 1.42 1.31 0.92 1.10 1.16 0.94 1.00 0.99 0.99

podman

escape 0.94 0.84 0.89 0.41 0.13 0.32 0.93 0.91 0.97 n/a n/a n/a
harmony 1.00 0.99 1.00 0.47 0.15 0.32 0.93 0.92 0.98 1.00 1.00 1.00
overcommit 0.94 0.90 0.96 0.39 0.10 0.25 n/a n/a n/a 0.93 0.86 0.93
steal 1.00 1.00 1.00 0.41 0.95 0.43 1.06 1.00 0.95 1.00 1.00 1.00
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Figure 10: Podman disk overcommit Scenario

has a different impact than two static competing workloads. This
also relates to the comparative low 𝑆𝐼 scores. As mentioned before,
the less linear the degradation process is, the less applicable the
𝐼𝑝𝑙𝑟 metric becomes. For this metric, we only consider the highest
applied disruptive workload that is not stable, leading to a 𝐼𝑝𝑙𝑟 with
very low expressiveness.

However, in general, we can see that the contended resource is
not actually the observed and limited IOPS but a related resource
that is saturated. This naturally depends on many factors such as
the physical type of the disk (e.g. HDD, SSD, etc.), the bus it is at-
tached to (e.g. PCIE, SATA, SAS) or hardware specific details like the
installed disk controller. The analysis of what exactly happens here
is beyond the scope of this work and is left for future investigations.

The Kata disk isolation issue is very different. Although it is ca-
pable of effectively limiting disk IOPS for processes running inside
the virtual machine, this does not include the disk IOPS performed
by actual virtualization technology. The kind of hypervisor Kata
uses does not offer the possibility to instrument the individual
processes inside it through eBPF. Instrumenting the hypervisor
in consequence adds IOPS it executes for its own overhead. This
behavior can be seen in Figure 11 for the harmony scenario.

Although this limits the significance of these specific results,
we were still able to observe performance degradation between
the abiding and disruptive workload. However, we only consider
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Figure 11: Kata disk harmony Scenario

workload below the actual targeted utilization as described in the
scenarios in Table 1, to ensure that an actual degradation of the
workload inside occurs.

6.3 Memory
The isolation results for the memory metrics come with a small
limitation. During the benchmarks, we determined that the Kata
runtime has issues with the Non-Uniform Memory Access (NUMA)
architecture of our physical servers and was not properly accessing
memory across the CPU boundaries. Therefore, we limited virtu-
alization technology access to a specific node and performed the
experiments there while only allocating the memory (half of total)
attached to it.

Moreover, we did not conduct any overcommit scenarios, as
overcommitting memory was not possible in general. The Out Of
Memory (OOM) killer would quickly kill the processes involved
in our experiment, rendering the results useless. overcommitting
the actual allocated memory (as in Resident Set Size (RSS)) is not
possible in our configuration.

As memory isolation is very similar across technologies, we
briefly discuss Podmans’ escape scenario as an example in Figure 12.

One notable aspect is the observation that the actual workload
never fully utilizes its designated utilization. This is due to the fact
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Figure 12: Podman memory Escape Scenario
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Figure 13: Podman network overcommit Scenario

that the load generator tries to allocate RSS memory with many
workers in parallel and thus eventually reaches the limit. Once
that happens, a process within the container gets OOM killed. One
consideration here is that due to this circumstance, 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 is lower
than expected.

From the Figure 12 it is clearly visible that the imposed limitation
for disruptive workloads works very well and cannot disturb the
prevailing workload in any way.

6.4 Network
The virtualization technologies studied in this work do not offer
the possibility of limiting the network bandwidth or IOPS of a
NIC. This is the reason we do not perform an escape scenario for
this resource, as it would merely mimic the overcommit scenario.
However, technologies still possibly implement different strategies
to enable network virtualization.

One significant difference is the Kata-induced limitation. Here,
the maximum possible bandwidth achievable by the virtual NICs
it creates is 5𝐺𝑏𝑖𝑡/𝑠 . We therefore performed all our tests on an
exclusive 1𝐺𝑏𝑖𝑡/𝑠 card specific for these experiments.

Apart from this consideration, the isolation metrics across all
virtualization technologies are very similar. We see that as soon as
both workloads fully utilize the NIC, performance degradation oc-
curs. This behavior is clearly visible from any overcommit scenario
as shown in Figure 13.

7 DISCUSSION
Although we can quantify the isolation capabilities of OCI runtimes
by applying two different approaches to acquire isolation metrics,

the results need critical reflection. This especially applies to the
meaningfulness of the quantification methods in regard to the ex-
amined technology, scenario and resource, as well as the deviation
of some results exceeding the predicted numeric range with an
upper bound of 1.

As the respective 𝑆𝐼 columns in Table 4 show, the deviation of the
retrieved isolation metrics can be rather high across the technolo-
gies, applied scenarios, but also resources of interest. In section 3.4
we noted that 𝐼𝑝𝑙𝑟 is only sufficient for systems that degrade lin-
early. Looking at the corresponding graphs, it is evident that a linear
degradation behavior does not apply to disk measurements. For
some CPU measurements a near-linear behavior can be observed.

On the other hand, the integral-based metrics can also be mis-
leading. As we calculate 𝐼𝑖𝑛𝑡𝑓 𝑟𝑒𝑒 with the highest value of𝑊𝑑 , the
applied scenario and therefore the maximum resource consump-
tion of the disruptive tenant has a huge impact on the result of this
metric.

In summary, depending on the selected configuration, themethod
to derive the isolation metric has to be selected carefully, the most
expressiveness regarding the isolation capabilities is given by the
isolation graphs.

Some calculated metrics show values higher than the theoretical
upper bound of 1. For runtimes that hide information about running
processes, such as gVisor, the retrieved values include the overhead
produced by the runtime itself. A good example is the memory
consumption measured for Kata containers. In each scenario, the
retrieved values lie slightly above the imposed limits. Although Kata
seems to apply the correct limits to the processes running inside,
our method of measuring the consumption does not resemble the
additional overhead of runtime. Subtracting overhead, to acquire
more reasonable results, requires further investigation.

Generally speaking, the results that we present in this work
are naturally very specific to the hardware, system configurations,
and scenarios used. Isolation metrics cannot be easily compared
between resources and scenarios. However, they can be compared
within scenarios.

8 RELATEDWORK
A common approach to quantify the isolation capacity of a virtual-
ization technology is to determine the 𝐼𝑝𝑙𝑟 similar to Equation (1).
Therefore, related work typically first measures a resource from
within the virtualized environment[11, 17, 24, 25]. Combined with a
subsequent measurement of the same workload under the influence
of a disrupting contending workload, this ratio can be calculated.
This approach has several constraints. One (i) is the measurement
from within the virtualized environment. This neglects unforeseen
impact on the host system. Another (ii) one is the dependability
on the load generator specific to the stressed resource. Moreover,
applying (iii) static workloads neglects effects induced by the vari-
ability of stress. Calculating only a (iv) single metric disregards the
time in which a possible equilibrium of workloads is reached. In
our work, we instrument the virtual environments from the hosting
system through eBPF and thus decouple ourselves. Additionally, we
induce a variable stress based on multiple scenarios and determine
an isolation metric that takes the timeline into account.
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This work focuses on the isolation of compute resources. An-
other aspect to consider is the impact that virtualization technology
has on kernel resources and to classify isolation based on that.Wang
et al. [23] follow very interesting approach to determine amisbehav-
ing workload and further presents a tool to improve this isolation.
Similarly Anjali et al. [1] assess virtualization technology categories
along the kind and amount of system calls, and thus kernel stress.

9 CONCLUSION
Throughout this work, we presented a workflow engine and im-
plementation details on isolation characteristics instrumentation
for OCI compatible virtualization runtimes and give a rough esti-
mate of the capabilities state-of-the-art virtualization technologies
bring. Our results can be used in a decision process to pick a fit-
for-purpose technology. Moreover, the framework itself can be
extended for custom changes and executed on custom platforms.

We discovered some limitations in instrumentation and isolation
for certain scenarios and technology combinations. These findings
can be used to decide against a certain technology or to implement
improvements.

One future direction that we intend to pursue with our work is
to create a system of continuous profiling of isolation character-
istics. Similarly to the work of Wang et al. [23], a classification of
abiding and disruptive workloads could be based on a combination
of performance metrics, derived isolation metrics, and kernel re-
source utilization. Furthermore, the characterization of workloads
based on these metrics could be improved by integrating Quality of
Service (QoS) metrics. Experiments may show a possible relation be-
tween resource isolation degradation and, for example, application
response time.
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ABSTRACT
Power consumption of the main memory in modern heterogeneous

high-performance computing (HPC) constitutes a significant part

of the total power consumption of a node. This motivates energy-

efficient solutions targeting the memory domain as well. Practi-

tioners need reliable energy measurement techniques for analyzing

energy and power consumption of applications and performance

optimizations. Running Average Power Limit (RAPL) is a common

choice, as it provides uncomplicated access to the energy measure-

ments. While RAPL’s accuracy has been studied and validated on

homogeneous memory platforms, no work we are aware of investi-

gated its accuracy on heterogeneous memory platforms, specifically

with high-capacity memory (HCM).

This paper describes the process ofmeasuring thememory power

consumption externally using riser cards in detail. We validate

RAPL’s accuracy by comparing results obtained from Intel’s Ice

Lake-SP system equipped with DDR4 DRAM and Intel Optane

Persistent Memory Modules (PMM). In addition, we verify the

accuracy of our instrumentation setup by comparing the results

from an older Broadwell system with the results in the literature.

We show that the RAPL values on a heterogeneous memory

system report a higher offset from the reference measurements.

The difference is more pronounced at lower memory load for all

memory types. Also, we find that RAPL readings are inconsistent

between multiple sockets and over time. Based on the evaluated

scenarios, we conclude that RAPL overestimates the actual power

consumption on heterogeneous memory systems and provide a

discussion on the possible causes of this effect.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0444-4/24/05.

https://doi.org/10.1145/3629526.3645052

CCS CONCEPTS
• Hardware→ Power estimation and optimization; Memory
and dense storage; • Computer systems organization→Hetero-
geneous (hybrid) systems; Multicore architectures; • General
and reference→ General conference proceedings; Validation.

KEYWORDS
HPC, Heterogeneous Memory, Running Average Power Limit, En-

ergy Efficiency, Intel Optane Persistent Memory

ACM Reference Format:
LukasAlt, Anara Kozhokanova, Thomas Ilsche, Christian Terboven, andMatt-

hias S. Mueller. 2024. An Experimental Setup to Evaluate RAPL Energy

Counters for Heterogeneous Memory. In Proceedings of the 15th ACM/SPEC
International Conference on Performance Engineering (ICPE ’24), May 7–
11, 2024, London, United Kingdom. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3629526.3645052

1 INTRODUCTION
Continuously increasing complexity and data intensity of modern

computing applications promote the development of heterogeneous

architectures even further. In addition to the variety of special-

purpose compute cores, the latest systems now feature a new class

of high-capacity memory (HCM) and a range of high-bandwidth

memory (HBM) devices. HCM provides higher memory capaci-

ties, often with persistence features, and is slower than traditional

DRAM. While HBM delivers higher bandwidth, it usually offers a

lower capacity.

In the past, node-level power optimizations mainly focused on

CPU and GPU power measurements, and the memory subsystem

was often neglected due to its minor contribution to total power

consumption. However, these days, in heterogeneous memory sys-

tems, particularly with HCM, the memory domain can consume a

non-negligible amount of electric power
1
. With energy consump-

tion being a limiting factor in HPC, especially in terms of costs,

carbon footprint, and power availability, the increasing energy con-

sumption motivates the investigation of energy-efficient solutions

1
The memory power consumption during the STREAM benchmark execution on PMM

takes up to 51% of CPU TDP on Intel Ice Lake and up to 72% on Cascade Lake [20].
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for the memory domain as well. This requires an accurate and reli-

able method for collecting power consumption data from memory

technologies at high temporal resolution.

A well-established proxy that provides energy measurements is

the Intel Running Average Power Limit (RAPL) - a software inter-

face for monitoring and limiting the power consumption on Intel

systems. Over the last 10 years and different Intel microarchitecture

generations, RAPL evolved and was found to be a reliable source for

nonintrusive energy readings since the Haswell-EP architecture [1].

However, it is unknown whether RAPL is as reliant on the latest

Intel server platforms such as Ice Lake or Sapphire Rapids equipped

with heterogeneous memory.

In this paper, we validate RAPL on the latest Intel Ice Lake-SP

platform with heterogeneous memory, namely DDR4 DRAM and

Intel Optane Persistent Memory Modules (PMM). In particular, we

describe in detail a methodology for measuring the power consump-

tion of the memory domain by using two different DDR4 DRAM

modules and 200-series PMMmemory devices. The instrumentation

setup is based on the DDR4 DIMM extenders by Adex Electronics

that are compatible with both memory types. While this power

measurement method has been practiced before [1, 5, 19], this work

provides novel insight into RAPL’s memory power measurement

mechanisms on a heterogeneous memory platform. Additionally,

we verify the accuracy of the reference measurements against a

previous study utilizing a Broadwell-EP system. The results show

that RAPL measurements for the memory domain differ from the

actual power consumption by an offset that increases with lower

memory load, both on DRAM and PMM modules.

The following are the main contributions of this paper:

(1) We present a comprehensive measurement setup to physi-

cally monitor the power consumption of DDR4 DIMMs.

(2) We evaluate the accuracy of RAPL on a modern heteroge-

neous memory system - Intel Ice Lake-SP equipped with

Optane Persistent Memory and DRAM modules.

(3) We investigate the granularity of RAPL counters (update in-

tervals) of thememory domain on Ice Lake-SP and Broadwell-

EP platforms.

(4) We highlight RAPL’s inconsistencies: temporal and inter-

socket and provide a discussion on possible causes of these

effects.

The rest of the paper is structured as follows: After introduc-

ing the extensive background of this work in Section 2, Section 3

discusses related work. In Section 4, the experimental setup by

instrumenting DIMMs using riser cards is introduced. Section 5

contains the results of the experiments along with a discussion on

the accuracy and temporal resolution of the RAPL memory domain.

The key findings are concluded in Section 6.

2 BACKGROUND
Before presenting the methodology of this paper, in this chapter, we

cover several necessary aspects related to the power consumption

measurements in our setup. First, we explain the basic characteris-

tics of the PMM memory. Then, a brief background of the RAPL is

provided. Next, we describe common power measurement methods

and present an overview of the power delivery scheme to the main

memory.

2.1 Intel Optane Persistent Memory Modules
Intel Optane Persistent Memory Modules (PMM) were introduced

by Intel as a novel non-volatile memory tier based on the 3D XPoint

technology. Both PMMs, that ship in DIMM form factor, and In-

tel Optane SSDs are based on this technology. PMMs were first

supported by systems starting Intel’s 2nd generation Xeon Scal-

able processors (Cascade Lake architecture). Currently, three PMM

generations - 100, 200, and 300 series - have been released, each

compatible with the 2nd, 3rd, and 4th generations of Xeon Scalable

processors, respectively.

PMMs operate in Memory and AppDirect modes. The Memory
mode exposes the DRAM as a write-back cache and the PMMs as a

directly addressable volatile HCM. In AppDirect mode, DRAM and

PMM are both byte-addressable, with PMM being non-volatile in

addition. PMMs can be configured as interleaved and non-interleaved
in this mode. Moreover, PMM can be configured in a so-called

Hybrid2 modewhere one part is allocated and configured inMemory
mode and the other in AppDirect mode. Each memory type can be

exposed as a separate NUMA node with Linux kernel v5.15 or later.

In addition, ipmctl, daxctl, ndctl Linux packages are required

for managing and configuring the PMMs.

Memory allocations on target memory types can be done in

several ways. In cases when the source code cannot be modified,

numactl [22] can be used to query NUMA settings and manage

NUMA policies for memory allocations. When the source code

is modifiable, libnuma [21], libvmmalloc [29], and memkind [30]
libraries provide custom memory allocators and allow for a more

granular memory allocation control.

Depending on the configuration modes, PMM exhibits distinct

performance characteristics. Reading from the Optane PMM media

is about three times faster than writing, however, it is still two to

three times slower compared to DRAM [39]. Read latency is also

impacted by whether the access is sequential or random whereas

DRAM is almost insensitive to that.Memory mode is generally more

performant than AppDirect mode [28]. Also, remote and highly

concurrent accesses significantly impact the PMM performance.

This is known to be caused by the contention at the internal PMM

media buffers and at the integrated memory controller level [39].

2.2 RAPL
Running Average Power Limit (RAPL) is an interface for managing

the energy consumption of a system and was first introduced by

Intel for the Sandy Bridge architecture. RAPL is a well-known

tool for measuring and modeling a system’s energy consumption

and has been widely used in numerous applications. It exposes a

set of model-specific registers (MSR) containing information on

energy counters and power limits, among others, for certain system

component domains, also known as power planes. The availability

of power planes varies depending on the architecture and between

client and server platforms. On Intel servers, Package and DRAM
power planes are mostly present. The high-level access to the RAPL

interface is facilitated by the performance monitoring tools such as

PAPI [25], LIKWID [36], and perf [23].

RAPL energy counters should be updated roughly every 1ms [11,

Vol. 3, Sec. 15.10.3-5], however, the span of the timing gaps varies on

2
Note that this mode is supported only on 100-series PMM.

72



An Experimental Setup to Evaluate RAPL Energy Counters for Heterogeneous Memory ICPE ’24, May 7–11, 2024, London, United Kingdom

Memory Channels 0-3

12V

Power Supply Unit (PSU)

CPU

Fully Integrated Voltage Regulator (FIVR)

Memory Interface

VCCIN

VRM

12V
VPP

(2.5V)

Voltage Regulator Module (VRM)

12V

VTT (0.6V)

DDR
Terminator

VDD

(1.2V)
VCCD0123

SVID: Report power

Memory Channels 4-7

12V
VPP

(2.5V)

Voltage Regulator Module (VRM)

VTT (0.6V)

DDR
Terminator

VDD

(1.2V)

12V

SVID: Report power

VCCD4567

Figure 1: Power delivery to the memory of one socket on Intel Ice Lake-SP systems [2, 10, 13]

different architectures [18] as we also show in Section 5.1. In recent

Intel architecture generations, RAPL’s accuracy has been improved

so that the current systems report RAPL values that are based on

the actual measurements by default rather than estimations [1].

RAPL energy readouts were successfully used for side-channel

attacks, e.g., monitoring the control flow of applications or accessing

cryptographic keys, in previous work [24]. To mitigate this, Intel

implemented an energy filtering mechanism, which can be explicitly

enabled by setting an MSR or enabling Software Guard Extensions

(SGX). If enabled, random noise is added to the energy readouts

and the update interval is varied for the RAPL Package and PP0
domains. Unfiltered energy measurements are still used for power

management. The hereby introduced offset in energymeasurements

decreases with lower sampling rates [14]. All systems used in this

paper have energy filtering and SGX disabled.

2.3 Direct Power Measurement Methods
Physical power measurement techniques can be classified into

Hall-effect-based and shunt-based methods. Hall-effect sensors pro-

vide non-intrusive and contactless current sensing by outputting a

voltage proportional to the magnetic field induced by the current

through a conductor [1]. Alternatively, a current-sense resistor,

usually with resistance in the order of milliohm and often called

shunt, can be placed in the circuit. This shunt can be arranged either
before or after the load in the circuit, which is called high-side and

low-side current sensing, respectively [32]. Shunt-based methods

are overall more intrusive than Hall-effect-based methods.

Employing these techniques for power measurements of com-

ponents of an HPC node requires instrumenting the system with

such power measurement sensors. Several measurement points

and techniques have been utilized for this in the past. For example,

some studies used wall-socket power measurement devices, e.g.,

the WattsUpPro [1], or power analyzers, such as the LMG450 [3],

LMG670 [4, 33], and Plugwise [18], to measure the total power con-

sumption of a node. On the other hand, specialized measurement

techniques for measuring the power consumption of specific com-

ponents or subsystems have been developed. Desrochers et al. [1]

used a modified Molex connector cable, which connects the power

supply unit (PSU) to the P4 ATX connector of the mainboard, with

Hall-effect sensors to measure the power consumption of CPUs

on desktop systems. The authors also utilized DIMM riser cards

with integrated shunts for per-DIMM power measurements of the

memory. Ilsche [4] instrumented the voltage regulators that power

the memory and CPU for power measurements using the LMG670

power analyzer. In addition, the author used custom Molex connec-

tors with integrated shunts and utilized them for measuring the

power consumption of different DC consumers from the PSU.

2.4 DIMM Power Delivery
Figure 1 schematically visualizes how the AC power input on an

Intel Ice Lake-SP platform is delivered to the memory DIMMs on the

mainboard. The AC input is first converted into a fixed DC voltage,

usually 12 V, by the power supply unit (PSU). This voltage is used

to power a voltage regulator (VR), commonly implemented as a

multiphase buck converter, that converts the DC input into a set of

fixed voltages to power the DIMMs [2], i.e., VDD (1.2 V), VPP (2.5 V),

and 12V. On the Ice Lake-SP platform, the memory modules of

channels 0–3 and 4–7 of each socket are powered independently [10,

13]. According to the electrical specification [10], the mainboard

provides two 1.2 V lines to the CPU as a “power supply for the

processor system memory interface“. While not specified explicitly,

it can be expected that this supply voltage is also provided by the

same voltage regulators that power the memory modules.

The CPU can communicate with the voltage regulator over the

Serial Voltage Identification (SVID) interface, which is used for

several purposes. Most importantly, it allows the CPU to digitally

configure the output voltages of the different channels of the VR.

Furthermore, the VR reports power consumption to the CPU, which

forms the base for RAPL power measurements [2].

3 RELATEDWORK
While most of the previous works focused on validating RAPL’s

power consumption readouts of the package or the total system

domain, only a few studies validated RAPL’s memory power mea-

surements separately.

Desrochers et al. [1] describe the details of external power sens-

ing approaches that utilize Hall-effect current sensors and DIMM

extenders (riser cards) for measuring the power drawn by CPU

and memory domains, respectively. They conduct experiments on

various Intel Haswell client and server platforms equipped with

DDR3 and DDR4 DRAM modules to collect and compare the power

readings from RAPL and reference measurements. The authors use

a single DIMM extender per each experiment. Their results show

that on a system where RAPL reports actual power measurements
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(Haswell-EP), the measured values match more closely or offset

by 0.3W compared to the RAPL values based on the estimation in

desktop machines, where the error is higher. Memory capacity is

also shown to be a factor: the larger capacity 16GBmemory module

matches the measurements more closely within 5% than the 8GB

module with 20%. The most significant divergence is shown to be

at idle state, which is also impacted by the capacity of a memory

module, with more than 75% error for the 8GB module vs. 38%

error with the 16GB module. The authors conclude that RAPL is

generally accurate on Haswell platforms.

Hackenberg et al. [3] evaluate RAPL’s total power consumption

from Package and DRAM domains on Intel Sandy Bridge-EP and

Haswell-EP systems. The authors use an LMG450 ZES power meter

for reference measurements of the total system power consumption

(AC). Their results show that RAPL reports a stronger correlation on

Haswell-EP compared to the Sandy Bridge-EP system on a quadratic

fit. Our work, in turn, provides a detailed look at the memory

domain on a more recent architecture.

Ilsche et al. [5] compare different powermeasurement techniques

by instrumenting socket components such as CPU, northbridge,

and RAM on Intel Sandy Bridge-EP and AMD Opteron systems.

The authors compare the results from the LMG450 power meter,

Hall-effect, and shunt sensors, as well as PCIe and 1×DDR3 riser
card, and provide a discussion on the trade-offs of each power

measurement technique.

Ilsche [4] matches RAPL energy readouts at package and DRAM

domains on a Sandy Bridge-EP and a Skylake-SP system with mea-

surements of an LMG670 power meter. This work instruments the

12 V inputs of VRs on mainboards with separate power pins for

memory and CPU sockets. The results for the package power do-

main are consistent with previous work, showing discrepancies on

the older Sandy Bridge architecture and a good fit for the Skylake

system. For DRAM power on Sandy Bridge, this work demonstrates

a close correlation between RAPL and measured power for configu-

rations with high power consumption. However, at several different

low-power workloads, that vary in their physically measured value,

RAPL reported a constant power consumption. In contrast, the

RAPL DRAM values on the Skylake system were mostly consis-

tent with the measurements at the respective 12 V input, exhibiting

a maximum relative discrepancy of 7.1% under an assumed VR-

efficiency, excluding idle. However, the author remarks that the

remaining discrepancies are even smaller for the sum of package

and DRAM, which may indicate a slight mismatch of the RAPL

domains and the respective 12 V pins.

The experimental evaluation in our work shows that RAPL on

a newer architecture reports higher divergence and variability for

the memory subsystem than observed previously by [1]. Due to the

scarcity and complexity of such work, we believe this paper will

bring better clarity on the subject in addition to the prior work.

4 EXPERIMENTAL SETUP
The experiments were conducted on two different Ice Lake-SP and

Broadwell-EP systems, as shown in Table 1. While the Ice Lake-SP

system is a state-of-the-art heterogeneous memory system, the

Broadwell-EP system is a homogeneous memory server. In particu-

lar, the Broadwell-EP microarchitecture is similar to the Haswell-EP

Figure 2: DDR4-compatible riser card with current-sense re-
sistors at 12V, VDD, and VPP and probing wires. A PMMmodule
is installed in the riser.

Intel architecture Ice Lake-SP Broadwell-EP

Mainboard

Intel M50CYP2SB

Engineering Sample

Supermicro

X10DRTH

No. sockets 2 2

CPU model Xeon Gold 6338 Xeon E5-2650 v4

Cores 32 12

Base frequency 2.0 GHz 2.2 GHz

Main memory

16x32GB Samsung

DDR4 3200 MT/s

8x16GB SK hynix

DDR4 2400 MT/s

Other memory 16x128GB Intel®

Optane™ PMM

-

Power governor performance

OS Rocky Linux 8.8 (Green Obsidian)

Kernel 6.4.3-1.el8.elrepo

Table 1: Default hardware configuration of the Ice Lake-SP
and Broadwell-EP system

Vendor Name Capacity Transfer
Rate Part Number

Samsung

DDR4 SDRAM

ECC RDIMM

32GB 3200 MT/s

M393A4K4

0DB3-CWE

SK hynix

DDR4 SDRAM

RDIMM

16GB 2400 MT/s

HMA42GR7

AFR4N

Intel

Optane™ PMem

200 Series

128GB 3200 MT/s

NMB1XXD1

28GPSU4

Table 2: Memory modules used for experiments

architecture, for which previous work evaluated the temporal reso-

lution [18] and the accuracy of the RAPL memory domain [1]. For

the following experiments, the memory population of the systems

from Table 1 was modified by physically exchanging the memory

modules. We explicitly specify the exact memory modules from Ta-

ble 2 for each experiment. The PMMs were configured in AppDirect

mode throughout the experiments.

4.1 Hardware Instrumentation with DIMM
Riser Cards

For the reference measurements, we utilized DDR4 compatible

DIMM riser cards from Adex Electronics as shown in Figure 2.

These riser cards are compatible with DDR4 registered DIMMs
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and 200 series PMM and feature 5mΩ, 1% tolerance current-sense

resistors (also called shunts) with a power rating of 0.5W at all

power-delivering pins of the DIMM
3
, which enables high-side cur-

rent sensing.

To measure the power consumption at the different pins, we

measured the voltage drop across these shunts. For DRAM, we

measured the 1.2 V VDD and 2.5 V VPP pins, while the 12 V and 1.2 V

VDD rails are measured for PMM. According to our measurements,

the power consumption of VPP is less than 10mW for PMM and

can be neglected for our purposes. All other pins also only show a

minor contribution to the power consumption of the DIMM and

are neglected here [1].

According to Ohm’s law, the voltage drop is proportional to the

current, i.e., 𝐼 = Δ𝑈
𝑅

with Δ𝑈 being the voltage drop and 𝑅 = 5 mΩ

the known resistance of the shunt. As this voltage drop is small

and cannot directly be measured by most measurement devices, we

amplify the voltage drop by the factor of 100 for VDD and 200 for

12V and VPP using INA2180 [9] current-sense amplifiers
4
. These

integrated circuits take two voltages as an input and output a single-

ended voltage that corresponds to the difference between the inputs

multiplied by a fixed gain on two independent channels. In our

case, the input pins were connected to both sides of the shunts. For

this work, evaluation boards for these amplifiers with preinstalled

bypassing capacitors were utilized and powered by a 5V supply

voltage from a Raspberry Pi.

The amplified voltage drop and the bus voltage, probed on the

high side of the resistor for each considered pin of a DIMM, are

then measured using an MCC128 [26] data-acquisition board. This

device was installed as a HAT on a Raspberry Pi and is capable

of measuring the voltage on 8 single-ended input channels at an

aggregated sampling rate of 100 kHz across all channels. We config-

ured it to measure input voltages between 0V and 5V and stepped

the 12 V bus voltage for PMM down to around 2.8 V using a custom

voltage divider realized with an 815Ω and a 2680Ω resistor with

0.1 % tolerance. The sampling rate was 1 kHz for each channel
5
.

4.2 RAPL Measurements
perf_event is a commonly used tool for accessing RAPL measure-

ments, which was used by Desrochers et al. [1] in a previous eval-

uation of RAPL. As sampling RAPL counters with perf at high

sampling rates introduces significant overhead and the start of the

measurements takes too long, a more lightweight solution for con-

ducting RAPL measurements was required. We adopted a C code

snippet byWeaver [37] to directly read RAPLMSRs at a configurable

3
At the VDD pin, which is the primary 1.2 V power supply of DDR4 DRAM, two of

these shunts are installed in parallel to double the maximum current rating. This is

required for faster and larger-capacity DDR4 modules. The previous revision of the

risers cards used by Desrochers et al. [1] only has a single shunt at the VDD, which
limits maximum power drawn by the memory module.

4
Initially, we used INA122 instrumentation amplifiers on a breadboard like Desrochers

et al. [1]. These amplifiers, however, feature insufficient bandwidth, which resulted in

decreased amplification gain and an underestimation of the power consumption as a

result. As the breadboard introduced significant contact resistance and instability, we

soldered all connections or used screw terminals to maintain strong and low resistance

connections.

5
The MCC128 samples all configured channels within one scan clock cycle [26]. For

DRAM at idle, energy measurements with the maximum supported sampling rate of

25 kHz per channel compared to 1 kHz only differed slightly (1.8575W vs. 1.8431W). If

higher accuracy is required or if signs of strong aliasing occur, an increased sampling

rate or low-pass filtering is preferred.

sampling rate and write the results into a text file. Furthermore, we

integrated support for the Intel Ice Lake-SP platform and added the

option to supply an application that should be monitored as a child

process.

While RAPL advertises a sampling interval of around 1ms, our

results revealed that the update interval can be subject to a sig-

nificant jitter (see Section 5.1). Thus, we decided to sample RAPL

counters only every 5ms.

4.3 Measurement Synchronization
While the reference measurements are conducted by the Raspberry

Pi, RAPL measurements have to be conducted by the system under

test itself. This introduces the challenge of synchronizing the results

between both devices.

Previouswork employed different techniques for this. Desrochers

et al. [1] utilized a serial interface cable for this purpose and mod-

ified the perf tool to output a high signal to one of the pins of

the serial cable when measurements start and to set it back to low

when measurements end. Ilsche [4] added correlation sequences to

the power measurement signal and detected the pattern of this se-

quence in the resulting measurements to line up the measurements

with the execution of the application. For this work, we utilized

a MCP2221 [27], which plugs into the system under test via USB

and features a serial UART interface and several GPIO pins. One

of these GPIO pins was connected to the digital trigger pin of the

data-acquisition card. We configured it to start the reference mea-

surements when the GPIO is set to high. The GPIO is connected to

another GPIO of the Pi, which is used to stop the measurements

when a falling edge is detected. While the measurement start is

synchronized tightly, a higher delay can be expected for stopping

measurements.

When the RAPL measurements are started on the system under

test, the GPIO is set to high by our RAPL measurement tool. Once

the monitored application exits, the reference measurements are

stopped by setting the GPIO back to low.

The serial UART interface of the MCP2221 is also connected to

the serial interface pins of the Pi to establish a communication link

between the system under test and the Pi. This interface is utilized

to communicate benchmark information between both devices. In

addition, the ground pin of the MCP2221 is connected to the analog
ground of the MCC128 to establish a common reference ground

between the data-acquisition card and the system under test
6
.

4.4 Data Post-processing
For each experiment, a CSV file with the raw voltages measured by

the MCC128 is stored on the Pi. The voltage drop is divided by the

gain and the shunt resistance, i.e., 2.5mΩ for VDD and 5mΩ for the

rest, and multiplied by the measured bus voltage to compute the

power, e.g.:

𝑃𝑉𝐷𝐷 = 𝑈𝑉𝐷𝐷 × Δ𝑈𝑉𝐷𝐷

100 × 2.5 mΩ

The RAPL measurements produce a text file with the energy

consumption since the last sample and the computed average power

6
Although both devices are inside the same building, a substantial difference between

the ground level of both devices cannot be ruled out.
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Figure 3: Hardware for amplification and processing of power
measurements on the Ice Lake-SP system

Figure 4: DRAM and PMM modules instrumented with riser
cards on the Ice Lake-SP system

consumption during that interval for each RAPL domain on both

sockets.

As both measurements are sampled at different rates, we had to

resample them to a common sampling interval to directly compare

RAPL with reference measurements. For this, the values for both

measurements are averaged within 200ms intervals
7
.

4.5 Experimental Validation
The 0.5W power rating of the preinstalled shunts at the riser cards

limits the power consumption of the installed memory modules.

For example, the power dissipation at the 12V pin is 𝑃 = 𝑈 × 𝐼 =

𝐼2 × 𝑅 = 𝐼2 · 5 mΩ. In this particular case, the maximum current

rating is 10A, which would correspond to a power consumption of

120W, which is well above the maximum burst power consumption

of 18W for PMM.

7
The artifacts archive containing our measurement data, the sourcecode, and further

information on reproducibility of our experiments is available at https://doi.org/10.5

281/zenodo.10783502.
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Figure 5: Theoretical residual sum of squares error of
INA2180 in high-side current sensing at 25°C. 𝑽𝒔 = 5.1V, Shunt
Tolerance: 1 %. Comparing 𝑽𝑪𝑴 = 12V , 𝑹𝒔𝒉𝒖𝒏𝒕 = 5mΩ, Gain
= 200 and 𝑽𝑪𝑴 = 1.2V , 𝑹𝒔𝒉𝒖𝒏𝒕 = 2.5mΩ, Gain = 100

However, the VDD pin on registered DDR4 DIMMs has a maxi-

mum expected current of 11.7 A [16], which exceeds the 10A rating

of a single shunt. As two shunts are installed in parallel for VDD,

the maximum current rating is doubled, so RDIMMs can be oper-

ated safely. PMM is primarily powered via 12 V and can be operated

safely as well due to the higher voltage and lower current.

We also computed the maximum expected voltage drop at the

shunts, which is highest for VDD with a value of 29mV. If we

assume a typical voltage of 1.21 V [16] at VDD, the voltage behind

the shunt can drop to 1.181 V, which is still above the minimum

voltage specification of 1.16 V for VDD [16].

Furthermore, we measured the memory access latency over-

head introduced by the riser by running the Intel Memory Latency

Checker (MLC) [12] with and without riser cards. The use of the

risers and the open sever case did not introduce a statistically sig-

nificant latency overhead, which is in line with previous results [1].

The accuracy of the reference measurements is mainly influ-

enced by the shunt tolerances, the gain error at the current-sense

amplifier, and the analog-digital conversion using the MCC128. Fig-

ure 5 shows the RSS error estimation for current sensing of VDD and
12V according to a calculator provided by Texas Instruments [8],

which covers the first two error sources. The figure shows that the

error strongly depends on the current, decreases with increasing

current, and is significantly lower for 12 V compared to 1.2 V. In this

case, the minimum expected current is 1.5 A for 1.2 V and 0.25A for

12 V, which corresponds to an RSS error around 30 % for 1.2 V and

40 % for 12 V and that is mainly caused by a relatively high bias cur-

rent, which is the current that flows through the input pins of the

amplifier. Our practical experience, however, showed that this high

error is more of a theoretical nature. For example, the 16GB DDR4

modules by SK hynix should consume 1.7W during active standby
according to its datasheet [34]. Our reference measurements report

between 1.65W and 1.85W at idle and closely match the specifica-

tion from the datasheet
8
. The analog-digital conversion introduces

a maximum absolute error of 3mV at 25°C [26]
9
. At a load current

of 2A, the 5mV voltage drop at the VDD shunts is amplified to 1 V,

resulting in a relative error of 0.3 %. An additional error of at most

8
Experiments in which we used another current-sense amplifier with a significantly

lower error (e.g., the INA296) gave us overall almost identical results.

9
The MCC128 was placed outside the server case with a sufficiently stable ambient

temperature of 22 °C to 24 °C.
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0.154 % is introduced by the voltage divider that steps down the

12V bus voltage.

4.6 Benchmarks
The described methodology was used to compare RAPL and refer-

ence measurements for DRAM and PMM on the Ice Lake-SP and

Broadwell-EP systems during the execution of different workloads:

• Idle workloads: sleep, busy-waiting
• Memory intensive: different kernels of the STREAM bench-

mark at varying thread count, memorywrites, memory reads,

dot product

• CPU intensive: matrix multiplication (DGEMM), packed add,

packed multiplication

When allocating on DRAM, we spawned between 1 and 32 threads,

while we limited the number of threads to 4 for PMM. OpenMP

threads were pinned to the CPU cores using the environment vari-

ables OMP_PLACES=cores and OMP_PROC_BIND=true for all exper-
iments. For DRAM measurements, numactl -m 0 -N 0 was em-

ployed to allocate memory on the local DRAM of socket 0 and to

bind threads to socket 0. numactl -m 2 -N 0 was used for PMM.

The GCC 8.5.0 compiler was used throughout all experiments. Due

to the limited availability of DIMM risers and data-acquisition chan-

nels, only memory populations with up to two DIMMs per socket

were considered
10
.

5 RESULTS
The following section presents the results from the validation ex-

periments of the RAPL memory domain on the Ice Lake-SP and

Broadwell-EP systems, as described in the previous section.

5.1 Temporal Resolution of RAPL
First, we empirically determined the update interval of the RAPL

energy counters on both systems with default memory configura-

tion as described in Table 1. For this, we used the code by Schöne

et al. [33], which busy waits for an update of a RAPL MSR and

measures the number of CPU cycles between consecutive updates

using the rdtscp instruction. The code measures this time gap for

10 000 consecutive updates on socket 0 of the system for RAPL’s

package and memory domains. The difference in clock cycles is

then multiplied by the clock speed to compute the update interval

in milliseconds.

We executed these experiments five times on each system and

show a representative excerpt of the update interval for 1000 con-

secutive updates of the RAPL memory domain for both systems

in Figure 6. The results reveal that the update interval is subject

to a substantially higher variation on the Ice Lake-SP system com-

pared to Broadwell-EP. On the Broadwell-EP system, most counter

updates are observed after a gap between 0.95ms and 1.05ms, aver-

aging to 1.01 ± 0.11ms. In contrast, the update rate on the Ice Lake-

SP System is spread between 0.7ms and 1.6ms in an apparently

bimodal distribution, averaging to 0.99 ± 0.26ms. For the Broadwell-

EP system, the outliers close to 2ms strike out. The update interval

distribution of the Package domain is overall similar to the memory

domain on both systems and is omitted here. However, the outliers

10
This approach can be extended to up to 16 DIMMs by stacking 8 MCC128 devices

and using 16 risers.
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Figure 6: RAPL memory domain update interval variation.

close to 2ms were not observed for the package domain on the

Broadwell-EP system.

Our results indicate that RAPL energy counters either need to

be oversampled at a substantially higher rate greater than 2 kHz or

a lower rate is required to average out update rate variations.

5.2 Ice Lake-SP
Figure 7 shows the correlation between RAPL and our reference

measurements on socket 0 of the Ice Lake-SP system for different

memory populations. To facilitate the visualization, only up to 20

random samples per workload for each memory configuration are

shown, and we do not visually indicate the different workloads.

Interested readers can find the workload-specific visualization for

each memory configuration in Figures 11 to 15 in the appendices.

The results indicate that RAPL reports a significantly higher

power consumption than the reference measurements at the DIMM.

If the memory is idle, RAPL measurements can be subject to a

relative offset as high as 120%, for example, at idle, reference mea-

surements report around 1.9W for 32GB DDR4 memory, while

RAPL reports 3.8W to 4.2W. At higher load on the memory, this

absolute offset decreases slightly and the relative offset decreases

significantly to around 10% at maximum load for DRAM. PMM

shows an overall different fit here and is subject to an even higher

absolute offset than DRAM, even when PMM is idle and memory

is only allocated on DRAM. While the different workloads show

a wider spread of the power measurements on DRAM, PMM con-

sumes around 11.5W to 13W under load.

During the experiments, a substantial inconsistency between

RAPL measurements for the memory on both sockets was observed,

which is shown in Figure 8. The reference measurements report
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Figure 7: RAPL vs. reference power measurements for dif-
ferent memory populations for socket 0 on the Ice Lake-SP
system

roughly the same power consumption for both sockets. Measure-

ments on socket 0 are subject to a higher variation than on socket

1, which can be explained by the RAPL measurements being per-

formed by socket 0 as well. However, while reference measure-

ments coincide mostly for both sockets, the respective RAPL values

diverge. This is reinforced on the same system with full DIMM

population (see Table 1), for which RAPL reports 35.4W for the

memory domain of socket 0 and 41.9W for socket 1 in idle state
11
.

Furthermore, our results show that RAPL measurements are sub-

ject to a temporal inconsistency. This effect can already be seen

in Figure 8, but is particularly prominent during the execution of

the memory copy kernel, as visualized in Figure 9. While reference

measurements are subject to a minor variation and mostly con-

stant around 2.1W throughout the measurements, corresponding

RAPL measurements alternate between 3.5W and 4.5W. These

inconsistencies can be observed for all workloads with low load

on the memory, i.e., all single-threaded workloads, but not for the

STREAM benchmark at a higher number of threads. In particular,

it can be observed for busy waiting but not during sleep.

5.3 Broadwell-EP
Using the same experimental setup, we conducted RAPL mem-

ory measurements for the Broadwell-EP system with 1x16 DDR4

11
Measured repeatedly using perf stat -e power/energy-ram/ -I10000

–per-socket, i.e., averaging over 10 seconds for each socket.

0 2 4 6 8 10
Time [s]

2

4

6

Po
we

r [
W

]

RAPL: Socket 0
RAPL: Socket 1

Reference: Socket 0
Reference: Socket 1

Figure 8: RAPL vs. reference measurements for the memory
of both sockets on the Ice Lake-SP system at idle with 1x32GB
DDR4 per socket.
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Figure 9: RAPL vs. reference measurements for the memory
of socket 0 on the Ice Lake-SP system for thememory copy
kernel with 32 threads and 1x32GB DDR4 per socket.

memory installed on each socket. Figure 10 shows the resulting

correlation between RAPL and reference measurements. While

RAPL reports significantly higher power than the reference mea-

surements on the Ice Lake-SP system, RAPL and reference mea-

surements match more closely on the Broadwell-EP system. At

idle, RAPL slightly overestimates, and for a reference power con-

sumption greater than 3.8W, RAPL slightly underestimates. For

workloads with a medium load on the memory, for example, the

dot product kernel or the memory read kernel, RAPL, and reference

measurements agree well. However, more samples deviate strongly

from a linear fit.

5.4 RAPL Error Analysis
As demonstrated by our experimental results, RAPL significantly

overestimates the reference power consumption on the Ice Lake-SP

system, while measurements match more closely with a relative

error of at most 10% when not idle on the Broadwell-EP system. In

addition, our results show that the offset depends on whether PMM

is installed. An extensive study of the memory power delivery and

implementation of RAPL identified several potential causes for this

discrepancy, which we will discuss in the following.

5.4.1 Sensing Point at the Voltage Regulator. As described in Fig-

ure 1, the memory DIMMs are primarily powered by one or multiple

voltage regulators (VRs) on the mainboard, also on systems with

fully integrated voltage regulators (FIVRs).
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Figure 10: RAPL vs. reference power measurements for
socket 0 for different workloads on the Broadwell-EP system
with 1x16GB DDR4 per socket.

Such a VR internally measures the current and voltage and com-

municates it via SVID to the CPU, which utilizes this data for RAPL.

This feature is called IMON and usually refers to the measurement

of the output current of the VR. In this case, the measurement point

for RAPL would be expected to be close to our reference measure-

ments, which are based on measurements directly at the DIMM

pins. The exact specification of the demands of voltage regulators

and their current sensing capabilities are defined by Intel in the non-

disclosed VR13 / VR13.HC standard for the Ice Lake-SP platform.

The latest published version of the VR specification is available for

the VR11.1 standard [15] from 2009. According to this document,

IMON explicitly measures the “output load current“ of the voltage

regulator.

An inspection of the Ice Lake-SP system identified the VR con-

troller IC PXE1410CDM-G003 as a candidate for controlling power
delivery to the memory. Datasheets are only available for other

variants of this chip with different numbers of phases [7]. Apart

from monitoring the output current of each channel, these chips

also measure the input current and voltage for the input to the VR.

The supported input power monitoring suggests that RAPL mem-

ory measurements could be based on input instead of output power

monitoring on the Ice Lake system. Other datasheets for VRs typi-

cally used in server systems support this hypothesis. For example,

the TPS544C26 [35], which is designed for powering DDR5 memory,

features “input power monitoring for DDR5 memory RAPL”. Simi-

larly, the ISL69133 [31] supports “input current sensing required for
NVDIMM”. Both PMM and NVDIMM have in common that they

are primarily powered via 12 V.

If RAPLwas based on input powermonitoring of the VR, it would

mean that RAPL measurements also include the VR power losses.

The efficiency of the VRs strongly depends on the output current

and typically peaks around 90 % at a certain load current. For lower

output current, the efficiency drops significantly and can be lower

than 50 %. This matches our observation that the positive offset of

RAPL against DIMM measurements at low current is reduced at

a higher load on the memory. This potentially also explains the

higher offset if PMM is installed. As PMM is primarily powered

over 12 V compared to 1.2 V for DRAM, the output current is 10×
lower at identical power consumption.

By only installing two DIMMs per socket, the voltage regulators

operate well below the efficiency range they were designed for,

which reinforces this effect. For full DIMMpopulations, RAPL is still

expected to overestimate the actual memory power consumption.

For example, if the voltage regulator has a peak efficiency of 92 %,

RAPL can be expected to overestimate by at least 8 %.

The changed measurement point for RAPL could also explain

the temporal inconsistencies demonstrated by Figure 8 as the VRs

are typically implemented using multiphase buck converters. To

improve the energy efficiency at low output current, phase shedding
is often implemented, which shuts down certain phases at low

output current to improve energy efficiency [2]. This way, small

changes in the DIMM power consumption can result in a phase

being switched on or off at the VR, resulting in a jump in input

power consumption while the output power only changes slightly.

5.4.2 Different components included. Another potential reason for

the difference between RAPL and reference measurements is that

RAPL covers the power consumption of other components as well.

For example, it is likely that the VR that powers the memory also

provides 𝑉𝐶𝐶𝐷0123 and 𝑉𝐶𝐶𝐷4567 to the CPU for powering the

memory interface (see Figure 1). In addition, our reference mea-

surements are based on power measurements at only two pins

which contribute to the total power consumption the most. The

power consumption of the other pins and the heat dissipation at

the current-sense shunts are not covered by our measurements but

might be included in RAPL. However, this alone cannot explain the

large offset of RAPL according to our measurements.

5.4.3 Accuracy of current sensing. Another error source is the ac-
tual accuracy of the current sensing at the VR (IMON). As already

stated by Gough et al. in 2016 [2], the current sensing feature at

VRs is typically optimized for the highest current it can deliver

and is subject to an almost constant offset error. However, if the

load current reduces, the relative error of the current sensing will

increase significantly, resulting in a substantial inaccuracy of RAPL

measurements for the memory if systems are populated with sig-

nificantly lower memory capacity than they have been designed
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for [2, p. 63]. The VR11.1 Design Guidelines give concrete values
for the maximum current monitoring error. At a load of more than

50%, the error needs to stay below 15%, at a load up to 30%, an

error of 24% is allowed, and at a load of 15%, an error of up to

50% is recommended [15]. Such requirements are not publicly doc-

umented by Intel for modern systems, but some device vendors

provide typical accuracy values of their current sensing circuits in

the datasheets. For example, theMP86901C [38], which is advertised

as very “reliable and accurate”, has an accuracy of ±2% at 30A load,

±4.0% at 10A load, and ±7% at 5𝐴 load. However, if only a single

DRAM DIMM is used, the current at VDD is usually less than 2𝐴 and

the error is increased. Infineon’s TDA38640 [6], for example, has a

typical accuracy of ±6% for output current monitoring (IMON) at

maximum load — the accuracy is expected to be lower at light load.

5.5 Implication on the Use of RAPL Memory
Measurements

Overall, our results indicate that RAPL significantly overestimates

the actual power consumption of the memory module itself. A

possible reason is that the RAPL implementation of our Ice Lake-SP

system includes power losses at the voltage regulator level and

the power consumption of components outside the DIMM. As a

consequence, the offset between RAPL and reference measurements

strongly depends on the voltage regulators used on the mainboard.

This is also shown by the differences to previous architectures,

for example, Broadwell-EP. The inter-socket inconsistency (see

Figure 8) of RAPL can also be explained by some components being

only powered by the VR of socket 1.

The differentmeasurement points — narrow covering only DIMM

versus wider covering input power of the larger memory subsystem

including VR losses — both offer unique insight. For example, the

wider measurements are more suitable to account for all power con-

sumed within a system right after the power supply unit. Therefore,

estimating the total system power consumption based on RAPL

package and memory measurements would be easier in the wider
measurement point we assume for our Ice Lake-SP system. The

wider measurement point is also more suited to gauge the overall

impact of an optimization. However, modeling and analyzing the

power consumed by memory for certain workloads can be done

more accurately with narrow only covering the DIMMs. Using the

wider RAPL measurements would include the confounding factors

of VR efficiency as well as inconsistencies we observed across sock-

ets (see Figure 8) and over time (see Figure 9). Our results also show

that a focus on high-power configurations (memory under load, full

capacity installed) can help limit the impact of these discrepancies

when utilizing RAPL for memory power modeling.

While we executed the experiments only on a single Intel Ice

Lake-SP system, we expect that our findings also apply to other

heterogeneous memory systems, in particular, those that provide

12 V to the memory modules. For DDR5 registered DIMMs, which

are primarily powered over 12 V and feature an on-DIMM power

management integrated circuit (PMIC) that converts 12 V to a set

of different voltages required by the memory [17], RAPL is also

expected to include power losses at the VR. This is confirmed by

a datasheet for a DDR5-compatible VR controller for Intel sys-

tems [35].

6 CONCLUSION
This study provides an extensive overview of the power measure-

ment methodology using DDR4 DIMM extenders. We described our

hardware instrumentation setup for collecting power consumption

measurements for heterogeneous memory that can serve as a blue-

print for conducting similar experiments. To verify the accuracy

of this measurement approach, we validated it on a Broadwell-EP

system and observed overall agreement with the results from a

similar system in prior work.

Our results from a recent Intel Ice Lake-SP platform indicated

that RAPL energy counters of the memory domain report notably

different readings than in older architectures. Regardless of the

memory type (DRAM or PMM), RAPL measurements overestimate

the actual power consumption of the DIMMs. The relative offset be-

tween reference and RAPL measurements increases with lower load

on the memory or smaller memory capacity installed. A plausible

reason for this is a change in the RAPL’s input measurement point

that now includes power losses at the voltage regulators of the

memory system. We conclude that this must be taken into account

when using RAPL for memory power consumption estimations or

performance on Intel Ice Lake-SP or similar architectures.

Investigating fully populated memory channels, platforms sup-

porting newer DDR5 memory (Sapphire Rapids), and other system

components, such as the CPU package and GPUs, are future direc-

tions for exploration.
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Figure 11: Ice Lake-SP: 32GB DDR4 + 128GB PMM (on PMM)
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Ice Lake-SP Broadwell-EP

128GB PMM
+ 32GB DRAM

128GB PMM
+ 32GB DRAM

1x16GB
DDR4

1x32GB
DDR4

2x32GB
DDR4

1x16GB
DDR4

Sleep 49.6% 48.4% 121.6% 118.1% 57.7% 35.3%

Busy Waiting 47.1% 47.6% 117.7% 107.4% 50.0% 7.9%

128b SSE Add. (1 Thread) 47.9% 47.3% 116.4% 108.8% 49.3% 8.2%

128 SSE Mult. (1 Thread) 49.4% 44.9% 119.2% 112.6% 46.5% 7.9%

Dot Product (1 Thread) 37.1% 20.8% 58.0% 54.8% 32.8% 4.0%

DGEMM (1 Thread) 49.2% 45.8% 119.0% 112.3% 50.3% 8.0%

Stream Copy (1 Thread) 29.9% 16.7% 46.2% 43.1% 23.4% -2.3%

Stream Copy (8 Threads) 23.3% *** 33.4% 28.6% 10.3% -8.8%

Stream Copy (32 Threads) 24.0% *** 26.8% 22.6% 8.3% -9.5%

Memory Read (32 Threads) 42.5% *** 101.6% 87.1% 44.8% -0.1%

1
Allocation on DRAM

2
Allocation on PMM

3
Only up to 4 threads were used for PMM

Table 3: RAPL error comparison between the Ice Lake-SP and Broadwell-EP systems for different workloads and memory
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Figure 12: Ice Lake-SP: 2x32GB DDR4
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Figure 13: Ice Lake-SP: 32GB DDR4
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Figure 14: Ice Lake-SP: 32GB DDR4 + 128GB PMM (on DRAM)
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Figure 15: Ice Lake-SP: 16GB DDR4
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ABSTRACT

The layout of multi-dimensional data can have a significant impact
on the efficacy of hardware caches and, by extension, the perfor-
mance of applications. Common multi-dimensional layouts include
the canonical row-major and column-major layouts as well as the
Morton curve layout. In this paper, we describe how the Morton lay-
out can be generalized to a very large family of multi-dimensional
data layouts with widely varying performance characteristics. We
posit that this design space can be efficiently explored using a com-
binatorial evolutionary methodology based on genetic algorithms.
To this end, we propose a chromosomal representation for such
layouts as well as a methodology for estimating the fitness of array
layouts using cache simulation. We show that our fitness function
correlates to kernel running time in real hardware, and that our
evolutionary strategy allows us to find candidates with favorable
simulated cache properties in four out of the eight real-world ap-
plications under consideration in a small number of generations.
Finally, we demonstrate that the array layouts found using our
evolutionary method perform well not only in simulated environ-
ments but that they can effect significant performance gains—up to
a factor ten in extreme cases—in real hardware.

CCS CONCEPTS

• Software and its engineering → Software performance; •
Mathematics of computing → Combinatorial optimization; •
Information systems → Data layout.

KEYWORDS
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1 INTRODUCTION

Structured multi-dimensional data are ubiquitous in high-perfor-
mance computing [9]: three-dimensional fluid simulations, dense
linear algebra operations, and stencil kernels are just a few examples
of applications which rely fundamentally on multi-dimensional
arrays. In spite of the importance of such applications, however,
most modern computer systems have one-dimensional memories:
from the perspective of the programmer, memory is nothing more
than a very large one-dimensional array of bytes. This discrepancy
between application requirements and hardware design requires
programmers to carefully consider array layouts: injective functions
which translate multi-dimensional indices into one-dimensional
memory addresses.

Although array layouts do not impact the functional properties
of programs, choosing a suitable layout can significantly impact
application performance in modern processors with complex cache
hierarchies [48]. Exploiting these caches is of critical importance
to achieving high performance in all but purely compute-bound
applications, but doing so requires locality of access—both temporal
and spatial—in memory. Kernels often exhibit locality in multiple
dimensions, and a well-chosen array layout maximizes the degree to
which this application-level locality is translated to the address-level
locality that caches are designed to exploit; as a result, that layout
increases the efficacy of hardware caching and—by extension—the
performance of an application.

Data in two-dimensions is commonly laid out in row-major order
(shown in Figure 2a for an 8 × 8 array) or column-major order (Fig-
ure 2t) which provide good locality of access in a single dimension,
but poor locality in all others. Thankfully, the design space for data
orderings—in two dimensions or more—extends far beyond these
canonical layouts: the Morton layout (Figure 2f), for example, is
a layout based on a space-filling curve which provides balanced
locality between multiple dimensions [46, 62]. Our work explores a
family of data layouts which generalize the Morton order, and allow
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(a) Row-major layout (b) Morton layout

Figure 1: Two-dimensional arrays laid out in memory along

the gray arrows. An application accesses the array diagonally

along the red arrows. Application locality is shown above,

memory locality is shown below.

us to carefully tune the cache behavior in multiple dimensions to
match a given application.

The design space of the aforementioned family of data layouts
is dauntingly large; indeed, the number of possible layout for ar-
rays at scales applicable to real-world problems is so large that
it renders exhaustive search infeasible. In order to find suitable
array layouts in tractable amounts of time, we propose to employ
genetic algorithms—heuristics known to be able to efficiently find
high-quality solutions in large search spaces [35]. To this end, we
design a chromosomal representation of Morton-like array layouts,
as well as a fitness function that uses cache simulation to estimate
the performance of individual array layouts. Finally, we evaluate
our evolutionary strategy and the array layouts it discovers.

In short, our paper makes the following contributions:
• We characterize the design space given by a generalization

of the Morton array layout, and we show that that the size
of this design space renders exhaustive search infeasible
(Section 3);

• We propose an evolutionary methodology based on genetic
algorithms for exploring the aforementioned design space
based on the simulated cache-friendliness of layouts (Sec-
tion 4);

• We design and execute a series of experiments to assess the
accuracy of our fitness function, the efficacy of our evolu-
tionary process, and the performance of the discovered array
layouts, showing that our method can improve performance
up to a factor ten (Section 5).

2 BACKGROUND AND RELATEDWORK

In this section, we provide a brief overview of the basic concepts
and notations which are essential to the remainder of this paper,
and highlight relevant related work.

2.1 Indexing Functions and Canonical Layouts

Dense 𝑛-dimensional arrays can be imagined as structured grids
in which each element is assigned to exactly one point in N𝑛 . In
most modern processors, multi-dimensional arrays are a software-
level abstraction over the one-dimensional memory of the machine;
in order to actually access multi-dimensional data, we need to
define a function that converts indices in 𝑛 dimensions to memory

addresses1. We refer to the class of such functions as indexing
functions, and they are isomorphic to array layouts. In short, an
𝑛-dimensional indexing functions is an injective (often bijective)
function of the following type, where 𝑁𝑖 represents the size of the
array in the 𝑖th dimension,

>
is the generalised Cartesian product,

and J𝑎, 𝑏K is the integer interval from 𝑎 to 𝑏:

𝑓 :
𝑛−1?
𝑖=0

J0, 𝑁𝑖 − 1K →
t

0,
(
𝑛−1∏
𝑖=0

𝑁𝑖

)
− 1

|

(1)

In a multi-dimensional grid, we denote the elements along a
given axis—that is to say, the sequence of elements for which all
indices except one are fixed—as fibers [41]. In a two-dimensional
case, fibers along the 𝑥-axis are known as rows, and fibers along the
𝑦-axis as columns. In order to facilitate the description of arrays
in three or more dimensions, we use the term mode-𝑚 fibers to
describe fibers along the𝑚th dimension, such that mode-0 fibers
are synonymous with rows, mode-1 fibers refer to columns, and so
forth.

The most common group of multi-dimensional indexing func-
tions are the canonical layouts, sometimes known as the lexico-
graphic layouts or, in the two-dimensional case, the row- and column-
major layouts. In a canonical layout, one-dimensional array indices
are calculated according to Equation 2, in which 𝑥0, . . . , 𝑥𝑛−1 are
components of the 𝑛-dimensional index, and 𝑁0, . . . , 𝑁𝑛−1 repre-
sent the size of the array in each dimension:

𝑓 (𝑥0, . . . , 𝑥𝑛−1;𝑁0, . . . , 𝑁𝑛−1) =
𝑛−1∑︁
𝑖=0

©«
𝑖−1∏
𝑗=0

𝑁 𝑗
ª®¬𝑥𝑖 (2)

An important corollary of Equation 2 is that the mode-0 fibers
are contiguous in memory i.e., Equation 3 holds:

𝑓 (𝑥0 + 1, 𝑥1, . . . , 𝑥𝑛−1) = 𝑓 (𝑥0, 𝑥1, . . . , 𝑥𝑛−1) + 1 (3)
It is worth noting that the calculation of addresses in column-

major layout—in which the mode-1 fibers are contiguous—is also
given by Equation 2, with the order of the indices and sizes swapped.
The canonical array layouts achieve perfect spatial locality in one
dimension: if a kernel accesses memory along mode-𝑚 fibers, then
a canonical layout where the𝑚th dimension is major will provide
the optimal translation between locality in the multi-dimensional
space to locality in memory. Many real world applications, how-
ever, exhibit locality in multiple dimensions; a kernel might, for
example, iterate diagonally over an array; an example of this—and
the resulting locality in memory—is given in Figure 1a.

The performance of canonical storage layouts has been stud-
ied extensively. Park et al. discuss methods for compensating for
the weaknesses of canonical layouts using tiling and recursive lay-
outs [48]. Similarly, Kowarschik and Weiß propose a variety of
strategies that mitigate cache misses in canconical storage layouts
for numerical applications [42]. Weinberg et al. propose a metric for
the locality of array layouts [66]. Jang et al. analyze the performance
of access patterns in multi-dimensional data in graphics processing

1In reality, address calculations must also consider array offsets (the address of the
first element) and scales (the size of each element). We skip over these complications
as they are handled transparently by address generation units in modern hardware,
and they affect all array layouts in the same manner.
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units (GPUs) [40]. Che et al. propose a method for automatically
optimizing storage layouts [16].

2.2 Morton Layouts

The Morton order is a notable example of a non-canonical array
layout that provides balanced locality in multiple dimensions. It
is conceptually simple to understand, efficient to implement in
commodity hardware (as we will show in Section 3.3), and it has
been shown to positively affect the efficacy of hardware caches:
Al-Kharusi and Walker show the efficacy of the Morton layout in
molecular dynamics applications [5], Perdacher et al. describe its
benefits in matrix decomposition [51], and Thiyagalingam et al.
provide an in-depth performance analysis of this array layout in
a range of kernels [62]. Chatterjee et al. show the applicability of
Morton layouts—as well as other non-canonical layouts—in matrix
multiplication [15], and this work is expanded upon in [14]. Ap-
plications of the Morton order in more than two dimensions have
been studied by Pawłowski et al. [50]. Mellor-Crummey et al. show
the applicability of array layouts based on space-filling curves—like
the Morton layout—for irregular applications [44]. The practical
applicability of the Morton layout is further evidenced by the Opie
compiler, which employs Morton array layouts natively [24].

The performance benefits of the Morton layout stem from its
spatial structure: an example—which justifies why this layout is
sometimes known as the Z-order layout—is given in Figure 1b;
note the difference in locality in the address space compared to
the canonical layout (Figure 1a). The Morton order layout has also
been applied to data movement in parallel systems by Walker and
Skjellum [65], and Deford and Kalyanaraman have applied the
layout to workload distribution in parallel processes [20]. Bader
explores a variety of applications of space-filling curves in scientific
programs [10]. Armbrust et al. explore the application of Morton
curves for the storage of databases, reducing the total amount of
data read from persistent storage [8]; although the aforementioned
paper considers a much higher level of abstraction than the methods
in this paper—which operate at the level of hardware caches—we
believe that the methods presented in this paper may generalize to
a broader range of applications, including databases.

In the Morton order, multi-dimensional indices can be converted
to one-dimensional addresses in a variety of ways. The Moser–de
Bruijn sequence [36] is commonly used as it allows efficient conver-
sions in two dimensions, but this method requires us to store the
Moser–de Bruijn sequence in memory, and accessing this sequence
causes additional overhead. Therefore, we prefer a different method
based on the interleaving of the (unsigned) binary representation
of multi-dimensional indices. As an example, the two-dimensional
index (3, 5) can be bijectively mapped into one-dimensional mem-
ory by finding the binary expansions of the indices i.e., (0112, 1012),
and interleaving the bits yielding 1001112 = 3910. This is equiv-
alent to first dilating and shifting the binary expansions of the
numbers, and then taking their bitwise disjunction (OR): the first
index is dilated yielding 0001012 while the second index is dilated
and shifted left yielding 1000102. Taking the bitwise disjunction of
these numbers yields the same address as using the interleaving
strategy. The computation of Morton indices through bit manipu-
lation can be extended to an arbitrary number of dimensions; the

three-dimensional index (3, 5, 4) expands to (0112, 1012, 1002), and
the resulting memory address is 1100010112 = 39510. Note that
the relative significance of bits in each of the input indices is pre-
served in the output address. Gottschling et al. present the idea
that the Morton layout can be generalized by allowing arbitrary
bit-interleaving orders [27, 28], which is foundational to our work.
This idea is further expanded on by Walker [64].

2.3 Genetic Algorithms

Genetic algorithms are a class of heuristics introduced by Holland
which are designed to solve optimization and search problems by
emulating the process of evolution as it happens in the natural
world [34]. In genetic algorithms, generations of individuals i.e., sets
of candidate solutions, iteratively explore a design space through
genetic operators. In particular, crossover operators model the com-
bination of the genetic material of two or more individuals [49], and
mutation operators model random changes to the gene pool [57].
In genetic algorithms, individuals are removed from the population
based on their fitness i.e., the quality of the solution they represent
to the problem posed [55]. Genetic algorithms have seen successful
application in an extremely broad range of fields, ranging from
drug discovery [61] to music composition [25]. Genetic algorithms
have also proven useful for design space exploration in computer
systems; Pimentel shows that they can be applied in the design of
embedded systems [52]. Sapra and Pimentel show that a broader
class of evolutionary approaches can be used in the design of neu-
ral networks [54]. The optimization problem we consider in this
paper is combinatorial in nature, and the application of genetic
algorithms to such problems has also been extensively studied and
proven across a variety of domains [7, 26, 31, 47]

3 GENERALIZED MORTON LAYOUTS

The Morton layout functions by interleaving the bits of the input
indices in a fixed pattern: bits are drawn from each of the inputs
in a round-robin manner. In this section, we generalize this idea,
allowing bits to be interleaved in arbitrary order. This gives rise to
more specialized layouts with different structure and, as a result,
different extra-functional properties [27, 28, 64]. Figure 2 shows all
20 layouts that are given by different bit interleaving orders for an
8 × 8 array. As with the standard Morton layout, the generalized
Morton layout can be applied to any number of dimensions. As an
example, the following three-dimensional layout selects two bits
from the second index, one bit from the third index, then two bits
from the first index, etc.:

𝑓 (0112, 1012, 1002) =
0000110002

∨ 0001000012
1000000002
1001110012

= 31310 (4)

Our goal is to find Morton-like layouts i.e., bit-interleaving pat-
terns, that improve application performance through an increase in
cache efficacy. In this section, we will show that the design space for
such layouts is very large, motivating the use of genetic algorithms.
This necessitates a chromosomal representation of layouts, which
we also present in this section. In addition, we describe how the
canonical layouts can be described using the same representation,
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(a) [0,0,0,1,1,1] (b) [0,0,1,0,1,1] (c) [0,0,1,1,0,1] (d) [0,0,1,1,1,0]

(e) [0,1,0,0,1,1] (f) [0,1,0,1,0,1] (g) [0,1,0,1,1,0] (h) [0,1,1,0,0,1]

(i) [0,1,1,0,1,0] (j) [0,1,1,1,0,0] (k) [1,0,0,0,1,1] (l) [1,0,0,1,0,1]

(m) [1,0,0,1,1,0] (n) [1,0,1,0,0,1] (o) [1,0,1,0,1,0] (p) [1,0,1,1,0,0]

(q) [1,1,0,0,0,1] (r) [1,1,0,0,1,0] (s) [1,1,0,1,0,0] (t) [1,1,1,0,0,0]

Figure 2: All 20 layouts for 8 × 8 arrays generated by the

family of indexing schemes described in Section 3. Note that

Figure 2a corresponds to a row-major layout, while Figure 2t

corresponds to a column-major layout.

and we delve into practical considerations such as the computa-
tional cost of computing indices and support for same-instruction
multiple-data (SIMD) processing.

3.1 Enumerating Layouts

We can characterize Morton-like layouts by the bit scattering pat-
tern applied to each of the inputs (e.g., for Equation 4, the first
index is scattered to the fourth, fifth, and eighth bits). However,
such a characterization is unsound in the sense that is allows us to
describe invalid layouts: if two bits from any of the input indices are
mapped onto the same bit in the output, the bitwise disjunction be-
comes an information-destroying operation and the layout becomes
non-injective—that is, it would cause multiple multi-dimensional in-
dices to map onto the same location in memory, making the layout
unusable.

We can instead characterize layouts in a manner that is both
complete and sound by enumerating the source of each bit in the
output index. In the remainder of this work we shall denote array
layouts using sequences of the form [𝑖0, . . . , 𝑖𝑛−1], indicating the
source indices in order of increasing bit significance: the least sig-
nificant bit in the output index is drawn from the 𝑖0th input index,
the second-least significant bit is drawn from the 𝑖1th input, and
the most significant bit is drawn from the 𝑖𝑛−1th input. Note that
each input bit must be used once and only once: whenever a bit is
to be drawn from a given input index, we implicitly use the least
significant bit for that input which has not yet been consumed.
For the layout shown in Equation 4, the two least significant bits
are drawn from the second input, the third-least significant bit is
drawn from the third input, and so forth: the resulting array layout
is denoted using the sequence [1, 1, 2, 0, 0, 1, 2, 0, 2].

The aforementioned characterization of multi-dimensional lay-
outs gives rise to families of layouts. The family of layouts over 𝑛
inputs, where each input has 𝑏0, . . . , 𝑏𝑛−1 bits, is isomorphic to the
set of permutations of the multiset 𝑆 = {0 : 𝑏0, . . . , 𝑛−1 : 𝑏𝑛−1}. We
denote this set of permutations as 𝔖(𝑆). For convenience, we obvi-
ate the intermediate multiset such that 𝔖′ (𝑏0, . . . , 𝑏𝑛−1) = 𝔖({0 :
𝑏0, . . . , 𝑛 − 1 : 𝑏𝑛−1}). We can then determine the total number of
possible layouts as the number of multiset permutations of 𝔖′ [13,
p. 42]:

|𝔖′ (𝑏0, . . . , 𝑏𝑛−1) | =
( ∑𝑛−1

𝑖=0 𝑏𝑖

𝑏0, . . . , 𝑏𝑛−1

)
=

( ∑𝑛−1
𝑖=0 𝑏𝑖

)
!∏𝑛−1

𝑖=0 (𝑏𝑖 !)
(5)

3.2 Including Canonical Layouts

It is worth noting that canonical layouts over arrays for which
the size in each dimension is a power of two are, in fact, members
of the family of Morton-like layouts. In order to sketch an infor-
mal argument for this, we recall that the indexing function for an
𝑛-dimensional canonical layout given array sizes 𝑁0, . . . , 𝑁𝑛−1 is
defined as in Equation 2. If we assume that all sizes are powers
of two, then the product of these sizes is guaranteed to be itself a
power of two. Because multiplication by powers of two can be in-
terpreted as a left-ward shift, the canonical layouts shift each input
index 𝑥0, . . . , 𝑥𝑛 to a specific location in the binary expansion of the
output index. Furthermore, because we assume ∀𝑖 : 𝑥𝑖 < 𝑁𝑖 , each
bit in the output is determined by exactly one of the input indices;
this allows us to interpret the summation as a series of bit-wise dis-
junctions, exactly like the definition of our Morton-like layouts. In
general, a mode-0-major canonical layout of a 2𝑏0 × . . .×2𝑏𝑛−1 array
can be characterized—in the the scheme defined in Section 3.1—by
contiguous subsequences of bits, each drawn from the same index
i.e., a sequence of the following form:

[0, . . . , 0︸  ︷︷  ︸
𝑏0 times

, 1, . . . , 1︸  ︷︷  ︸
𝑏1 times

, . . . , 𝑛 − 1, . . . , 𝑛 − 1︸             ︷︷             ︸
𝑏𝑛−1 times

] (6)

Canonical layouts with different major axes can be constructed
by changing the order of the contiguous subsequences. The fact
that the canonical layouts are members of the Morton-like family
of array layouts allows us to evaluate the performance of these
layouts in the exact same framework as the rest of the Morton-like
layouts, and we will exploit this in Section 5.
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3.3 Hardware-Accelerated Indexing

It is tempting to extend the aforementioned ideas to even more ex-
otic indexing functions, like the Hilbert array layout [6, 32, 67]. The
computational cost of many such functions renders them impracti-
cal, however: if the cost of computing memory addresses is too large,
any performance gained by improving the cache-friendliness of a
program will be negated. The Morton-like layouts we consider in
this work allow efficient index calculations on modern commodity
hardware, which we demonstrate in this section.

Under canonical array layouts, indices are calculated either iter-
atively through repeated addition and multiplication, or in parallel
through parallel multiplication followed by reduction through addi-
tion. In 𝑛-dimensional cases both approaches require 𝑛−1 additions
and 𝑛 − 1 multiplications, operations which can be efficiently per-
formed on virtually all processors. Specifically, the Intel Haswell
and AMD Zen 3 microarchitectures—on which we focus in this
work—can perform 64-bit register addition (ADD r64 r64) with a
latency 1 cycle and a reciprocal throughput of 0.25 cycles, while
they can execute multiplication (IMUL r64 r64) with a latency of
3 cycles and a reciprocal throughput of 1 cycle [1].

Our bit-interleaving array layouts rely, in 𝑛-dimensional cases,
on 𝑛 − 1 bitwise disjunctions and 𝑛 bit-scatter operations. Such
disjunctions (OR r64 r64) can be performed with a latency of 1
cycle and a reciprocal throughput of 0.25 cycles—the same as the ADD
instruction—on both of the aforementioned microarchitectures. We
perform the bit-scattering operation using the parallel bit deposition
(PDEP r64 r64 r64) instruction, which is included in the BMI2
extension to the x86-64 instruction set [4]. The Intel Haswell and
AMD Zen 3 microarchitectures both perform bit deposition with a
latency of 3 cycles and a reciprocal throughput of 1 cycle, identical to
the IMUL instruction. It follows that Morton-like indexing requires—
in theory—only a single additional instruction over canonical index
calculation.

The hardware extension required to perform bit deposition is
widely supported: BMI2 has been included in Intel processors start-
ing with the Haswell microarchitecture (2013) [29], and in AMD
processors starting with the Excavator microarchitecture (2015),
albeit in a limited fashion; AMD processors gained full hardware
support for these instructions starting with the Zen 3 microarchi-
tecture (2020) [22]2.

In order to further evaluate the competitiveness of Morton-like
layouts compared to canonical layouts, we analyze implementa-
tions of both indexing schemes over a range of dimensionalities
as compiled by gcc 12.3 and clang 15.0 using OSACA 0.5.2 [43].
All code was compiled using the -O2 optimization flag. The results
of this analysis are shown in Figure 3. Over the range of dimen-
sionalities considered, the canonical layouts are consistently faster
i.e., require fewer cycles to compute, than the Morton-like layouts.
However, the difference in performance—approximately one cycle—
is relatively small and overshadowed by the number of cycled saved
due to a reduction in cache misses. Furthermore, we focus primarily
on memory-bound applications, in which a small increase in index
calculation time is unlikely to affect performance. We conclude,

2Pre-Zen 3 processors supported parts of the BMI2 instruction set—the PEXT and PDEP
instructions in particular—through emulation in microcode rather than in hardware,
making them very slow.
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Figure 3: Throughput of a kernel calculating array indices

using canonical layouts as well as Morton-like layouts on

the Intel Haswell microarchitecture as given by OSACA.

therefore, that Morton-like layouts are competitive with canonical
layouts strictly in terms of address computation costs.

3.4 Support for SIMD

An important consideration in the design of array layouts is the
ability to vectorize kernels through single-instruction multiple-data
(SIMD) operations. Canonical layouts guarantee the contiguity of
fibers in the array, which facilitates the (automated) vectorization
(e.g., the application of SIMD) of many operations, and this benefit
is lost when applying the array layouts discussed in this paper.
However, we posit that there remains ample opportunity to acceler-
ate computation on Morton-like arrays using SIMD, and we argue
this by distinguishing two classes of computation patterns.

The first class consists of unstructured patterns in which data
is operated on element-wise without spatial context i.e., without
consideration of nearby elements; a prominent example of such
an operation is matrix addition. In such applications, SIMD can
be trivially applied to the underlying one-dimensional memory,
regardless of the layout of the data: since elements can be added
point-wise in any order, doing so in the order in which the data is
laid out in memory is both feasible and enables SIMD.

The second class of problems consists of structured patterns in
which operations must be performed in a specific order. A prime ex-
ample of such an operation is matrix multiplication where the inner
product of fibers must be computed. In such cases, it is imperative
that fibers can be accessed in contiguous blocks. The size of these
blocks depends on the vectorization technology used as well as the
size of the data type: in the x86 instruction set, SSE vectorisation
requires two consecutive double-precision numbers or four con-
secutive single-precision numbers [38]; the much wider ARM SVE
instruction set extension [58] may require up to thirty-two con-
secutive double-precision numbers or sixty-four single-precision
numbers.

In order to facilitate vectorization for structured patterns of com-
putation, we can impose certain constraints on the array layouts
we consider. Indeed, if the 𝑛 least-significant bits of an interleaving
pattern are all drawn from the 𝑚th input index, then the layout
guarantees that the mode-𝑚 fibers in the array are contiguous in
blocks of 2𝑛 elements. This requirement can be incorporated into
the selection of array layouts; for example, we can enable efficient
AVX2 vectorisation (with a vector width of 256 bits) using single-
precision (32-bit) floating point numbers by ensuring that the three
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least significant bits in an array layout are drawn from the same
source. In other words, we can easily constrain our search space
to include only array layouts with properties that favor vectoriza-
tion, and we believe that doing so will enable SIMD-accelerated
computation arrays laid out in Morton-like orders.

4 EXPLORATION THROUGH EVOLUTION

The canonical set of indexing bijections for laying out multi-di-
mensional memory is small: for two-dimensional data, there are
two possible layouts, and the performance of these layouts can be
evaluated using exhaustive benchmarks [23, 59, 62]. Exhaustively
exploring the family of indexing function outlined in Section 3,
however, is impractical owing to the sheer number of permissi-
ble permutations. Importantly, the number of canonical layouts
increases only with the number of dimensions, while the number of
Morton-like layouts increases with both the number of dimensions
and the size of the array in each of those dimensions. By Equation 5,
a small 4×4 array (indexed by two bits in each dimension) can be laid
out in (2+2)!/2!2! = 6 ways. A larger array of size 4096×4096 (twelve
bits in each dimension) can be laid out in (12+12)!/12!12! = 2 704 156
ways. A three-dimensional array of size 256 × 256 × 256 has the
same number of elements as the aforementioned 4096 × 4096 array,
but permits (8+8+8)!/8!8!8! = 9 465 511 770 permutations. As these
examples indicate, the number of possible permutations quickly
scales beyond what can be feasibly explored through exhaustive
search; in order to tackle the explosive growth in the design space
for Morton-like layouts, we propose the use of genetic algorithms
(Section 2.3).

4.1 Genetic Algorithm Configuration

In this work, we employ a relatively simple (𝜆, 𝜇)-ES genetic algo-
rithm [34, 56]. The chromosomal representations of array layouts
is identical to the characterization given in Section 3.1, and this
gives rise to a combinatorial optimization problem. We facilitate
the recombination of array layouts into novel layouts using the
ordered crossover (OX) operator [18], and we employ inversion-
based mutation [21]. Our approach differs from classical genetic
algorithms in only one significant way: our initial population is
not chosen randomly from the solution space. Instead, the initial
populations for our evolutionary experiments always consist of
two individuals, depicting two canonical layouts for a given array
size, as described in Section 3.2. We choose to do this to ensure that
our initial populations are unbiased and deterministic, allowing us
to more easily assess the efficacy of our genetic strategy.

4.2 Fitness Function Design

There are two general strategies for evaluating the performance
i.e., fitness, of a given array layout under a given cache hierarchy
and access pattern: measurement and simulation. In order to as-
sess fitness through measurement, we execute a program on actual
hardware and measuring the running time of the process. Although
such a fitness function is conceptually simple, it suffers from two
primary flaws: (1) measurements are noisy and may suffer from
run-to-run variance, which may hinder the performance of genetic
algorithms [45]—in particular, our genetic algorithm is vulnerable to
noise stemming from cache pollution effects; and (2) measurements

require access to the target hardware, which may be inconvenient
or even impossible—for example, in hardware-software co-design
scenarios, where the hardware under consideration does not (yet)
exist. For these reasons, we choose not to base our fitness function
on measurements.

Instead, we employ simulation for which we need a simulator
that can accurately compare the cache performance for different
access-patterns on the same cache hierarchy. For this, we selected
pycachesim, a component of the Kerncraft toolkit [30]. We use
pycachesim by simulating an access pattern such as matrix multipli-
cation and registering the relevant trace of load and store operations.
After all accesses have been recorded, we force a write-back of the
caches and collect the number of hits and misses in each cache level.
We combine the number of hits in every cache level as well as in
main memory with the latency of retrieving data from each of these
levels to compute the total number of cycles spent retrieving data
from the cache hierarchy. Given an array layout 𝐼 , an access pattern
𝐴 and a simulated cache hierarchy 𝐻 , we calculate the total number
of cycles using the following equation, in which L𝑖hit, L𝑖miss, and
L𝑖lat represent the number of hits, the number of misses, and the
latency of the 𝑖th cache level, and 𝑀 represents main memory:

𝐶 (𝐼 ;𝐴,𝐻 ) = Mhit (𝐼 ;𝐴,𝐻 )Mlat (𝐻 ) +
∑︁
𝑖

L𝑖hit (𝐼 ;𝐴,𝐻 )L𝑖lat (𝐻 ) (7)

From this, we compute an approximation of the number of ac-
cesses performed per cycle, giving rise to a higher-is-better fitness
function defined as follows:

𝐹 (𝐼 ;𝐴,𝐻 ) = L1hit (𝐼 ;𝐴,𝐻 ) + L1miss (𝐼 ;𝐴,𝐻 )
L1lat (𝐻 ) ·𝐶 (𝐼 ;𝐴,𝐻 ) (8)

Intuitively, the numerator in Equation 8 counts the total number
of memory accesses, as all accesses either hit or miss in L1. The
denominator, then, estimates the total number of cycles spent re-
trieving data from the various cache levels. The denominator is
multiplied by a normalizing factor equal to the latency of the L1
cache; it follows from Equation 7 that the achievable performance
is softly bound by the reciprocal of the L1 access latency. Indeed,
this performance is achieved if and only if all accesses hit the L1
cache. Normalizing the fitness function using the L1 cache latency
improves our ability to compare results between different cache
hierarchies.

5 EVALUATION

We evaluate the efficacy of the methods hitherto discussed by
demonstrating that (1) our fitness function is well-chosen i.e., that
is correlates with performance measurements in real hardware;
that (2) our evolutionary process is capable of finding novel array
layouts with favorable cache properties; and that (3) the layouts
which are found by our evolutionary process actually lead to rele-
vant performance gains in real hardware. Our validation is based
on eight distinct access patterns and two processors with distinct
cache hierarchies.

5.1 Experimental Setup

We consider a set of eight access patterns loosely based on the
selection of algorithms used by Thiyagalingam et al. [62]. The access
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1 template <concepts ::array <2> M>
2 void mm_ijk(const M & A, const M & B, M & C) {
3 const auto m = C.get_size ();
4 for (std:: size_t i = 0; i < m; ++i) {
5 for (std:: size_t j = 0; j < m; ++j) {
6 typename M:: value_type acc = 0.;
7 for (std:: size_t k = 0; k < m; ++k)
8 acc += A.load(i, k) * B.load(k, j);
9 C.store(acc , i, j);

10 }
11 }
12 }

Listing 1: Example of how an access pattern (MMijk) is de-

scribed in C++. Metaprogramming allows the same source to

be used for both simulation and execution on real hardware.

1 caches:
2 L1:
3 sets: 64
4 ways: 8
5 line: 64
6 replacement: LRU
7 write_back: true
8 store_to: L2
9 load_from: L2

10 latency: 4
11 L2:
12 sets: 512
13 ways: 8
14 line: 64
15 replacement: LRU
16 write_back: true
17 store_to: L3
18 load_from: L3
19 victim_to: L3
20 latency: 12
21 L3:
22 sets: 25600
23 ways: 16
24 line: 64
25 replacement: LRU
26 write_back: true
27 latency: 36
28 memory:
29 first: L1
30 last: L3
31 latency: 200

(a) Intel Xeon E5-2660 v3

1 caches:
2 L1:
3 sets: 64
4 ways: 8
5 line: 64
6 replacement: LRU
7 write_back: true
8 store_to: L2
9 load_from: L2

10 latency: 7
11 L2:
12 sets: 1024
13 ways: 8
14 line: 64
15 replacement: LRU
16 write_back: true
17 store_to: L3
18 load_from: L3
19 victim_to: L3
20 latency: 12
21 L3:
22 sets: 32768
23 ways: 16
24 line: 64
25 replacement: LRU
26 write_back: true
27 latency: 46
28 memory:
29 first: L1
30 last: L3
31 latency: 200

(b) AMD EPYC 7413

Listing 2: Two examples of cache specifications for different

CPU models. Note that these configurations are approxima-

tions of the true cache hierarchies.

patterns were picked to represent common real-world applications
(dense linear algebra and fluid dynamics), to represent both two-
dimensional and three-dimensional applications, and to differ in
critical properties such as memory size and number of loads and
stores. A description of the access patterns we consider in this paper
is given in Table 1.

All our access patterns are described using C++ code—see the
example in Listing 1—which ensures high performance as opposed
to the Python code used for our evolutionary processes; the inter-
action between the C++ and Python components of our project is
managed using pybind11 [39]. We use template meta-programming
to generalize our access patterns in such a way that a single defini-
tion can be used for both simulation and benchmarking without
loss of performance due to run-time polymorphism; this eliminates
any possible discrepancies between the code used for simulation
and the code used for measurement.

We conduct our experiments on two different CPUs: the Intel
Xeon E5-2660 v3 [37] based on the Haswell microarchitecture [29],
and the AMD EPYC 7413 [2] based on the Zen 3 microarchitec-
ture [22]. When we perform experiments on non-simulated Haswell
processors we use the the DAS-6 cluster [11], whereas we use a
machine located at CERN for experiments on Zen 3 processors.
When we perform experiments based on simulation, we use the
the DAS-6 cluster [11] and configure our cache simulator accord-
ing the cache configurations shown in Listing 2a for the Haswell
processor, and Listing 2b for the Zen 3 processor. Note that the
cache configurations are based on the accessibility of caches from
a single core. This is especially relevant for the L3 cache on the
Zen 3 chip, which is shared across groups of cores rather than the
entire CPU: in the case of the AMD EPYC 7413, the CPU comes
equipped with 128 MiB of L3 cache, but only 32 MiB is accessible
from any single core [22]. We simplify the cache replacement poli-
cies of the actual hardware by assuming LRU caches (i.e., caches
with a least-recently-used eviction policy); in reality, the Haswell
caches employ eviction policies consistent with tree-PLRU (tree-
based pseudo-LRU) for the L1 and L2 caches [1, 63], while the L3
cache is consistent with a set-dueling-controlled adaptive insertion
policy [1, 53]. Cache sizes were gathered from specification docu-
ments [3, 29], while cache latencies were obtained optimistically
from sources on the fastest load-to-use latencies [3, 17]. The Zen 3
L1 cache has a fastest load-to-use latency of four cycles for integers
and seven cycles for floating point values [3]—we use the latter
in our simulations. Finally, we assume a constant 200 cycle access
latency for main memory in both systems.

5.2 Fitness Function Validation

The fitness function we use in our evolutionary process (Section 4.2)
is based on simulation results because simulation yields significant
benefits over empirical measurements, primarily in terms of deter-
minism and in the ability to simulate future hardware. However,
this strategy is not without risk: the simulation we perform is based
on a non-cycle-accurate simulator, uses simplified cache hierar-
chies, and ignores computation entirely. Consequently, we must
evaluate the usefulness of our fitness function by establishing its
correlation with execution time in real hardware.

Ideally, the running time of a kernel using a given array lay-
out would correlate inversely linearly with our fitness function,
therefore ensuring two important properties. Firstly and most im-
portantly, it guarantees that running time decreases monotonically
with the value of the fitness function, such that an array layout
with a higher fitness value is guaranteed to run more quickly; this
allows us to establish a ranking of layouts and enables us to reliably
select the best-performing array layout. Secondly, linear correla-
tion guarantees proportionality between fitness and running time,
which facilitates the weighted selection of individuals.

To evaluate the degree to which the aforementioned criteria are
met, we randomly select one hundred array layouts for each of
the eight access patterns given in Table 1. We then evaluate the
simulated fitness and measure the running time in real hardware of
each pair of array layout and access pattern. The fitness functions of
the pairs are calculated in parallel, as they are designed to be deter-
ministic and impervious to cache pollution or resource contention.
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Table 1: Overview of the access patterns used for evaluation, including the use of memory and the number of loads and stores.

Access pattern Description Mem. size Loads Stores

MMijk(𝑚; 𝑠 ) Multiplication of two 2𝑚 × 2𝑚 matrices, both of 𝑠-byte real numbers. 3 · 𝑠 · 22𝑚 B 2 · 23𝑚 22𝑚

MMTijk(𝑚,𝑛; 𝑠 ) Multiplication of a 2𝑚 × 2𝑛 matrix by a transposed 2𝑚 × 2𝑛 matrix. 𝑠 · (2 · 2𝑚+𝑛 + 22𝑛 )B 2 · 22𝑚+𝑛 22𝑚

MMikj(𝑚; 𝑠 ) Same as MMijk(𝑚; 𝑠 ) with the order of the inner loops switched. 3 · 𝑠 · 22𝑚 B 3 · 23𝑚 23𝑚

MMTikj(𝑚,𝑛; 𝑠 ) Same as MMTijk(𝑚,𝑛; 𝑠 ) with the order of the inner loops switched. 𝑠 · (2 · 2𝑚+𝑛 + 22𝑛 )B 3 · 22𝑚+𝑛 22𝑚+𝑛
Jacobi2D(𝑚,𝑛; 𝑠 ) Four-point stencil kernel over a 2𝑚 × 2𝑛 array of 𝑠-byte real numbers. 2 · 𝑠 · 2𝑚+𝑛 B ∼ 4 · 2𝑚+𝑛 2𝑚+𝑛
Cholesky(𝑚; 𝑠 ) Cholesky–Banachiewicz decomposition of a 2𝑚 × 2𝑚 matrix. 2 · 𝑠 · 22𝑚 B 2 · 22𝑚 ∼ 1

2 · 22𝑚

Crout(𝑚; 𝑠 ) Crout decomposition of a 2𝑚 × 2𝑚 matrix of 𝑠-byte real numbers. 2 · 𝑠 · 22𝑚 B 7
2 · 22𝑚 22𝑚

Himeno(𝑚,𝑛, 𝑝 ; 𝑠 ) Nineteen-point Himeno stencil [33] over 2𝑚 × 2𝑛 × 2𝑝 arrays. 12 · 𝑠 · 2𝑚+𝑛+𝑝 B 24 · 2𝑚+𝑛+𝑝 2𝑚+𝑛+𝑝
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Figure 4: Scatter plot of the fitness and measured running

time on an Intel Xeon E5-2660 v3 CPU and AMD EPYC 7413

for randomly chosen array layouts.

The empirical benchmarks are performed sequentially, ensuring
that the benchmark is the sole user of the processor caches. All
measurements are repeated ten times, and we report the mean and
standard deviation of the running time.

The results of this experiment are shown in Figure 4. The coeffi-
cient of variation of the measurements never exceeded a value of
𝑐v = 0.0801. Accordingly, we have opted to omit error bars from
the figure. Upon visual inspection, it is clear that the correlation
between our fitness function and running time is not linear, al-
though the two do appear correlated. We confirm our suspicions of
correlation by computing Pearson’s coefficient of correlation (𝜌𝑝 )
and Spearman’s coefficient of rank correlation (𝜌𝑠 ); the resulting
statistics are given in Table 2. We observe that our fitness function
and running time correlate moderately to strongly with running
time for the Intel Xeon E5-2660 v3 processor, although the correla-
tion is weaker for the AMD EPYC 7413 processor. Although it is
clear that there is space for the fitness function to be improved, we
believe that it correlates sufficiently with running time to enable
its use in genetic algorithms.

Table 2: Pearson’s coefficient of correlation (𝜌𝑝 ) and Spear-

man’s coefficient of rank correlation (𝜌𝑠 ) between our

simulation-based fitness function and true running time.

Intel E5-2660 v3 AMD EPYC 7413
Access pattern 𝜌𝑝 𝜌𝑠 𝜌𝑝 𝜌𝑠

MMijk(9; 4) −0.672 −0.480 −0.648 −0.489
MMTijk(9, 9; 4) −0.810 −0.896 −0.863 −0.823
MMikj(9; 4) −0.845 −0.815 −0.800 −0.838
MMTikj(9, 9; 4) −0.777 −0.744 −0.291 −0.405
Jacobi2D(13, 13; 4) −0.760 −0.769 −0.390 −0.428
Cholesky(10; 4) −0.827 −0.953 −0.725 −0.892
Crout(9; 4) −0.846 −0.663 −0.213 −0.704
Himeno(8, 7, 7; 4) −0.607 −0.475 −0.561 −0.496

5.3 Genetic Algorithm Performance

To evaluate our evolutionary process (Section 4) as a whole, we
intend to verify that it can, indeed, find Morton-like array layouts
that have a higher simulated fitness than the canonical layouts. To
this end, we perform the evolutionary process for each combination
of our two simulated processors and eight access patterns, giving
rise to a total of sixteen experiments. For all of these experiments,
we configure our genetic algorithm to use 𝜇 = 20, 𝜆 = 20, and a
mutation rate of 25%. We simulate a total of 20 generations in each
case.

Figure 5 shows a violin plot of the fitness distribution of all
individuals considered during the evolutionary process. Figure 6
shows the evolution of population fitness over the course of our
experiments. Note that each of these experiments represents a sin-
gle evolutionary process. We notice that for the MMTijk, MMikj,
Jacobi2D, and Himeno access patterns, our method does not man-
age to discover any layouts with higher fitness than the initial
population of canonical layouts. In the experiment on the MMijk
access pattern, we discover layouts with a fitness 149.8% higher
than the canonical layouts on the Intel Xeon E5-2660 v3 processor,
and we improve on the fitness of canonical layouts by 187.5% for
the AMD EPYC 7413. We also find layouts with improved fitness for
the MMTikj (109.6% and 141.1% for the Intel and AMD processors,
respectively), Cholesky (26.4% and 36.8%), and Crout (545.9% and
541.1%) access patterns. It is notable that we are able to find layouts
with high fitness in few generations.
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the Intel Xeon E5-2660 v3 (blue) and AMD EPYC 7413 (red).

Mean fitness values are given by the dashed lines.

5.4 Real-World Performance

In order to evaluate whether the layouts identified by our evolution-
ary algorithms as superior to canonical layouts are indeed better,
we evaluate them on real hardware. We collect the fittest individual
from each of the successful evolution experiments—i.e., experi-
ments in which our method improved upon canonical layouts, as
indicated by the top boundary in Figure 6 exceeding the maximum
fitness in the first generation—and evaluate the performance of
those layouts compared to the canonical layouts on real hardware.
Given that our genetic algorithm discovered superior layouts for
four access patters—MMijk, MMTikj, Cholesky, and Crout–and
that we evaluate a discovered layout and two canonical layouts
for each access pattern, this gives rise to twenty-four experiments.

Table 3: Comparison of running time between the best-

performing canonical layout and the best-performing layout

found by our evolutionary process for four access patterns.

Access pattern Best can. Best evo. Speedup
Intel Xeon E5-2660 v3

MMijk(11; 4) 17.84 s 10.94 s 63.1%
MMTikj(11, 11; 4) 18.13 s 13.96 s 29.9%
Cholesky(12; 4) 11.84 s 11.43 s 3.6%
Crout(12; 4) 158.54 s 43.72 s 262.6%

AMD EPYC 7413
MMijk(11; 4) 37.71 s 9.58 s 293.8%
MMTikj(11, 11; 4) 32.35 s 15.21 s 112.6%
Cholesky(12; 4) 9.72 s 9.55 s 1.0%
Crout(12; 4) 232.84 s 21.03 s 1007.0%

We repeat each experiment ten times to compensate for run-to-run
variance.

The results of our experiments are shown in Table 3; they show
that some access patterns—the Cholesky pattern in particular—
benefit very little from our method, with speed-ups ranging from
small on the Haswell processor to insignificant on the Zen 3 pro-
cessor. The matrix multiplication access patterns benefit more, and
performance for these access patterns is improved significantly. The
Crout access pattern stands out as achieving very large speedup—
up to a factor ten—from our method. It is worth noting that, in most
cases, the Zen 3 processor benefits more from our evolutionary
methodology than the Haswell processor; we do not currently have
a satisfactory explanation for this behavior.

It is important to note that we do not claim to have discovered a
novel way of performing matrix multiplication or matrix decom-
position that outperforms existing implementations. Indeed, our
experiments are based on relatively naive implementations of these
algorithms; high-performance implementations of matrix multipli-
cation commonly rely on tiling to significantly improve the cache
behavior of the application [48], and the performance of tiled matrix
multiplication surpasses what we achieve in this paper. The purpose
of the methodology described in this paper, rather, is to provide an
alternative way of improving the cache behavior of an application
in a manner which is fully agnostic of the application: unlike tiling
and other application-specific optimizations, our methodology of
altering the array layouts can be applied to any multi-dimensional
problem without the need for application-specific knowledge. In
addition, our approach requires few code changes, making it easy
to implement.

6 LIMITATIONS AND THREATS TO VALIDITY

Throughout this work, we evaluate cache efficacy through a sim-
plified lens which may reduce the applicability of our methods
in more complex, real-world applications. Indeed, we consider ac-
cesses to memory in isolation, decoupled from computation and
cache-polluting effects. We assume single-threaded execution with-
out scheduling, which means that our caches will not be polluted
by processes sharing (parts of) the cache hierarchy, nor will the ap-
plication have its cached data evicted due to context switching. We
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also assume scalar, in-order execution of memory accesses. Finally,
we take an optimistic view of cache latencies, using the fastest load-
to-use latencies provided by hardware manufacturers; in real-world
scenarios, cache latencies may be both more pessimistic and less
stable than we assume. The results shown in Section 5.4 indicate,
however, that our fitness function is sufficiently accurate to be
effective in real hardware.

In addition, the family of array layouts described in this work
requires array sizes to be powers of two in each dimension. In ap-
plications where this is not the case, arrays must be over-allocated.
For 𝑛-dimensional applications, using the layouts described in this
paper requires over-allocation by a factor of O(2𝑛). Furthermore,
applications using such layouts must consider the use of SIMD vec-
torization: it remains an open question which operations on arrays
laid out in non-standard ways can be (automatically) vectorized.
We have argued for the feasibility of SIMD in Morton-like arrays
in Section 3.4.

Finally, our work considers only multiset permutations, in which
the rank significance of bits in the input indices is preserved. This
decision is based on current commodity hardware, which is capable
of efficiently permuting bits only under this condition. There exists
an even larger family of layouts in which rank bit significance is not
preserved3; such layouts could be of practical use in theoretical fu-
ture processors with more advanced bit manipulation instructions,
or in current FPGA and ASIC devices which permit the implementa-
tion of custom bit manipulation operations. Although we have not
tested our approach on this further generalization, we are confident
that an evolutionary approach like the one presented in this paper
could be beneficial in exploring this (even larger) design space.

7 REPRODUCIBILITY AND REUSABILITY

The evolutionary algorithms, scripts for the processing and visu-
alisation of data, and other software used in this paper are per-
manently archived on Zenodo [60], and have been made available
at doi:10.5281/zenodo.10567243. The aforementioned artifact also
contains all data that was gathered and processed during the work
presented in this paper. For more information about the use of the
artifact accompanying this paper, see the included README file.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we have discussed a generalization of the Morton
layout for multi-dimensional data and we have shown that there
exist families of array layouts with strongly varying cache behavior
which, in turn, impact the performance of applications. We have
shown how these layouts can be systematically described, and that
the number of possible layouts quickly exceed the limits of what
can be feasibly explored using exhaustive search. We have proposed
a method based on evolutionary algorithms for the exploration of
the design space of such layouts. We have evaluated the fitness of
different array layouts using cache simulation and we have pre-
sented results indicating that our fitness function correlates with
real world performance. Furthermore, we have shown that the

3That is to say, the layout [00, 01, 10, 11 ] (which draws its least significant bit from the
least significant bit of the first index) is distinct from the layout [01, 00, 10, 11 ] (which
instead draws its least significant bit from the second-least significant bit of the first
index).

methodology described in this paper can be used to improve the
performance of applications on real hardware by up to ten times.

In the future, we intend to investigate the use of multi-objective
optimization using NSGA-II [19] in order to find array layouts that
provide favorable cache behavior across multiple applications. We
also intend to explore more advanced genetic algorithms which
are known to perform well in combinatorial problems, such as
RKGA [12] and BRKGA [26]. It is our belief that exploring more
evolutionary strategies will give us more insight into the conver-
gence properties of various methods, and allow us to select the
most efficient one. Although our fitness function correlates with
real-world performance, the correlation is not perfect; we believe
that the efficacy of our method could be improved through the de-
velopment of more advanced fitness function, perhaps through the
use of machine learning methods. In particular, we believe that the
field of metric learning may enable us to develop more accurate fit-
ness functions, and we aim to explore this avenue of research in the
future. Finally, we aim to expand our research to a broader range of
access patterns and hardware, including graphics processing units
(GPUs).
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ABSTRACT
Intel’s first heterogeneous processor, Alder Lake, combines two dif-
ferent core architectures from the Core and Atom families: Golden
Cove and Gracemont, respectively. While the heterogeneity of this
chip can improve performance and energy efficiency, it also in-
creases the complexity of scheduling decisions and power saving
mechanisms. In this paper, we analyze performance and energy
characteristics of anAlder Lake system and describe effects of power
saving mechanisms. We evaluate the factors that influence the time
required to switch core and uncore frequencies and waking cores
from idle states. In addition, we assess the efficiency of the two
core architectures across various workloads. We show that in states
with low power consumption, RAPL energy measurements are in-
accurate, and actual (externally measured) power consumption also
exhibits peculiar patterns. Through experiments, we also examine
the newly introduced user space idle states, and the novel teleme-
try capability. This information can be used by other researchers
to design efficient software and further experiments, and explain
measured performance on heterogeneous Intel processors.
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1 INTRODUCTION
The continuous evolution of processors requires vendors to trans-
late ever-growing transistor budgets into performance improve-
ments, e.g., by including more functional units, memory controllers,
input/output (I/O) interfaces, graphics processing units (GPUs),
and caches. This trend also increases complexity, which cannot
be fully hidden from the operating system (OS) or application do-
mains. Issues like where to place threads if cores have different
frequency ranges or architectures, or where to perform a task that
might be hardware-accelerated cannot be decided on a hardware
level. Moreover, performance improvements need to be achieved
within a limited power envelope with energy efficiency as a first
order design goal. Introduced power saving techniques, however,
can contradict OS and applications performance assumptions.

Several processor vendors offer heterogeneous processor ar-
chitectures, such as ARM’s big.LITTLE or Apple M1, combining
high-performance and power-efficient cores. Intel’s first such ar-
chitecture, Alder Lake, integrates different core architectures and
various accelerating components. This work presents an architec-
ture overview of Alder Lake and an in-depth analysis of its power
efficiency properties and techniques. For example, this includes
frequency scaling of different components, idle states and their
latencies, integrated energy measurement capabilities, and recently
introduced processor feedback interfaces and OS integration.

2 BACKGROUND AND RELATEDWORK ON
ENERGY EFFICIENCY MECHANISMS

Dynamic Voltage and Frequency Scaling (DVFS) describes the
ability of a processor to change frequencies and voltages at runtime
as a trade-off of power and performance. Contemporary processors
havemultiple frequency and voltage domains, e.g., one for each core
and one for uncore components. The decision to change frequencies
is influenced by multiple factors: first, the allowed frequency or
frequency range set by the operating system, which can be influ-
enced by the user [22, 34]; second, the internal control mechanisms,
which uses one of the allowed frequencies [16, Section 14.4]; and
third, protection mechanisms to prevent overheating and a high
power consumption [16, Section 14.10]. After the decision is made,
frequencies are not changed instantaneously, but only with some
delays to change voltages as well. While the information about
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the duration of a frequency change can be communicated by the
hardware to the OS in ACPI P-state tables [32, Section 8.4.5], these
values are not necessarily correct [21]. Moreover, internal control
mechanisms delay the decisions further [6, 28].

DVFS has been used by researchers to optimize the energy effi-
ciency of programs using two different approaches: First, the region-
based tuning of frequencies uses the characteristic of a code region
to lower the frequency of components when they are not used. One
example is the reduction of processor core frequencies when code
is memory-bound, as described, for example, by Kumaraswamy et
al. [19] and Vysocky et al. [33]. The second approach applies to par-
allel applications where the non-critical paths can be slowed down
to reduce the energy consumption of the cores that execute them.
This has been shown for example by Rountree et al. [25]. Charac-
teristics of frequency transitions have been studied by Mazouz et
al. [21]. We described additional details in [6, 28, 29].

Idle States are hardware power saving mechanisms that can
be used by the OS or the hardware to switch off the clock (clock
gating) or voltage (power gating) of a part of the processor that is
not actively used to lower power dissipation. Operating systems
typically use instructions like hlt or mwait to let CPUs idle [23].
Processors can also employ idle states for whole packages, includ-
ing cores and uncore components [26]. Parts of a processor core
can also be disabled when they are not used [28]. However, idle
mechanisms introduce latencies when re-enabling the idling com-
ponents. Characteristics of idle state transitions have been studied
by our previous work for various architectures in [8, 26, 28, 29].

Modern high performance processor architectures typically op-
erate under thermal and/or power constraints when fully utilized [7,
Sec. 1.5]. Consequently, processors are equipped with mechanisms
for Power Limiting and Thermal Protection to enforce oper-
ation within the given constraints. Intel introduced the Running
Average Power Limit (RAPL) [16, Sec. 15.10], which aims to maxi-
mize performance while ensuring safe operation. RAPL also pro-
vides energy measurement data that can be read from counters
for certain power domains. Monitoring power for thermal pro-
tection is also available on other platforms such as AMD [4, 29]
and IBM [31]. In previous work we detailed accuracies and other
properties of processor and platform power measurement inter-
faces [4, 6, 28, 29, 31]. Processors can also use clock modulation to
lower power consumption for thermal protection. Here, parts of a
processor are periodically clock gated for a certain timeframe to
lower power dissipation [27]. Another approach forces cores into
idle states periodically, including all benefits and costs discussed
earlier. This concept is called Hardware Duty Cycling (HDC) on
Intel processors [16, Section 15.5].

3 ALDER LAKE PROCESSOR ARCHITECTURE
AND TEST SYSTEM

The Intel Alder Lake processor family is a heterogeneous architec-
ture that can include the following computing components: Up to
eight performance cores (P-cores) using the Golden Cove architec-
ture, up to eight efficiency cores (E-cores, located in two modules
with four cores per module) using the Gracemont architecture,
an Intel Xe Gen 12.2 GPGPU with up to 96 execution units (EUs)
and a Gaussian-Neuronal-Network-Accelerator (GNA Version 3).
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Figure 1: Block diagram of the Intel Core i7-12900K processor

The processor cores are connected via shared caches1. To trans-
port data from and to the processor, it supports 16 PCIe 5.0 and
4 PCIe 4.0 lanes, Thunderbolt 4.0, Direct Media Interface (DMI) 4.0
and memory controllers for DDR4 and DDR5. The P-, H-, and U-
processor line also include an Image Processing Unit (IPU), which
provides support for camera functions (e.g., white balance and color
matching). A Volume Management Device [11, Section 2.8] adds
hardware RAID support below the OS level. The specification of
Alder Lake processors offer a range of configurable parameters
for thermal management / power control. Four power limits (PL1 -
PL4) define increasing thresholds, starting with PL1 as the average
power over long time, up to PL4 as a limit never to be exceeded
(see [11, Section 4.1.1]). From these, PL3 and PL4 are disabled by
default. When a system (platform) power measurement is available,
platform power limits (PsysPL) can further enforce thermal limits
beyond the scope of the processor. PL1 and PL2 limitations can also
affect main memory accesses, as [13, Section 3.3.13] hints.

Our test system hosts an Intel Core i9-12900K processor with
8+8 processor cores and 32 GPU EUs with a TDP2 of 125W. Ap-
pendix B lists the full test systems specifications. Figure 1 shows a
block diagram of the processor. The Intel powercap kernel module
reports 4 kW for the long_term and short_term RAPL constraints
(power_limit_uw). According to settings regarding Temperature
Targets [13, Section 3.3.28], the processor throttles at 100 ◦C and
the fans are engaged at 80 ◦C. While the interfaces for Hardware
Duty Cycling are listed in [17, Table 2-39], the feature itself is not
available on our system according to cpuid, and the MSRs are not
accessible. We measure power consumption on the AC side us-
ing a ZES LMG450 power meter and collect data externally using
MetricQ [9] for processing.

4 DYNAMIC VOLTAGE AND FREQUENCY
SCALING

Alder Lake processors have clock domains for: cores, the GPU, the
memory controller, the system agent, and the uncore including
L3-slices and ring. Different interfaces can be used to change core
frequencies: The operating system can use model-specific registers
(MSR) with the Enhanced Intel SpeedStep Technology [11, Sec-
tion 2.4.8] [16, Section 14.1]. While these MSRs can be accessed

1All cores share the last level cache (LLC / L3), a set of four E-cores shares a mid-level
cache (MLC / L2)
2The acronym TDP originates from Thermal Design Point [24] or Thermal Design
Power but is now also referred to as Processor Base Power [13, Table 1].
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per CPU3, Intel states that “all active processor IA cores share the
same frequency and voltage” [11, Section 2.4.8]. We validate this
in Section 4.1. Alternatively, the processor can control core fre-
quencies transparently using Hardware-Controlled Performance
States (HWP) [16, Section 14.4], also known as Intel Speed Shift
Technology [11, Section 2.4.10]. This can still be influenced by the
OS by regulating the minimal and maximal allowed frequency and
the preference for performance or power saving. Since frequency
control is implemented with MSRs, a remote core’s frequency can
only be changed by interrupting that core’s work. To cover this
issue, the operating system can use a new mechanism Remote Ac-
tion Request (RAR) [11, Section 2.4.16]. With RAR, a HWP request
can be broadcast to all cores of the system [2]. However, on our
system, the RAR information register [2, Table 4-1] is not accessible.
We describe how long it takes a core to change its frequency in
Section 4.2. Frequencies can be increased above the nominal fre-
quency using Turbo mechanisms [11, Sections 2.4.5, 2.4.7, 2.4.10],
within the given thermal and power limits. One of the reasons for a
high power consumption of processors and a possible reduction of
frequencies is the execution of compute-intense instructions. On
server processors specific frequency bands are applied when such
instructions are used [6, 28]. In Section 4.3, we check whether such
mechanisms are also present in the Alder Lake architecture.

The frequency of uncore components is regulated by the proces-
sor but can also be influenced by the operating system [17, pp. 2-
332f], which exposes this functionality with the uncore-frequency
driver. Previous work showed that these definitions cannot be con-
sidered to be hard limits and that a regulation mechanism will adapt
the uncore frequency to workloads on server processors [28]. We
cover this for Alder Lake processors in Section 4.4.

The frequency of the integrated GPU can also be changed by the
operating system and the hardware using different interfaces [11,
Section 3.4.3]. Linux exposes this option to the userspace with the
i915 driver. The datasheet [13, Section 3.3.22] states that compute
(slice) components of the GPU have a different frequency than other
(unslice) components. We describe the operating system interfaces
and the supported frequencies in Section 4.5.

3We use CPU to refer to a logical OS CPU, which corresponds to a hardware thread.

4.1 Frequency Interdependencies
At first, we check if the core frequencies depend on each other. We
run a while(1);workload on the tested CPU with a low frequency
and set a higher frequency on a different CPU that is either active
or idle. An increased frequency of the tested CPU suggests a shared
frequency domain. The experiment reveals that all active cores of
the processor share one frequency domain running with the highest
frequency set for any of these cores. In addition, idling P-core CPUs
can increase the frequency of the non-idling CPU of the same core.
Likewise, idling E-cores influence other cores in their module.

4.2 Frequency Change Latency
To measure the time until a frequency change is applied, we use the
method introduced by Mazouz et al. in [21] and refined in [6, 28].
We pin the frequency of unused CPUs to 800MHz. The workload
starts at the source frequency, waits for a random time between
0ms and 10ms, triggers a frequency switch via sysfs, measures
the start time and monitors the runtime of a short loop until it
fits the performance expected for the target frequency. As soon
as that happens, it takes the end time and verifies that the new
performance is stable. Unstable outliers are marked as such and
filtered from the analysis. Afterwards, it resets the frequency to the
initial frequency, verifies it by measuring the short workload and
starts over by waiting for a random time to measure the next switch.
We take 2×10 000 samples for P-cores and E-cores, respectively.

Figure 2 shows the latencies for P- and E-cores switching from
3.2GHz to 3.0GHz and 1.0GHz to 0.8GHz depending on the wait
time after resetting to the initial frequency. Initially, the transition
is fast, e.g., 38.7 µs (P-core, wait time < 2ms, 3.2→3.0GHz, median).
Starting approx. 2.1ms after the last frequency change, the behav-
ior for P-cores changes and now falls in two categories: For the
3.2→3.0GHz-switch, we see a periodic pattern with a period of
≈200 µs where a new core frequency can be applied at absolute
points in time. Such a behavior was reported for server processors
in [6, 28, 29]. The latencies for this periodic behavior range from
69.6 µs to 272.2 µs (P-core, wait time > 2.5ms, 3.2→3.0GHz, 1%
and 99 %-quantiles). In contrast, the 1.0GHz→0.8GHz transition is
now significantly faster without a further time dependent pattern.
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Figure 2: The time until a new frequency is applied depends on the wait time since the last frequency change. The latency
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longer wait times, patterns emerge for P-cores which depend on the start and target frequencies.
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(c) E-cores: 99th percentile of frequency latencies
(>2.5ms)

Figure 3: Frequency switch latencies, differentiated to short (< 2ms) and long time (> 2.5ms) after last switch.

Overall, the transition latencies within the first 2ms after a pre-
vious switch depend only on source and target latencies (see Fig-
ure 3a). While lowering frequencies can be done faster without
waiting for the voltage to change, increasing frequencies first needs
to increase voltages. Figure 3b shows that, for P-cores after 2ms,
most combinations follow the pattern of the 3.2GHz→3.0GHz
transition. However, there are some combinations with a low and
constant latency similar to the 1.0GHz→0.8GHz transition. The
latter have some things in common: first, it is always a reduction of
frequency and second, the source and target frequencies are rela-
tively close. This could be due to voltages not being changed during
the last frequency reset. In addition to that, some target frequencies
also show a pattern where a significant number of samples were
not valid. We provide more data with the reproducibility package.

These complex effects do not occur on E-cores, as shown in
Figure 2 and Figure 3c. Here, the initial pattern of a stable minimal
latency and a range of values above the minimum is visible even
for higher wait times since the previous frequency switch.

4.3 AVX Frequencies
The perfmon events website lists the event CORE_POWER sup-
ported by P-cores [10, Event CORE_POWER]. The same event
name is used on Intel Skylake processors to monitor processor cy-
cles spent in different frequency bands (standard, AVX, AVX-512
frequencies). On AlderLake P-cores the event lists three different
power licenses: 1-3, which can be selected using the umasks 0x02,
0x04, and 0x08 respectively. We validate these events by running
FIRESTARTER [5] and a while(1);-loop while sampling the per-
formance monitoring counter (PMC) every 1 s using perf stat.
During the while(1); workload, the PMC counts cycles if the
umask is 0x1. We therefore argue that the umask 0x1 refers to
license 0. Running FIRESTARTER workloads with SSE and AVX
triggers the PMC to count licenses 1 and 3, respectively.

License 2 is used whenever switching from license 3 to license 0,
as determined with perf record. Based on the number of cycles
spent in license 2 and the duration of a workload, cores presumably
spend about 640 µs in license 2 before switching back to license 0.
This time correlates with the time to switch back from the AVX-512

to the standard frequency band on Skylake server processors [28,
Section VII]. From this, we conclude that it is likely that a mecha-
nism for applying AVX frequency-ranges is implemented in Golden
Cove cores. However, we could not see any impact of this mecha-
nism on applied frequencies.

4.4 Uncore Frequency
As in previous products, the uncore frequency is usually regu-
lated within a pre-defined frequency range by an internal con-
trol loop [6, 28]. For our processor, the default range spans from
800MHz to 4700MHz according to the UNCORE_RATIO_LIMITMSR.
Bymanipulating this register we can reduce the lowest frequency to
400MHz, but we cannot increase themaximal frequency. In all cases,
the uncore frequency is set 200MHz below the core frequency4.
The exceptions are the following:

(1) The given bounds are not exceeded in the default case –
i.e., at a core frequency of 800MHz, the uncore still uses a
frequency of 800MHz

(2) Whenever a workload runs on P-cores and E-cores with
enabled turbo frequencies, the uncore frequency is reduced
to 3.6GHz–3.7GHz (200MHz below E-core turbo). This also
overrides the previous exception. Even if the minimum is set
to > 3.7GHz, the uncore frequency stays at the same level.

In some scenarios, users might want to manipulate the uncore
frequency manually for energy efficiency reasons, e.g., lowering
it during code sections with no offcore accesses. We evaluate the
occurring latencies with the methodology introduced in [28]. We
measure 1000 transitions for each pair of source and target frequen-
cies and evaluate the median, as depicted in Figure 4. We found the
transition latency to depend on the source and the target frequency.
While the qualitative pattern is the same as for frequency switches
on cores (see Figure 3a and Figure 3c) the quantitative values are
different. Lowering the frequency is much faster at about 26.5 µs.
Increasing uncore frequencies can take longer compared to core
frequency changes.

4When disabling the BIOS setting Ring to Core offset (Down Bin) the uncore frequency
will equal the core frequency. However, by default it is enabled.
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Figure 4: At the lowest core frequency (0.8GHz), changing
the uncore frequency takes between 26.4µs (clocking down)
and 135.0µs, depending on source and target frequency.

4.5 GPU Frequencies
We use the sysfs interface and perf stat events for the i915 device
to test valid frequencies on the GPU. The sysfs interface provides
three different files to specify the minimal, maximal, and boost
frequency in MHz (gt_{min|max|boost}_freq_mhz), from which
we set the latter two. perf lists multiple events for the i915 device,
from which we use actual-frequency and requested-frequency. Both
counters only increase when the GPU is actively used by the system.
In a first step, we check the supported frequencies and steps. To
do so, we increase the requested frequency in 1MHz-steps while
running a matrix multiplication on the GPU. Results show that the
actual frequency is always a multiple of 50MHz. The requested
frequency is amultiple of 16.667MHz. To fit this scheme to the given
interface requested frequencies are rounded as follows: First, it is
rounded to the nearest multiple of 16.667MHz. Then it is rounded
up to a multiple of 50MHz.

5 IDLE STATES
Operating systems use idle states to lower power consumption
whenever there is no task scheduled on a CPU. Information from
ACPI tables, populated by hardware, are the basis to decide which
idle state to use [32]. This includes an estimation of the time to
re-enable CPUs. As latencies can be several hundred microsec-
onds [26], deep idle states should be disabled for latency sensitive
scenarios [3]. In other cases, a lower average power consumption
is preferred. While ACPI tables can hold information on projected
power consumption, this information is often not set or invalid for
idle states. Latency and power consumption additionally depend,
for example, on applied frequencies and the activity of other cores.

Alder Lake cores implement three different core C-states: C0 (ac-
tive), C1 (clock gating, can be combined with DVFS to C1E), and C6
(power gating). As previous processors, the core can autonomously
switch from C6 to C1/C1E, which is called auto-demotion. Addi-
tional package C-states are used whenever all cores and the GPU
reside in a higher C-state (C8, C10). Package C-states can limit the
functionality of PCI links and other busses like USB and xHCI [13,

Section 3.7f] or flush the L3 cache. During package C-state transi-
tions or whenever a device is still active, PKG C2 can be used where
cores are still in a deep idle state, but uncore components can be
active. The datasheet [13, Table 8] lists more details about package
idle states. We describe the usage of C-states and the power saving
potential of our system in Section 5.1 and the time to return to an
active state in Section 5.2.

Alder Lake introduces two new idle states5 (C0.1 and C0.2) that –
unlike other C-states – can be entered from userspace [15, Table 4-
21]. The two different idle states vary in their wakeup time, power
savings, and effects with Simultaneous Multi-Threading (SMT):
In C0.2, the wakeup time and power savings are higher and the
performance of the second CPU on a core improves. We measure
power consumption of C0.1 and C0.2 states in Section 5.1 and
analyze the latency to return from these idle states in Section 5.3.

5.1 C-States and Power Consumption
We use different idle states on all cores of the system to determine
their power consumption. Our experiments cover the five C-states
available through the OS: C0 (POLL), C1E (hlt), C6, C8, and C10,
as well as active idling workloads (widely unrolled NOP, PAUSE for
C0, and TPAUSE for user idle states C0.1 and C0.2). We use the
register MSR_IA32_POWER_CTL to disable the transition to C1E. We
further test at different core frequencies. To measure the usage of
hardware C-States we monitor the idling periods with perf stat’s
event groups cstate_core/ and cstate_pkg/. Concurrently, we
monitor system power consumption using the out-of-band MetricQ
framework [9] . We use the mean power measured over an interval
of 10 s (11 seconds measured, data from the first second is omitted)
with a sampling rate of 20 Sa/s.

According to our measurements, P-cores use the C6 state if re-
quested by theOS. The event counter cstate_core/c7-residency/
increases if C8 or C10 are requested. E-cores on the other hand use
the C6 state, even if higher states are requested. This is surprising,
since the OS requests C10 to a high extent according to the usage
stats provided by the idle driver. With these core C-states, the high-
est package C-state that can be used is package C6. Nevertheless,
only the package C-states PC2 and PC3 are used, where attached
USB and video devices result in a higher proportion of PC2 usage.
We provide data, the analysis script and plot for these numbers in
the reproducibility data package.

The power consumption resulting from using different idles
states is shown in Figure 5. As expected, power consumption in C1
and C0 (including active idle routines) increases with the applied
core frequency since power gating is not used. For other C-states,
the power consumption is independent of the applied frequency.
The usage of C8 and C10 results in the same power consumption,
which is consistent with the previous analysis with perf. If C8
and C10 are not allowed, the cores use C6 and power consumption
increases from 37W to 43W. The plot show a particular anomaly:
at low core frequency, the power is slightly higher when using C6
than under C1. However, due to a peculiarity that we describe in
Section 7, power consumption in these cases is generally inconsis-
tent.

5Originally, they were introduced to Atom line with Tremont processors. Now they
are also available for performance cores.
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Figure 5: System power consumption depending on used idle
mechanism and frequency by cores. 4.9GHz refers to the
usage of Turbo frequencies (measured for P-cores in C0).

5.2 Idle State Latencies
To measure latencies for returning from idle states, we use the
methodology from [8]. Here, a thread running on one core (caller)
sends a pthread_cond_signal to another core (callee), whichwaits
using pthread_cond_wait. We measure times as a difference be-
tween the Linux kernel events sched:sched_waking from the caller
and a power:cpu_idle to an active state at the callee.

The core C-state C10 is not used (see Section 5.1). Surprisingly,
the latencies for C6 and C7 (as initiated by allowing C8 and C10
states) are similar (not depicted). As shown in Figure 6, latencies
decrease with an increasing core frequency up to about 2GHz.
Afterwards, there is no clear pattern. The measured times are in
the same order of magnitude as Skylake server processors [28].

5.3 User Space Idle State Latencies
In addition to idle states that can only be called from an operating
system, Intel implements new instructions that can trigger idle
behavior from user space. These include a timed pause instruction
and a user-space implementation of monitor/mwait. With these,
threads can indicate to the processor that it should stop fetching
and executing new instructions while still being scheduled on the
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Figure 6: C-state wakeup latencies for C6. For P-cores and
E-cores depending if all cores in it’s module are idle

CPU. To limit the duration of these idle periods, operating systems
can configure a maximal sleep time in the UMWAIT_CONTROLMSR
(25 000 cycles on our system).

We check the latency of waking cores from user-space idle states
by accessing umonitor’ed data. To do so, we setup umwait to use
a specific state and schedule two threads on two CPUs: a caller
and a callee. The callee waits for a volatile date to reach a certain
value, then it monitors this value using umonitor and waits for
it to change using umwait. The caller waits for a specific time to
take a timestamp using rdtsc and change the monitored value. The
change causes the callee to wake up and also take a time stamp. We
store the difference of both timestamps for the analysis. In Figure 7,
we show the distributions for waking up different core types from
CPU 0. Here, we see that E-cores (CPU 20) have a lower latency
than P-cores (CPU 1). In C0.1 we see an anomaly, where about 8 % of
the samples have a higher latency. It seems that the E-cores do not
support the C0.2 state: The latencies including the C0.1 anomaly are
the same, regardless of the requested state. Also, the spatial distance
of cores has an influence on these latencies, but the analysis is out
of scope. Data can be found in the reproducibility package.

6 EFFICIENCY OF IMPLEMENTED
COMPUTE-ARCHITECTURES

The two different core architectures and multiple accelerator ar-
chitectures of Alder Lake processors each implement their own
performance and power profile. According to [18, Section 2.2.1] P-
cores provide single or limited thread performance, while E-cores help
provide improved scaling and multithreaded efficiency (see also [18,
Section 2.3, Section 4.1]). To support an efficient usage of this hetero-
geneity, Alder Lake provides a feedback interface for the operating
system that gives information about the recently executedworkload,
distinguishing four classes: Non-vectorized integer or floating-point
code, [...] vectorized code [...], Intel [Deep Learning] Boost code, Pause
[...] dominated code [18, Section 2.2.2.1]. We evaluate this interface
in Section 6.1. Intel also implements a Hardware Feedback Interface
(HFI), which describes the performance and energy efficiency of
each available CPU [16, Section 15.6]. This interface can, e.g., be
used by the OS to select specific cores for different workloads. The
entries "may change at runtime as a result of changes in the operating
conditions of the system or the action of external factors" [1], which
then can be used for scheduling decisions.
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On Alder Lake processors, Intel implements an Intel Xe Gen
12.2 GPU [13, Section 9.1.1], which can also be used to accelerate
computing. Section 6.2 compares performance and energy efficiency
of BLAS routines on processor cores and the GPU. Shared memory
resources like main memory can have a strong influence on the
energy efficiency of workloads [6, 28, 29]. Unfortunately, an analysis
of this topic is out of scope for this paper.

6.1 Intel Thread Director
The OS can use the Thread Director interface to observe and sched-
ule threads to cores that are deemed efficient for their workload.
Intel lists typical workloads that represent the four classes in [18,
Section 2.2.2.1]. We use these workloads in a loop running on all
CPUs of the processor. Then, we enable themechanism via theMSRs
HW_FEEDBACK_CONFIG and HW_FEEDBACK_THREAD_CONFIG and poll
the THREAD_FEEDBACK_CHARMSR while executing the workloads.
Finally, we compare the provided mapping to the executed work-
load. E-cores never provide valid samples (bit 63 is set to 0). P-cores
can correctly identify classes 0, 2, and 3, but map the class 1 work-
load to class 0. As the information is missing on E-cores, we doubt
that the OS can effectively use this interface to manage scheduling
decisions, e.g., migrating unsuitable threads await from E-cores.

6.2 Comparison of Performance and Efficiency
To compare the efficiency of P-cores, E-cores, and GPU, we use
three different BLAS functions: dot, sgemv, and sgemm.We vary the
frequency of the respective computational unit(s) across the set of
specifically selectable frequencies, but not the full turbo range. Thus,
the processor runs significantly under its power budget. For GPU
workloads, core frequencies are set to 3.2GHz. The problem sizes
are set such that data does not fit in caches. We use the Intel Math
Kernel Library (MKL) implementations of sdot, sgemv, sgemm with
𝑁 = 1𝐺, 40𝑘, 10𝑘 respectively. Specific core types are selected with
taskset for CPU and OpenMP target directives for GPU whereas
MKL controls the final number and distribution of threads. We use

100 repetitions for sdot/sgemv and 10 repetitions for sgemm to
achieve stable power consumption, but use the median of power
samples to avoid impact from initialization and measure the overall
execution time to compute the floating-point performance.

Figure 8 shows the resulting performance depending on process-
ing and uncore frequencies. First, we focus on P-core performance
at a variable uncore frequency (default). Due to the low arithmetic
intensity, the performance of sdot and sgemv is dominated by mem-
ory accesses with diminishing benefits from high core frequencies.
At default uncore settings, the core frequency only indirectly af-
fects performance via the variable uncore frequency. E.g., P-core
frequencies of 800MHz and 1000MHz show the same performance
since both imply an uncore frequency of 800MHz as described in
Section 4.4. We validate this assumption with the results from a
fixed uncore frequency of 3.2GHz. On the E-cores and the GPU,
the uncore bottleneck does not apply and the performance does not
appear to saturate in a memory-bound configuration. The sgemm-
kernel is purely compute bound for all architectures and frequen-
cies with a performance growing linearly with the core frequency.
While we executed the GPU kernels from different host core types
and at different uncore frequencies, both performance and power
consumption only depends on the GPU frequency.

P-core configurations exhibit the highest overall power consump-
tion, except at the lowest core frequencies. Due to their higher turbo
frequencies, P-core power can be even higher, which is not covered
by this benchmark. However, due to their superior performance,
they are still the most energy-efficient choice for sdot and sgemv
with optimal core frequencies around 1800MHz at default uncore
frequency. For sgemm, the GPU at its highest frequency is the most
efficient. This efficiency considers the total system energy for the
given hardware allocation when exclusively using one architecture.
The results are therefore influenced by the power consumption
of the common resources, e.g., memory and fans and would differ
with a different hardware allocation.
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7 MONITORING ENERGY-EFFICIENCY-
RELATED INFORMATION

The Running Average Power Limit (RAPL) [16, Section 15.10] pro-
vides enerhy counters since the Intel Sandy Bridge architecture.
While early implementations used models, which were not neces-
sarily accurate [4], newer server processors use physical measure-
ments [6, 28]. The usual update rate of RAPL is 1ms but can get
as low as 50 µs for the PP0 domain (processor cores) on desktop
processors. This can be used to retrieve processed data in a side-
channel attack [20]. While this can be fixed by limiting access to
RAPL counters from the OS side, Intel also implements a filtering
technique via the ENERGY_FILTERING_ENABLE [17, Table 2-2] entry
in an MSR. This filtering adds random noise to the reported values
and can only be disabled with a system reset [14]. We analyze the
temporal granularity and the filtering feature in Section 7.1

Power measurements for Alder Lake Processors can benefit from
the VCCIN AUX IMON Feature to achieve “more accurate package
power reporting and better accuracy” [11, Section 3.3]. This affects
the enforcement of package power limits, but most likely also the
accuracy of measuring package power consumption via RAPL. We
analyze the accuracy of RAPL measurements in Section 7.2.

Another monitoring infrastructure is the Platform Monitoring
Technology (PMT) or Telemetry Aggregator [11, Section 2.6.3],
which records metrics of the processor out-of-band and was intro-
duced with Tiger Lake. The data is made available to user space
with the intel_pmt_telemetry driver and can include information
about energy-related features. The definition of the encoded data is
not documented. However, an Intel code repository mentions that
the interface passes thermal, voltage and frequency information
for Sapphire Rapids6. The description also notes that some infor-
mation might be only available under a non-disclosure agreement.
In Section 7.3, we analyze the information available on our system.

This study focuses on package (PCKG) and core (PP0) coun-
ters, since the DRAM domain reports 0 and the uncore component
domain (PP1) reports 0 if the GPU [16, Section 15.10.2] is not used.

6https://raw.githubusercontent.com/intel/Intel-PMT/73cfa682/xml/SPR/OOBMSM/
CORE/spr_aggregator.xml

7.1 Filter and RAPL Granularity
To measure the update rate of RAPL counters, we continuously poll
the MSR from CPU 0 for 5 s. We take timestamps before reading the
MSR and — if the measured energy changed — we store timestamp,
read data, and the number of reading attempts since the last change.
As Figure 9a shows, the temporal granularity depends on the moni-
tored domain and the usage of the filter. For the PP0 domain, the
temporal granularity is 8ms if the filter is enabled. For all other
cases, the granularity is about 1ms. If the power consumption is
too low for the energy in the MSR to increase, it will be reported
in the next available moment (i.e. 1 or 8ms later). Figure 9b shows
effects of the filter on the reported energy. Package power is mostly
the same as core power with an offset of about 1.4mJ, i.e. 1.4W
over 1ms when idling cores execute the C0 polling routine. If C6
is used, for more than 60% of the samples, this difference is also
visible. However for some samples, the reported package power is
the same as the core power. This could hint at a mechanism, which
takes energy of uncore components into account only if it is above
a certain threshold.

Enabling the filter leads to significant changes: For the package
power consumption, a lower energy is reported often. The values
are mostly on par with PP0 without a filter for any C-state condition
used. For core power consumption, the reported energy increases,
as the time frame increases as well. However, the average power
consumption over time does not change significantly.

7.2 Accuracy of RAPL Measurements
To further understand the impact of the filter, we measure data-
dependent power consumption with and without the filter enabled.
To that end, we use run the vxorps7 instruction with different
number of set bits on all P-cores with nominal frequency and mea-
sure the energy with RAPL. Details of the method are explained
in [29]. The experiment measures the vxorps-loop 1000 times with
0/50/100% of the bits being set (the operand weight). The result
is then split according to the operand weight (defining color) and

7We chose vxorps for two reasons: it can be used in encryption algorithms (XOR
cipher) and to be comparable to other architectures [29].
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Figure 9: RAPL information at 2.3GHz core frequency, which is high enough to enable energy counting on the PP0 domain.
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Figure 10: RAPL power samples for measuring a vxorps-loop that runs for a given time with a given proportion of set operand
bits (operand weight). Each line represents an empirical density function of 100 samples.

split each of these sets into 10 different subsets (to understand
repeatability of the effect) that we plot in Figure 10. While the influ-
ence of data weight on power consumption is clearly exposed with
100 10ms-samples without a filter, it cannot be reconstructed with
enabled filtering. However, a 100-fold increase of the monitoring
time still shows the data-dependent aspect of computations with a
similar clarity. This shows that, given enough time, the filter does
not prevent side-channel attacks via RAPL monitoring.

On a broader scale, we evaluate the RAPL implementation on
our test system using a synthetic workload generator comparing
RAPL values (average power derived from energy and time) with
the external measurement of average AC power. The reference mea-
surement covers a different domain, including power supply unit
(PSU) losses, memory, and other off-chip components of the system.
While a direct RAPL measurement error cannot be determined, this
approach can be used to expose inconsistencies and systematic
errors. The workload generator uses multiple microkernels that
stress different components, including a focus on computation and
memory. We run each kernel in a large number of configurations,
varying core frequency, number of threads, and thread distribution
across P-cores, their SMT-threads and E-cores. Each configuration
runs for 30 s to prevent timing effects and focus on energy/average
power (cf. [4]).
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Figure 11: Comparison of power consumption measured by
RAPL for the package and a full-system reference measure-
ment. Each point represents the average power within a 30 s
interval of the same workload configuration.

Figure 11 plots average AC power against RAPL package power,
where each point represents one configuration of kernel, core fre-
quency, and thread configuration. There is a consistent correlation
between the two, with two exceptions. First, kernels that utilize the
memory subsystem significantly, appear more noisy and report a
lower RAPL package power for similar PSU input powers. This can
be explained by RAPL not supporting the DRAM domain on this
system. While this does not necessarily indicate that RAPL values
are wrong, it confirms that RAPL package power alone cannot be
used to accurately model total system power consumption, e.g., for
energy optimization. The second abnormality occurs at low power
consumption, where RAPL and the reference measurement diverge
strongly. All kinds of workload kernels and thread configurations,
including configurations of P-core and E-core usage exhibit this
weak correlation. However, this only affects low frequency con-
figurations: At nominal frequencies, a single thread executing any
kernel uses more power than the abnormal cluster.

Figure 12 shows power measurements of different low-power
computations with gradually increasing number of threads. While
PSU power generally increases with the number of threads, it be-
comes noisy at 11 active threads with a significantly reduced aver-
age. Contrary, the reported RAPL power remains relatively constant
at approx. 1.5W for up to 10 active threads. Later, it increases with
substantial noise for configurations where AC power is reduced
and noisy Finally, it follows a more consistent pattern at higher
power consumption configurations. This behavior is reproducible
and we observed similar patterns for other workloads and low core
frequencies at different thread count thresholds. We measured sev-
eral hardware counters (core and uncore frequencies, instructions,
power licenses), core temperatures, and workload utility. None of
these correlated with the anomalies. We were not able to model or
provide an explanation why the actual system power consumption
and the RAPL measurements behave in such a way at low power.

We did not include GPU workloads in this evaluation, hence
the GPU domain reports 0W. The PP0 domain follows the pack-
age domain with a difference of 1.41W for workloads w/o sub-
stantial memory accesses, up to 2.65W for workloads w/ memory
access, and 0.35W in idle. In summary, RAPL offers plausible en-
ergy measurements with the exception of particularly low power
configurations and the limitations to the processor itself.
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Figure 12: RAPL and reference power consumption sampled
at 100ms / 50ms intervals respectively. Double precision ma-
trix multiplication kernel at 0.8GHz running for 60 s each at
increasing number of active threads.

7.3 Platform Monitoring Technology
Our test system hosts two Intel PMT telemetry sources with GUIDs
0x85b7c2a0 and 0x409072a0 according to sysfs information. These
provide 2752 Byte and 320 Byte of data, respectively. The latter
always reads as 0. We run various workloads on all cores or a subset
of cores and change hardware properties like core frequencies. We
concurrently monitor the data from the main telemetry source by
dumping the content of /sys/class/intel_pmt/telem0/telem
in regular intervals as 4-Byte integers for the follow-up analysis.

In a first analysis step, we check whether the initial guess of
data sizes (4 Byte) suits the measured data and distinguish between
increasing counters and data that describes a current status. While
the former increase over time until they overflow, the latter can
change their values more freely. Some rules for the conversion of
data types are: A 4-B-date 𝑎𝑖 that is increasing towards the maximal
integer and increases 𝑎𝑖+1 on an overflow can be considered an 8-
B-date. Any entry representing a current status where the upper 2
Byte are similar to the lower 2 byte represent two 2-B-dates. The
same goes for four 1-B-dates. Any entry where a set of 8, 16, or 24
lower bits are not flipped can be shifted by that number of bits.

Some of the most interesting things that we reconstructed are
the current frequency of P-cores and E-core-modules (beginning
at offset 20), an activity bit-mask for them at offset 76, and their
temperature at offset 144. Moreover, the 38.4 MHz signal, which
might be related to a clock source of the chipset [12, Section 21], can
be read at offset 280, the number of 38.4 MHz cycles a P- or E-core is
active are stored at offsets 1840ff, and the uncore clock counts with
200 MHz below the highest frequency at offset 1368. However, some
readings of the uncore clock were incorrect (decreasing) during
package idle phases. Here it seems that the lower 4 B of the 8 B
counter are reset during package idle, while the upper 4 B keep
their content. This possible bug also affects other counters, e.g., per
core activity related counters starting at offset 1192.

Table 1: Intel PMT data in 85b7c2a0

Starting Assumed content Size Data
offset [B] [B] type
20, 24, ... Frequency of P-cores in 100MHz 1 Instant.
52, 56 Frequency of E-core-modules in 100MHz 1 Instant.
76 Bit mask: active P-cores and E-core modules 1.5 Instant.
144, 148, ... Temperature of P-cores & E-core modules [°C] 1 Instant.
184-212 Core-related, peaks before throttling 2 Instant.
280 Increases with with 38.4MHz 8 Increasing

1368 Uncore Clock Counter (200MHz under core
frequency) in cycles

8 Increasing

1840-1960 Increases with 38.4MHz when core is not
idling (first p-cores, then e-cores)

8 Increasing

8 SUMMARY AND OUTLOOK
This paper provides a multitude of analyses of power management
and energy efficiency features of the first Intel processor generation
with heterogeneous core architectures. We found that frequency
switch timings differ for P- and E-cores. Only the former show a pat-
tern known from server processors. Even though the architecture
does not seem to use AVX frequency ranges, P-cores still support
accounting for those. The uncore frequency depends directly on
the core frequency and can fall below the set range when cores use
Turbo frequencies. E-cores seem not to support some of the idle
states of P-cores, namely C0.2 and idle states above C6. Waking
cores from deep idle states takes as long as on server processors.
User space idle states save power and have a wakeup time in the
order of hundreds of nano seconds. The Intel Thread Director fails
to identify class 1 workloads and is not present on E-cores. While
the integrated GPU can be used to run floating point intense code
efficiently, accessing memory seems to pose a bottleneck. When
running memory-bound codes, P-cores are most efficient in terms
of performance and energy efficiency. Increasing the uncore fre-
quency can increase performance for memory-bound codes at low
core-frequencies. The update rates for RAPL are at 1ms. The fil-
tering functionality can add noise to counter side-channel attacks.
Enabling this filter leads to a lower update rate for the core do-
main. Still, data can be inferred from RAPL readings using longer
observation. While RAPL is generally consistent with external mea-
surements, it does not include DRAM and is inaccurate in low
power scenarios. The platform monitoring technology provides a
sideband measurement of power-related information. We unveil
encoded information and describe a possible bug in 8 B-counters.

While not all of these various findings can be generalized beyond
our specific system, they serve as a guideline of relevant effects.
Moreover, we provide a detailed methodology as well as a repro-
ducibility package [30] to facilitate translating the results to other
systems. Some energy aspects are not covered in this paper and
remain future work, including the following: In addition to DVFS,
the integrated GPU supports various power saving mechanisms [11,
Section 3.4] that could be investigated. We also did not analyze the
Power Management Integrated Circuits mentioned in [11, Section
3.4] due to a lack of information. Other idle states like S-states or
G-states could be investigated further. However, information on
their effects are described in [11, 12]. It will also be interesting to
look at Sapphire Rapids, which also implements Golden Cove cores,
including an analysis of user space idle states, and AVX frequencies.
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B TEST SYSTEM SPECIFICATION
The test system we used is specified in Table 2.
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Table 2: Test system details

Processor Intel Core i9-12900K
Performance cores / P-cores / Golden Cove

Nr. cores / hardware-threads 8 / 16
Frequency range (selectable) 0.8GHz to 3.2GHz
Turbo frequency up to 5.1GHz*

Efficiency cores / E-cores / Gracemont
Nr. cores / hardware-threads 8 / 8
Frequency range (selectable) 0.8GHz to 3.2GHz
Turbo frequency up to 3.9 GHz*

Intel® UHD Graphics 770
Nr. Execution Units (EUs) 32
Frequency range (selectable) 0.3GHz to 1.5GHz
Turbo frequency up to 1.55GHz
Uncore frequency scaling (UFS) 0.8GHz to 4.7GHz
Hardware Performance States (HWP) disabled
RAPL Power Limit 4095W

RAM 2 × 16GiB DDR5-4800
Motherboard Gigabyte Tech. Co. Z690 UD

Operating system Ubuntu 22.04
Kernel version 5.19.1 & 6.2.0

Power meter ZES LMG450
Accuracy 0.07 % + 0.25W
*or 5.2GHz on one core or with Turbo Boost Max Technology 3.0

C ADDITIONAL DATA ON POWER
MONITORING

On an idling system, additional noise can increase the average
power consumption significantly, as we show in Figure 13a. Often,
when a CPU on an idling system gets active, the processor power
consumption (monitored with an LMG670 and 20 kSa/s) increases
from 9W to 13.3W (with spikes of more then 15W). Simultaneously,
the power consumption of the 5 V rail increases from 6.5W to 7.9W.
This increased power consumption only decreases gradually and
affects the power consumption of the system even after the CPUs
are already back in an idling phase.

We see the multiple power levels mentioned in Section 7.2 for an
idling system as well where some cores use the POLLing idle routine
instead of the default C10. Figure 13b shows the minimal, maximal,
and median power on an idling system with a number of cores
POLLing instead of using C10 and an uncore frequency of 3.2GHz
for different core frequencies. The power data is retrieved over a 10 s
time period with metricq-summary. System power consumption
grows linearly with the number of used cores if the system power
consumption is above 54W (with some noise induced outliers).
There is a gap if the frequency and number of cores are too low to
reach this threshold. There seems to be another linear relation at
the minimal values, just on a lower level. Median and average are
located randomly between these two lines.

(a) Unused cores can significantly increase power consumption once they be-
come active due to OS noise. Vampir visualization of a lo2s trace of the idling
test system. Top: Power consumption (5V rail). Mid: Power consumption (12V
processor). Bottom: activity of CPUs. A short usage of CPUs increases the power
consumption from 9 to 15 Watt, which is then reduced only gradually. Not
only CPU activity can lead to power spikes, e.g., at offset +0.15s there is a spike
without any CPU core being active.
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(b) System power consumption, depending on the number of cores in OS poll
loop and the core frequency. Minimal, median and maximal power values
plotted as lines. The uncore frequency is set to 3.2GHz.

Figure 13: Detailed look at different power measurement aspects.
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ABSTRACT
The emergence of persistent memory (PMem) is greatly impacting
the design of commonly used data structures to obtain the full ben-
efit from the new technology. Compared to the DRAM, PMem’s
larger capacity and lower cost make it an attractive alternative
for hosting large data structures, such as indexes of in-memory
databases, especially for those that require data persistency. How-
ever, simply using existing index structures in the PMem can be
unexpectedly inefficient for three reasons. (1) Index accesses are
composed of small writes and reads. (2) Each small write is required
to come with expensive fence and flush operations. And (3) PMems
usually prefer large accesses for high performance with their inter-
nal block-like access designs despite being byte-addressable. For ex-
ample, Intel Optane DC PMem has a 256-byte access unit (XPLine),
leading to significant read/write amplification for small accesses.

In this work we systematically study a series of techniques, in-
cluding application-managed write-buffering, read-caching, and
out-of-place updates and their synergistic effect on performance
of some representative indexes (hash table, B+ tree, and skip list)
designed for PMems. We then apply the knowledge obtained from
this investigation into the design of a high-performance PMem
index, named Spot-on tree (SPTree), that facilitates applications
to selectively cache read-intensive components of an index and to
buffer written data to index structure, while providing crash consis-
tency and quick recovery upon crash. Compared to the state-of-art
indexes, SPTree provides up to 2X and 4X higher write and read
throughput, respectively.

CCS CONCEPTS
• Information systems→ Data access methods; • Theory of
computation→ Concurrent algorithms; • Hardware→ Non-
volatile memory.
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1 INTRODUCTION
The memory/storage hierarchy, which consists of multiple levels
including CPU cache, DRAM, and block devices, such as SSDs
and HDDs, has been stabilized for decades. Accordingly, the prin-
cipal management designs for data across its levels, such as set-
associative CPU caches, page-based virtual memory, and block-
based read cache and write-back buffer, are well established by
carefully considering individual devices’ performance characteris-
tics to maximize the hierarchy’s performance. However, with the
emergence of byte-addressable persistent memory (PMem), such as
Intel Optane DC persistent memory [1] and NVDIMM (with flash
storage) [4, 5], a new level/tier was introduced into the hierarchy.
We contend that it is necessary for the DRAM to serve as a cache
level for the PMem to boost its effective performance. And it is a
challenging task for accessing of data structures on the PMem to
be accelerated with an efficient use of DRAM.

1.1 DRAM as a Cache of PMem
Like DRAM, the PMem is a byte-addressable memory device that
can be directly accessed via load and store instructions. However,
its performance gap with the DRAM can be still substantial. As the
Optane PMem has a more consistent performance behavior, we use
it as a representative of PMem hereafter. The performance of the
Optane PMem is lower than that of DRAM by 2-3X or more in terms
of its latency and throughput [12]. In the meantime, the PMem can
have a 5-10x increase of per-module capacity over the DDR4 DRAM
while its per-GB price is 2X-5X cheaper than DRAM. Therefore,
placing the PMem underneath the DRAM in the hierarchy has the
potential of taking advantage of both DRAM’s high performance
and PMem’s larger capacity and lower cost. Indeed, the Optane
PMem has a memory mode in which DRAM acts as a cache for data
accessed on the Pmem. Though few details are known on how Intel
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CPU’s IMC (IntegratedMemory Controller) enables this transparent
caching, a constraint in the use of the mode highlights the challenge
in the management of this memory level. The constraint is that the
persistent memory has to be treated as a volatile memory, or data in
the memory cannot survive a system restart, though the capability
of retaining data on the PMem is one of its major features that are
attractive to many potential users.

1.2 DRAM as a Write Buffer of PMem
When DRAM is used as PMem’s cache, it not only should be used
as a read cache, but also must be used as a write buffer to enable
the write-back policy for three reasons. First, DRAM is faster than
the PMem by around 2-3X for reads and is around 4-6X for writes.
Second, recent studies have shown that the Optane PMem has an
access unit of 256 bytes to the memory’s media (in comparison,
NVDIMMwith flash has a 0.5∼4KB page-size access unit). Anywrite
smaller than the size leads to a write amplification and reduction of
effective throughput [3]. For example, with 64-byte random writes
the PMem’s throughput is reduced to about 1/4 of its peak one [24].
Third, to ensure crash consistency for written data, an application
may have to frequently use expensive fence and flush instructions
between writes to the PMem, which may significantly degrade
write efficiency. DRAM can be used as a write buffer to coalesce
writes and then flush data in the buffer to the PMem. By doing so
multiple random writes to the PMem may be transformed into one
big sequential write that aligns with PMem’s access granularity so
as to receive high throughput from the PMem. It is tempting to use
the large DRAM space to make up for the PMem’s shortcoming.

However, it is difficult to retain the PMem’s persistence feature
by simply using a DRAM as its cache/buffer. Some fundamental
challenges exist due to some unique characteristics of the DRAM-
PMem layers. Unlike CPU-caches/DRAM layers, the DRAM as a
cache for the PMem presents unique challenges. This is primarily
due to the fact that the CPU cache is much smaller than the DRAM
and can bemanagedwith an affordable cost with hardware supports.
Instead, the gap between sizes of DRAM and the PMem is much less
significant. Furthermore, the CPU cache can be battery/capacitor
protected to keep dirty data in it from being lost upon a power
failure. But the large DRAM cache/buffer is unlikely to have such
a support. This presents a dilemma about the use of DRAM as a
cache/buffer for the PMem. Using DRAM as the PMem’s buffer
enables a large write-back space while simultaneously presents a
risk of losing data due to DRAM’s non-volatile nature.

Long before emergence of the commercially available PMems,
the advantages of non-volatile memory (NVM) have been recog-
nized. Significant efforts have been made to migrate popular in-
DRAM data structures to the NVM with optimizations of their
crash-consistent implementations by efficiently using fence and
flush operations [10, 13, 18, 25]. Among the data structures, indexes,
such as hash table and B+ tree, are the most performance-critical
due to their frequent and on-the-critical-path accesses. In the mean-
time, they are vulnerable to performance loss due to their frequent
use of pointers and accessing of small data. One of their major
use cases is the development of key-value (KV) stores in an NVM
with the objectives of high write throughput, low read latency, low
DRAM footprint, and rapid recovery and restart after a system crash.

An unexploited opportunity in the efforts is to leverage DRAM to
conduct spot-on caching and buffering for individual components
of an index where the performance gap is large. Unlike system-level
caching and buffering services that are indiscriminately covering
the entire DRAM and NVM levels with a fixed space unit (e.g., disk
block), this proposed spot-on approach is customized to the struc-
ture of an index. Therefore, performance-limiting operations, such
as pointer chasing and random writes, in the PMem can be made
efficient with dedicated caches/buffers for individual components
such as inner nodes and leaf nodes in a tree structure.

In this paper, we made several important contributions on the
improvement of major data structures’ performance in the PMem.

• We identify unique issues and opportunities in the efforts
of bridging the performance gap between DRAM and the
PMem in the memory hierarchy.

• We propose and evaluate a comprehensive and complemen-
tary set of techniques to enable DRAM’s spot-on caching
and buffering for the PMem.

• Using the techniques we design and implement a new index
structure, Spot-on Tree (SPTree), that can efficiently leverage
limited DRAM space to reduce read and write amplifications
and the cost for maintaining crash-consistency in the PMem.

• We introduce a unique design of the write-ahead-logging
(WAL) technique to enable instant service resumptions.

• Experiment results show that SPTree can achieve up to more
than 4X throughput and less than 1/5 latency over some of
the state-of-the-art indexes, such as Fast&Fair and PACTree.

2 BACKGROUND AND RELATEDWORK
In this section, we describe the background of Intel Optane Persis-
tent memory, which is selected in this study as the representative
of the PMem technology, and some related works on persistent
indexes to motivate this study.

2.1 The PMem
The Optane Persistent memory can be configured in two different
modes. The first one is named Memory Mode, in which the CPU
considers the Optane as its main memory and uses the entire DRAM
as its cache. While the cache is so large and the caching unit is
page, it would be too expensive and thus infeasible to keep dirty
pages in the DRAM persistent. Therefore, in this mode the Optane
PMem does not provide persistency at all. And the PMem becomes
essentially a larger but slower DRAM. The second mode is the
App-Direct mode. In this mode, the PMem works as a persistent
device. A file system supporting Direct Access (DAX) provides
direct access to the persistent memory, and bypasses the file system
block I/O. In this mode, a program is exposed to the aggregate space
of the DRAM and the PMem as well as their distinct performance
characteristics.

Though the PMem is byte-addressable, the physical media access
granularity is 256 bytes (XPLine) [3, 23, 24]. Any non-contiguous
writes of data smaller than the XPLine size requires a read-modify-
write operation, leading to write amplification and reduced effective
memory bandwidth. To reduce write amplification, the PMem em-
ploys a write-combining buffer to merge adjacent small writes.
However, its size is only 16KB [3, 22]. Writes to memory addresses
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with a coverage larger than this scope cannot benefit from the fea-
ture. It is unknown how to flexibly and dynamically set up buffers
in the DRAM to overcome this PMem’s limitation on write perfor-
mance. Similarly, the CPU cache is often not sufficient to improve
its read performance on par with that of DRAM because of the
PMem’s large size and programs’ weak access locality.

2.2 Persistent Indexes
There are mainly two kinds of persistent indexes. One is persistent
hash table, such as CCEH[18], Level hashing[25], and Dash[16].
And the other is persistent range indexes whose keys are sorted
and support range search, including FastFair[10], FP-Tree[9], and
PACTree [13].

Persistent Hash Table. Being aware of higher write cost in
a persistent memory, existing works on development of persis-
tent hash tables mostly focus on reducing number of writes in the
memory, such as PFHT [6], level hashing [25], and CCEH [18]. In
particular, PFHT is a cuckoo hashing variant that limits number of
displacements to only one to reduce memory writes during service
of a write request. Level hashing adopts a two-level hash scheme so
that each key can have three buckets as the candidates for its inser-
tion, which helps reduce key relocations in the table and improve
the load factor. CCEH is an extendable hashing to minimize perfor-
mance impact of rehashing of the entire table. It organizes buckets
into 64KB segments to leverage fast sequential access in a persistent
memory. It then uses the linear probing strategy in its search for
either a key or a bucket with empty slot(s). A successful insertion
requires only one memory write. While these works reduce num-
ber of writes in the memory, each write takes place directly at the
memory’s location determined by the hash table design. While the
locations are spread out in the memory, the performance loss due
to write amplification in the PMem can be significant.

Persistent Range Indexes. There have been some works on
designs of B-trees for persistent memory. FastFair[10] is a lock-
free-read B+-tree that avoids expensive copy-on-write and log-
ging to tolerate transient inconsistency. BzTree[2] relies on the
Persistent Multi-word Compare-And-Swap(PMwCAS) primitive
to implement a lock-free tree. FP-Tree[9] stores inner nodes of
the tree in the DRAM to achieve high performance. However, it
has to scan all nodes on the persistent memory to reconstruct the
inner nodes after a reboot or a crash before resuming its service.
PACTree [13] employs a persistent trie index as its internal nodes
and asynchronously updates the internal nodes using a structural-
modification-operation (SMO) log. In these works, the DRAM is
not leveraged to buffer writes to accommodate the PMem’s block
access unit. Even if reads are accelerated by partitioning an index
structure between the DRAM and the PMem, access of in-PMem
leaf nodes, where a majority of data is stored, is not accelerated.
Furthermore, the in-DRAM sub-structure has to be entirely rebuilt
during a recovery process before new accesses can be resumed. This
compromises a promise made for the persistent memory, which is
the instant service resumption.

3 THE THREE SPOT-ON TECHNIQUES
In this section, we analyze three representative persistent index
data structures and propose a series of techniques leveraging DRAM

to optimize the PMem performance in a spot-on fashion. Three data
structure are CCEH[18] (a persistent hash table), FastFair [10] (a
persistent B-tree) and P-Skiplist (a persistent skiplist) [20], as shown
in Figure 1. The set of techniques are Buffering, Out-of-place-update,
and Caching. They are intended to be applied in a sequence, which is
the Buffered, Out-of-place merging, and then Caching (BOC) design.

While each of the techniques is a well known one and has been
extensively practiced, this work focuses on their customized use on
specific index structures in a spot-on manner. Rather than keeping
and managing the cached/buffered data at one centralized space in
the faster memory, the BOC approach distributes the space to the
carefully selected index components to maximize its utilization. It
doesn’t rely on a replacement algorithm to determine where the
cache space should be allocated. While effectiveness of a replace-
ment algorithm is often limited and the algorithm’s time and space
overhead for managing small pieces of data can be significant, the
BOC approach effectively addresses this issue with its customized
cache space distribution design.

The key BOC takeaways are that, the read-modify-write in a
256-byte XPLine and long latency of random access in the PMem
are the fundamental performance bottleneck for persistent index
data structures. It suggests that a persistent index should (1) buffer
small writes in the DRAM then update them to the PMEM in a batch
manner, and use (2) out-of-place merging to reduce flush&fence,
which is a well-understood performance bottleneck. When there
are frequent pointer chasing accesses in the indexes, one should (3)
cache the search path in the DRAM to minimize the search latency.
This represents a holistic design approach in recognition that any
of the individual techniques could not adequately recoup PMem’s
performance loss due to its performance idiosyncrasies.

3.1 Technique One: Buffering
The PMem differs from the DRAM in several ways. One of them is
that there is a mismatch between CPU cache-line access granular-
ity (64 bytes) and the 3D-Xpoint media’s access granularity (256
bytes) [23]. To overcome this mismatch, it has a write-combining
buffer (16KB) to merge small writes and reduce write amplifica-
tion [23]. Given the small size, it is hard to exploit the locality to
frequently hit the buffer.

For writes in the persistent index data structures, most of them
are small writes, such as insertion of a new record (e.g., a 16-byte
key-value pair), structural modification operations (SMO) in a B+-
tree, which lacks access locality considering the small write buffer
in the PMem. Consequently, most of the small writes result in the
read-modify-write operations within the PMem and leads to high
write amplifications and reduced effective memory bandwidth.

In this study of the spot-on buffering technique, we allocate small
write buffers in the DRAM and assign them individually to selected
components in the index structures (see Figure 1). Specifically, for
CCEH each write buffer is as large as half of the segment size. For
FastFair each leaf node has a write buffer of half of the leaf node
size. P-Skiplist only creates write buffers for nodes whose height is
higher than two in the skip list. And each buffer can store at most
16 KV pairs. The operations in the indexes are not changed except
that writes into the selected components are first admitted to their
respective write buffers. When a buffer becomes full, all key-value
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Figure 1: Adding write buffers to the three selected index data structures

(KV) pairs in it are written to its corresponding index component
in a batch. This is actually a merging of KV pairs in the buffer for a
batched write.

We then run a benchmark to insert 120 million KV pairs (8-
byte key and 8-byte value) into each of the indexes with uniformly
distributed and non-redundant keys. In the experiment we measure
amount of raw data written to the PMem’s media using the ipmctl
tool [11]. Figure 2 shows the amount of the raw data with or without
the write buffers for each of the indexes. It shows that the total
amount of the data written to the PMem is reduced by up to four
times. The reductions are especially higher for CCEH and FastFair
where writes to the last-level nodes are buffered. This observation
demonstrates that spot-on buffering can effectively enable batched
writes and much reduced write amplification by greatly improving
spatial access locality.

3.2 Technique Two: Out-of-place Update
There is a potential issue with adding write buffers to the persistent
indexes. When we write the KV pairs in a buffer to the PMem in an
in-place manner (i.e., updating the index component in place), we
may need to repeatedly add flush&fence within a small contiguous
range of the PMem space (such as a segment in CCEH, or a leaf node
in FastFair) to enforce its crash consistency in case of power failure.
It has been reported that reading a recently flushed cacheline after
fence instructions could experience much higher latency as the
read has to wait the flush to complete [23].

To analyze the effect of flush&fence on the buffer merging, we
implement an out-of-place buffer merge in CCEH and FastFair.
Since P-Skiplist’s KV pairs are stored separately in the linked list
nodes, the insertion has been in the out-of-place manner. So we do
not consider P-Skiplist in this experiment.

In CCEH, when a write buffer of a segment is full, we first copy
the segment from the PMem to the DRAM. We then merge the KV
pairs in the write buffer into the DRAM copy and write it back
to the PMem in a newly allocated space. Finally, we atomically

cceh fastfair skiplist0

20

40

60

80

100  GB
Total Write on PMEM

NoBuffer
WithBuffer

Figure 2: Total amount of raw data written to the PMem’s
media after insertion of 120 million 16-byte key-value pairs
to the three indexes with and without the buffers (with one
thread and without using the WAL log).

change the directory pointer to this new segment. For FastFair, we
employ a similar approach for its leaf nodes. During the merging, a
new leaf node is created to hold all of the KV pairs from both the
old leaf node and write buffer. Then the new leaf replaces the old
leaf by atomically changing the parent pointer and sibling’s left
’next’ pointer. An out-of-place merge is essentially conducted in the
background. Thus, flush&fence operations for individual KV pairs
are avoided. Another benefit of this technique is that the current
buffer and the index component are still available for serving read
requests during the merge.

Figure 3 shows the amount of raw data read from and raw data
written to the PMemmedia with each of the three indexes when 120
million KV pairs are inserted. It also shows the insert throughput.
Different number of threads are used (1, 20, and 40 threads at the
top, middle, and bottom, respectively, of the figure). For a particular
index, the three optimization techniques are incrementally applied.

The figure shows that even when the read and write amounts
remain unchanged, the throughput of CCEH and FastFair with only
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Figure 3: Amount of raw media read/write (denoted as "I/O Read/Write") and throughput for inserting 120 million key-value
pairs (8-byte key and 8-byte value) with and without using a Write-Ahead-Log (WAL) log. For each index, the three techniques
are incrementally added (’B’ for "Buffering", ’O’ for "Out-of-place Update", and ’C’ for "Caching"). For example, "cceh", "cceh-B",
"cceh-BO", and "cceh-BOC" refer to the CCEH index without any optimizations, with Technique 1, with Techniques 1 and 2, and
with Techniques 1, 2, and 3, respectively.
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Figure 4: Distributions of insert/read latency for an index
without caching (the red area) and with caching (the purple
area).

Buffering ("cceh-B" and "fastfair-B") becomes higher after applying
"Out-of-place Update" ("cceh-BO" and "fastfair-BO"). This improve-
ment is attributed to the removal of the flush&fence overheads.

3.3 Technique Three: Caching
For index data structures whose operations contain many random
reads (in the form of pointer chasing), the performance could be
bottlenecked by slow random reads in the PMem. Read latency
on the Optane PMem is considerably higher than DRAM (about
2X-3X) because reads need to fetch data from the 3D-Xpoint media,
which has longer media latency [3]. Meanwhile, most of the pointer
chasing operations happen in the internal nodes whose total size

may account for only a small portion of the entire data structure
size. So it is worth enabling caching individually for the internal
nodes in the DRAM to boost the lookup performance.

In this experiment study, we cache internal nodes in all three
indexes (directory in CCEH, inner nodes of FastFair, nodes with
height higher than two in P-Skiplist) and measure their insert/read
latency for 120 million insert requests followed by 120 million read
requests.

As shown in Figure 4, caching internal nodes have little effect
on CCEH’s latency as it has only one pointer chasing operation for
each access, which is for locating the segment from the directory.
However, we observe significant latency improvement for FastFair
and P-Skiplist as they need to do intensive pointer chasing (ran-
dom reads) across the internal nodes before finding a target node,
indicating that caching is a necessary optimization for many-level
indexes.

3.4 Put them Together
With all these three techniques available (buffering, out-of-placed
Update, and then caching(BOC)), we apply them to three indexes one
by one and measure the performance improvement after insertion
of 120 million key-value pairs. In the experiment, we experiment
with two cases: one without the WAL log, and another one with
the WAL log. With the log, all data written to the leaf nodes will
also be added to the log in the PMem. Note that writes to the
log are fully sequential and incur little amplification. As shown
in Figure 3, the write buffer not only reduces write amplification
but also read amplification. This is not a surprise since during the
buffer merging, the PMem data to be merged has been cached in
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the DRAM. The cost of reads is amortized via batching. Mean-
while, the benefits of out-of-place update (merging) are consistent
from the single thread execution to the multi-thread execution. The
throughput with the addition of "Out-of-place Update" ("cceh-BO"
and "fastfair-BO") is always higher than that without the optimiza-
tion ("cceh-B" and "fastfair-B", respectively). Finally, caching the
internal nodes not only reduces latency of pointer chasing, but
also removes a large amount of the PMem’s media read ("Read
I/O") during search ("fastfair-BOC", "skiplist-BOC"), significantly
increasing the PMem’s effective memory bandwidth. Furthermore,
the performance advantages remain with the increase of thread
count and with addition of the WAL log.

4 THE DESIGN OF SPTREE
Understanding the benefits of the three spot-on optimization tech-
niques, we propose SPTree (SPot-on Tree), a DRAM-PMem hybrid
persistent tree index that uses spot-on caching and buffering to
address a sequence of issues challenging performance of in-PMem
indexes, including long latency of pointer chasing, write amplifi-
cation due to mismatch between KV pair size and PMem’s media
access unit, and quick recovery after a crash. As shown in Figure 5,
SPTree consists of three layers (the top, middle, and bottom layers).

4.1 The Three Layers in SPTree
The Top Layer. As shown in Figure 5, the top layer caches the
internal nodes of the tree in the DRAM, which is an in-DRAM index
that walks a key to its corresponding middle level node and leaf
node. SPTree uses the DRAM index to address the high latency
issue of pointer chasing in the PMem. That is, all search operations
in the SPTree take place in the DRAM top layer before a target leaf
node in the bottom layer is reached. We modify the ARTree [14]
as the DRAM top-layer. Meanwhile, the index has a PMem backup,
organized as a FastFair B+-tree, for a quick recovery after a reboot
or a system crash. It is updated asynchronously by the background
threads to move the slow updates on the PMem off the critical path.
Each time when a leaf node splits or merges, the new leaf node’s
indexing information is synchronously updated in the DRAM index,
and sent to the background threads and then asynchronously prop-
agated to the in-PMem index. If some of the updates have not yet
been reflected in the PMem index when a system crash happens, we
can still recover the missing information by checking the possible
smallest key(the low ley or ’lkey’) and the largest key(high key
or ’hkey’) in the leaf nodes. More details on the recovery are in
Section 4.6. Note that updates to the in-PMem index are much less
frequent than those to the leaf nodes.

TheMiddle Layer. Themiddle layer consists ofMnodes (middle-
layer nodes) in the DRAM. Each leaf node in the PMem has its
corresponding Mnode in the DRAM. The Mnode records the range
of keys in the leaf node (the smallest key (lkey) ... largest key(hkey)).
This key range serves the purpose similar to that of the version
number that allows non-blocking reads during a write. When a
search reaches to an Mnode, the search key is checked against
its key range. If the search key does not belong to this Mnode,
it indicates that concurrent insertion or deletion operations have
caused splitting or merging of Mnodes (and also leaf nodes), and
we need to go back to the top layer for a retry.

async 

PMEM Top LayerDRAM Top Layer

PMEM Bottom Layer

DRAM Middle Layer
Mnode

Bnode Bnode Bnode

Mnode Mnode
Mnode (middle layer node)

Write Ahead Log

Bnode (bottom layer node)

lkey

lkey

hkey version

hkey

bloom filter

Lnode

prev_ptr type size data

Lnode …

next bitmap cur_ver tags kv pairs
64 entries

seqssort_ver

write bufferL_ptr

Figure 5: The SPTree tree structure

An Mnode also stores a Bloom filter which remembers all the
keys in its leaf node. Each insert updates the Bloom filter in its
corresponding Mnode. The Bloom filter is used to filter out most
of the point queries for non-existing keys before they reach the
in-PMem leaf nodes. An Mnode can also be configured with a write
buffer, which buffers all the newly inserted KV pairs (up to 14) to
reduce write amplification. Once a buffer is full, all the KV pairs in
the buffer will be merged to the leaf node.

The Bottom Layer. The bottom layer stores the leaf nodes, or
Bnodes (bottom layer nodes), in the PMem. All Bnodes are orga-
nized as a singly linked-list. Each Bnode can store up to 64 KV
pairs. The leaf node groups fingerprints (hash values) of its keys
as key tags in an array for a quick preliminary search by using
SIMD instruction (_mm_cmpeq_epi8_mask). Meanwhile, it applies a
two-phase insertion approach to reduce the use of flush and fence
instructions. In the first phase, KV pairs and their tags are batch
written to the Bnode followed by a flush&fence. Only in the second
phase will they be validated by setting the bitmap in the node fol-
lowed with another flush&fence. In this way, only two flush&fence
operations are needed for multiple insertions. In this way, SPTree
minimizes the use of flush&fence to improve efficiency.

4.2 Concurrency Control
SPTree relies on Optimistic Lock Coupling [15] for concur-
rency control. An optimistic lock consists of a lock and a version
counter (packed into 8 bytes). For writers, the optimistic lock pro-
vides exclusive access that allows only one writer at a time. Upon an
unlock, the lock is released and the version number is incremented
by one atomically. For readers, they do not acquire the lock. In-
stead, they wait until the write lock is freed. Then they compare the
version number before and after reading the value. If the reading
changes, they will retry until a consistent reading is reached. Both
of the DRAM top layer and the middle layer use the optimistic lock.

4.3 Search Operation
Search for a given key is the most frequently used operation on
the index. It is not only used to service a read request, but also
has to be employed at the beginning of the execution of every
insert/update/delete/lookup/scan operation. A search operation
first traverses the DRAM top layer to look for the largest key that
is smaller or equal to the search key. This largest key is the lkey
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in an Mnode. Then the search key is compared with the hkey in
the Mnode to ensure the search key is in the key range of this
Mnode. If it is in the range, the search continues to the Bnode in the
PMem. Otherwise, the search travels in the middle layer, which is
a doubly linked list, to locate the target Mnode. During the search
operation, the PMem top layer is not accessed because it is only
used for recovery.

4.4 Insert/Update/Delete/Lookup/Scan
Insert. The thread servicing an insert request first searches the
DRAM top layer to locate an Mnode whose key range includes the
inserted key. Then the write lock is acquired on the Mnode. If the
Mnode has a write buffer, the KV pair is inserted into the write
buffer, and also appended to a write ahead log (WAL) for an after-
crash recovery. Otherwise, the thread inserts the KV pair directly
into the corresponding Bnode on the PMem. In the first case, if the
write buffer is full, SPTree writes all the KV pairs in a batch to the
Bnode, and clears the write buffer. SPTree uses a two-phase inser-
tion in the batch write operation. (1) All the KV pairs and their tags
are written to the Bnode followed by a flush&fence. (2) The bitmap
indicating valid pairs is set and the version (cur_ver) advances by
one. Meanwhile, a split is conducted if necessary. Finally, the Bloom
filter in the Mnode is updated for the inserted key.

Update.Update is similar to insert during its search for the target
Mnode. After a target Mnode is found, the Bloom filter is checked
to see if the key exists. If not, it returns immediately. Otherwise,
it acquires the write lock. If there is a write buffer with the target
Mnode, it tries to update the KV in the buffer, and write the new
value to the WAL if the update is a success. Otherwise, we check
the corresponding Bnode for the update.

Delete. For delete, after the thread reaches a target Mnode, it
checks the Bloom filter first to avoid unnecessary access to the
PMem. If the Bloom filter returns true, and the target Mnode has a
write buffer, it removes the delete key in it if it exists in the buffer.
Additionally, it adds a DELETE tombstone record in the write buffer.
The DELETE tombstone is also written to the WAL log to record
this deletion. In this case, the key will be physically deleted later
during a compaction when a KV pairs in the write buffer are written
back. Note that this tombstone is necessary to prevent follow-up
reads for this key from mistakenly returning the deleted KV pair
from the corresponding Bnode instead of a "none". If the Mnode
doesn’t have a write buffer, it will immediately try to remove the
key from the Bnode.

Lookup. Lookup operation in SPTree is a lock-free read. By
applying the optimistic lock, the thread checks the version in the
target Mnode before and after the read. If the two versions match,
it means no inserts take place during the read and it can return the
value safely. Otherwise, the lookup will start over.

Scan. Scan operation first looks for the target Mnode whose
’lkey’ is equal to or smaller than the lower bound of the scan range
and whose ’hkey’ is larger than the lower bound. It then checks
whether a reconstruction of the sequence array (’seqs’) is required
by comparing ’cur_ver’ and ’sort_ver’. If ’cur_ver’ is larger
than ’sort_ver’, it means new inserts happen after the last recon-
struction of the ’seqs’, it then acquires the write lock and sorts
the keys in the Bnode and stores them in the ascending order in

Algorithm 1: Scan
1 Function Scan(𝑠𝑡𝑎𝑟𝑡_𝑘𝑒𝑦, 𝑟𝑒𝑠𝑢𝑙𝑡_𝑠𝑖𝑧𝑒, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠):

/* Find mnode that has lkey <= start_key <= hkey */
2 mnode = LocateMNode(start_key)
3 bnode = mnode.bnode
4 while Output results array not full do
5 ReadLockGuard(bnode)
6 if mnode write buffer is not empty then
7 WriteLockGuard(bnode)
8 Flush write buffer;
9 if bnode.cur_ver > bnode.sort_ver then
10 WriteLockGuard(bnode)
11 Sort(bnode)
12 bnode.sort_ver = bnode.cur_ver
13 Collect keys falling in scan range
14 bnode = bnode.next

the ’seqs’ array. Meanwhile, it sets ’sort_ver’ to ’cur_ver’ to
indicate this Bnode is ready for scan. When there are keys stored in
the Mnode write buffer, a batch write of the KV pairs is triggered
before scanning. During the scan of a Bnode, the keys that fall in the
scan range are collected in a buffer. Then the values of ’cur_ver’
before and after the scan are compared. If they are equal, those
buffered KV pairs are appended in the output array. Otherwise, it
retries the scan in this Bnode. Scan continues to the sibling Bnode
until the output array is full or the key is out of scan range. The
operation’s pseudocode description is at Algorithm 1.

4.5 Split and Merge
When a Bnode (leaf node) is full, SPTree conducts a split, which
creates a new Bnode along with its new Mnode. Then a [lkey,
Mnode pointer] mapping is inserted to the DRAM top layer while
a [lkey, Bnode pointer] is sent to the background thread to asyn-
chronously update the PMem top layer. A split operation involves
four steps. (1) The writer first acquires the lock for the current
Bnode and its next sibling. (2) It then allocates a new Bnode, moves
the right half of the KV pairs from the full node to the new Bnode,
and sets the ’next’ pointer in the full node pointing to the new
node. These three operations are atomically conducted using the
leak-free PMem allocator (such as Intel PMDK’s pmemobj_alloc())
to prevent memory leak. (3) Then ’bitmap’ and ’hkey’ in the full
Bnode are modified to remove the split-out keys. And (4) finally,
the mapping information is updated in the DRAM top layer and
propagated to the PMem top layer.

When a delete operation detects that keys in two adjacent nodes
become fewer than half of a node’s capacity, a merge operation is
triggered. (1) The thread first acquires the two nodes’ write locks. (2)
Then it shifts the KV pairs in the right Bnode to the left Bnode using
the two-phase insertion (set the KV pairs first, then the bitmap). (3)
Next it modifies the left Bnode’s hkey as the right Bnode’s hkey,
marks the right Bnode as deleted in its ’cur_ver’ and drops the
Bnode. (4) Finally, it updates the mapping in the top layer.

4.6 Recovery and Crash Consistency
Since SPTree uses the DRAM top layer and the DRAM middle layer
to provide service, these two layers need to be reconstructed after a
reboot or a power failure. In a normal reboot, all the updates in the
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DRAM top layer have been propagated to the PMem top layer. And
the PMem top layer stores the pointers to the Bnodes in the PMem.
During a recovery, SPTree can quickly collect all the pointers to
the Bnodes by scanning the PMem top layer, which is only around
2% of entire index size. Then it rebuilds the Bnode’s Mnode and the
DRAM top layer simultaneously.

If this recovery is after an unexpected crash, we need to fix the in-
complete state. If a crash happens before a split’s Step (2) completes,
SPTree can recover to the state before the split (guaranteed by the
leak-free allocator). If the crash happens after Step 2 and before
Step 3, then a dummy leaf node is linked to the bottom layer. An ex-
ample incomplete status looks like this: [split node, lkey..10,
hkey..100] -> [dummy node, lkey..50, hkey..100] -> [next
node, lkey..100, hkey..200]... . The dummy node will have a
’lkey’ lower than its previous node’s ’hkey’. If we find a dummy
node during the recovery, we fix it by dropping the dummy node. If
the crash happens during Step (3) (’hkey’ is set and the ’bitmap’
has not been set), then the split node will have keys that do not
belong to it. This can be fixed by ignoring those out-of-range keys
during the next split. If the crash happens before Step (4) completes,
we only need to fix the missing mappings in the top layer. We can
identify the missing mappings by comparing the adjacent Mnode’s
’lkey’ and ’hkey’ after a non-crash recovery. An Mnode’s ’hkey’
is designed to be the same as its next sibling’s ’lkey’. If not, we
scan the linked list from the current Mnode’s Bnode to recover the
missing Mnodes.

If a crash happens before a merge’s Step (2) competes, SPTree
can recover to the state before the merge because the shifted KV
pairs have not been exposed by the bitmap. If the crash happens
before Step (3), the shifted KV pairs can be filtered out using the
’hkey’. If the crash is after setting the ’hkey’ and before drop-
ping the right node in Step (3), an example incomplete status
looks like this: [merge-left node, lkey..10, hkey..100] ->
[’merge-right node, lkey..50, hkey..100] -> [’next node,
lkey..100, hkey..200]. The merge-right node has an ’lkey’
lower than merge-left node’s ’hkey’. We fix this by dropping the
merge-right node during the recovery. If the crash happens before
Step (4), the dummy mapping will point to a deleted Bnode. We
then delete this mapping during the recovery.

Regarding data consistency in Bnodes, all the KV pairs that have
not completed the second phase (setting the bitmap) will not be
exposed. So any partially updated pairs will not be visible.

If an Mnode has its write buffer, the KV pairs in the buffer can
be recovered by replaying the WAL log. However, any KV pairs
in its corresponding Bnode cannot be used to serve look requests
until all of the lost pairs in the write buffer are recovered from the
log. These pairs are scattered in the log. It would be too slow to
resume the service of requests if one had to wait for the scan of the
entire log to be completed.

4.7 Instant Service Resumption with a
Structured WAL

The WAL approach has been widely used for preventing data loss
in systems such as LevelDB [8, 19], RocksDB [7, 21], and Kanga-
roo [17]. Existing use of the technique is simplistic: data in new
inserts, updates, and deletes that are sent to the in-DRAM data
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Figure 6: The structured WAL log.

structures are also appended at the tail of a log in the persistent
storage. This approach enables efficient I/O by writing data sequen-
tially. However, the side effect is that the data are not well organized
and a particular data cannot be efficiently located for quick access.
Maintenance of a separate index for the log is way too expensive
to be practical. This is especially problematic with the persistent
memory as an instant restart is often expected.

To this end, SPTree proposes a structured WAL log that allows
keys to be searched and retrieved from the log without a time-
consuming sequential scan. This technique enables (almost) instant
resumption access to the SPTree index before a full recovery is
completed.

In the design, the conventional WAL log is enhanced by organiz-
ing linked lists, each consisting of KV pairs that belong to the same
write buffer, in the log. As shown in Figure 6, each record in the
log contains a ’next’ pointer, which is the offset of the record in
the log about the KV pair that belongs to the same the buffer and
has been appended to the log immediately prior to this one. SPTree
maintains a table of head pointers in the DRAM, each pointing
to the most recently appended record in the log that belongs to a
buffer. Each time a buffer’s KV pair is appended, the buffer’s current
head pointer becomes its ’next’ pointer and the ’head’ pointer is
updated to the new pair. In this way, without introducing additional
writes to the log, the WAL log becomes a structured one containing
multiple linked lists. After a crash, SPTree can immediately service
a read request by following the corresponding buffer’s head pointer
and searching on the linked list.

To maintain the structured log for high access efficiency, there
are two issues to address. The first one is about placement of head
pointers. For efficiency, the table of head pointers must be in the
DRAM. In the meantime, it must survive a system crash. To this
end, SPTree periodically checkpoints the table to the PMem along
with the offset of the WAL’s current tail. This offset represents the
checkpoint position, indicating that the checkpointed table is up
to date until this position. After a crash, the table is reloaded into
the DRAM. And SPTree only needs to scan the log from its tail to
the checkpoint position to find out all newer header pointers and
update the in-DRAM table. Each record contains a 8-byte checksum
to determine if it is a valid one. Accordingly, we can identify the
log’s tail.

The second issue is about size of the log. Once KV pairs in a buffer
have been merged into the in-Pmem Bnode, their corresponding
records in the log become obsolete and can be removed from the
log as well as the linked lists. Otherwise, they would make the log
and search on the log unnecessarily long. Therefore, SPTree needs
to identify the true end record in a linked list and flag it. To this end,
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Figure 7: Throughput, PMem I/O volume, and PMem bandwidth with different types of requests.

after persisting a buffer’s KV pairs to the BNode, SPTree writes a
special record to the WAL flagged (at the ’Type’ field shown in
Figure 6) as the end of the buffer’s linked list. A key search in the
list will stop at the end record. Furthermore, to know the offset in
the WAL log beyond which all records in the log can be collected as
garbage, SPTree keeps track of the oldest end record, whose up-to-
date offset is maintained in the PMem. When a space reclamation
via on-log garbage collection is required, all records from this offset
to the head of the log can be removed.

Thanks to the linked lists in the WAL, access to the SPTree index
can instantly become available. In the meantime, a background
thread scans the log to recover the write buffers. When the buffers
are fully restored, access to the log for reading KV pairs is no longer
required.

5 EVALUATION
In this section, we experimentally evaluate SPTree by comparing it
with several state-of-the-art B+-Tree for persistent memory, includ-
ing FastFair [10] and PACTree [13]. As a sorted index that supports

range search, we do not compare SPTree with the hash-based in-
dexes, such as CCEH.

5.1 Experiment Setup
In the experiments, we use 16-byte KV pairs. All the threads in
an experiment are pinned to one socket using numactl. SPTree’s
DRAM footprint is about 12% of the total size of the PMem bottom
layer when the write buffers are not used. If all of the Mnodes in the
SPTree have been assigned with write buffers (denoted sptree-B),
the DRAM footprint is about 33% of the PMem bottom layer. All
the experiments are run on a server with an Intel Xeon Gold 6230
20-core processor, 64GB DRAM and 6 × 128GB Intel Optane DC.

5.2 The Throughput
To evaluate the performance of the trees, we conduct extensive
experiments, including insertions of new KV pairs (Insert), reading
keys in the indexes (Positive Read), reading keys not in the indexes
(Negative Read), and range queries (Scan). Experiment results are
shown in Figure 7. In each experiment, different number of threads
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(from 1 to 40 threads) are used. For Insert each thread sends 120
millions/number-of-threads requests. For Positive Read andNegative
Read, and Scan each thread sends 10 million requests. Figure 7
reports throughput of the trees (number of requests serviced per
second) and the corresponding raw PMemmedia access amount (I/O
volume) . The I/O volume represents all read/write data amount on
the Optane PMem’s media, including amplified I/O due to existence
of its 256B access unit. It is measured with ipmwatch, available in
the Intel VTune Amplifier tool. It also shows the PMem’s bandwidth,
which is the raw I/O volume per second.

Insert. As shown in Figure 7a, SPTree consistently outperforms
the others for insert performance. This is mainly because in the
other two trees the pointer chasing in the internal nodes causes
large read amplifications, resulting in reduced effective memory
bandwidth. As shown in Figures 7e and 7i, though the bandwidth
of FastFair and PACTree during the insertion is equal to or even
higher than that of SPTree, their high I/O bandwidth actually results
in the lower throughput. When the write buffers are enabled for
SPTree (sptree-B), the total I/O volume is reduced by 3X. This is
mainly because of the reduced write amplification as well as the
read amplification as explained in Section 3.4.

Positive Read. We see up to 25% throughput improvement
for SPTree over the others. This advantage mainly comes from
the reduced I/O during search in the internal nodes. As shown in
Figure 7f, SPTree’s I/O volume is only about 1/3 of the others. When
write buffers are used, we see slightly performance improvements
over the one without buffers. This is because the write buffers also
function as read caches for Positive Read. Hence, a small portion
of the request does not reach the Bnodes in the PMem. That’s why
I/O volume of sptree-B is smaller, as shown in Figure 7f.

Negative Read. SPTree has up to 4X throughput improvement
compared with the other two trees, as shown in Figure 7c. This
is because it caches the existing keys in the Mnodes’ Bloom filter,
which filters out most of the unnecessary PMem accesses during
the negative read. As shown in Figures 7g and 7k, there is almost
no PMem I/O and we barely read from the PMem. All the saved
bandwidth can be used to service other requests.

Scan. Both SPTree and PACTree use an indirection array for
sorting keys in the leaf node. This strategy comes with a cost of
higher read amplification compared with the physically sorted KV
pairs in FastFair. As shown in Figure 7h, SPTree and PACTree have
higher I/O volume during the Scan. However, thanks to the low
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overhead of the DRAM top layer, SPTree’s scan performance is only
10% lower than FastFair, while PACTree is 30% lower.

5.3 The Latency
In this section, we evaluate the read/write latency of the three trees.
We use 20 threads to write 120 million KV pairs. Each thread sends
4 million read requests.

As shown in Figure 8, SPTree always has the lowest latency
among the trees in all of the workloads (Insert, Positive Read,
and Negative Read). By caching the internal nodes in the DRAM,
the random pointer chasing cost in the PMem is greatly reduced.
Meanwhile, using the Bloom filters also helps SPTree to avoid the
access to the PMem for non-existing keys. In the experiment, after
120 million KV pairs are inserted, the false positive rate is around
5%. It is worth noting that when write buffers are used, the insert
latency for SPTree (SPTree-B) reduces by 3X compared with the
one without using write buffer, which is at the cost of DRAM for
only around the 30% of the PMem footprint.

5.4 Recovery
If the write buffers for SPTree are not used, SPTree can start servic-
ing the requests without the DRAM top and middle layers as the
PMem top layer can be used. In the meantime, it rebuilds the DRAM
layers in the background and then puts it into service. As shown in
Figure 9, the time to rebuild the DRAM top and middle layers are
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negligible (1 second for 250 million keys) because it simultaneously
rebuilds the DRAM layers based on the PMem top layer.

If the write buffers are used and an unexpected crash takes place,
the structured WAL log is employed to quickly resume request
service. Figure 10a shows the time it takes to resume its service (for
the first lookup request to be served after a crash) with different size
of the log (from the oldest end record to the log tail). As shown, using
the structural log, SPTree reduces the resumption time to almost
0, much smaller than that using the regular WAL log. Figure 10b
shows the number of lookup requests that can be served within
a given period of time right after a restart on a log of 1.8GB. As
shown, without the structured WAL log no requests can be served
until after about 1.4 seconds from the restart. While instant-on
resumption is expected for any persistent memory, only SPTree
makes it possible with its unique structured WAL design.

6 CONCLUSIONS
In this paper, we propose to use the spot-on DRAM caching and
buffering techniques to efficiently address the performance issues
at the critical places in an index structure where performance
is compromised due to the PMem’s performance characteristics.
We systematically studied the benefits of the techniques to un-
derstand their individual and combined impacts on optimization
of in-PMem index structures. Empowered by this understanding,
we further introduce SPTree, a persistent ordered tree designed
for high-performance systems. Adopting a holistic approach, SP-
Tree leverages the techniques in its design supported by a novel
structured WAL log to deliver the instant-on user experience. Ex-
periments show that SPTree minimizes the PMem I/O traffic and
achieves 2X to 4X improvement of access performance over the
state-of-the-art PMem tree index designs in terms of both through-
put and latency.

The source code of the SPTree is available at https://github.com/
hansonzhao007/buflog.
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ABSTRACT
In the last decade there has been a significant leap in the capability
of foundation AI models, largely driven by the introduction and
refinement of transformer-based machine learning architectures.
The most visible consequence of this has been the explosion of
interest and application of large language models such as ChatGPT.
This is one exemplar of how a foundation model trained on a huge
amount of data can be specialised for particular task, often by a
phase of reinforcement learning with human feedback.

Within the AI community “performance” of such systems is
generally taken to mean how well they respond to their users on
characteristics such as accuracy, verifiability, and bias. Performance
analysis usually considers both the responsiveness of a system to its
user and the efficiency and equity of resource use. These foundation
models rely on massive amounts of resource but there appears to
have been little work considering how to understand the resource
use or the trade-offs that exist between how the system responds
to users and the amount of resource used.

In this talk I will present initial ideas of what it could mean
to develop a framework of performance evaluation for founda-
tion models such as large language models. Such a framework
would need to take into consideration the distinct phases of opera-
tion for these models, which broadly speaking can be categorised
as training, generating and fine-tuning. Evaluating the trade-off
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between user interests and resource management will require the
identification of suitable metrics. The resources in these systems can
be more than simply compute, storage, bandwidth; data and even
human resources also play crucial roles in training and fine-tuning.
I will discuss all these topics.
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ABSTRACT
Asmicroservice and cloud computing operations increasingly adopt

automation, the importance of models for fostering resilient and

efficient adaptive architectures becomes paramount. This paper

presents InstantOps, a novel approach to system failure predic-

tion and root cause analysis leveraging a three-fold modality of IT

observability data: logs, metrics, and traces. The proposed method-

ology integrates Graph Neural Networks (GNN) to capture spatial

information and Gated Recurrent Units (GRU) to encapsulate the

temporal aspects within the data. A key emphasis lies in utilizing a

stitched representation derived from logs, microservices events(e.g.

Image Pull Back Off, PVC Pending), and resource metrics to predict

system failures proactively. The traces are aggregated to construct

a comprehensive service call flow graph and represented as a dy-

namic graph. Furthermore, permutation testing is applied to harness

node scores, aiding in the identification of root causes behind these

failures.

To evaluate the efficiency of InstantOps, we utilized in-house

data from the open-source application Quote of the Day (QoTD) as

well as two publicly available datasets, MicroSS and Train Ticket.

The F1 scores obtained in predicting the system failures from these

data sets were 0.96, 0.98, and 0.97, respectively, beating the state-

of-the-art. Additionally, we further evaluated the efficiency of root

cause analysis using MAR and MFR. These results also outperform

the state of the art.
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1 INTRODUCTION
With the growing use of cloud computing, enhanced system sta-

bility and reliability have become critical due to increased depen-

dence on cloud servers for data storage and processing. Anomalies–

unusual deviations from expected system behavior, can signify po-

tential security breaches or malfunctions, posing risks to system

availability and integrity [2, 13]. Anomaly Detection and prediction

are crucial in server and cloud environments for the immediate iden-

tification of abnormal activities, thereby preventing these issues

from escalating into serious problems [7, 35].

The automatic detection and prediction of anomalies and fail-

ures in microservice applications have garnered significant interest

among researchers in recent years. Historically, anomaly detection

has been a focus of extensive study. Techniques such as statistical

methods, clustering, and rule-based systems have been employed

for this purpose [1, 5, 9, 11, 12, 24, 25, 28]. However, as modern

systems have become more interconnected and intricate, there has
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been a palpable shift towards leveraging machine learning models

to achieve enhanced efficiency and accuracy in anomaly detec-

tion [6, 7, 18, 26].

To gain a holistic perspective of the system’s health, research

has particularly emphasized various single-modal data sources:

Traces in [16, 32, 38]: Traces offer insights into the flow of re-

quests and the interactions among different microservices. Anom-

alies in traces, such as unexpected latencies or failed requests, can

be revealing. For instance, a deviation from a usual 10-millisecond

response time to a full second indicates potential concerns.

Logs in [4, 8, 23, 29]: Logs, the textual records generated by ap-

plications and infrastructure components, provide a comprehensive

context about events, errors, and warnings. A surge in error mes-

sages or emergent warning patterns that deviate from the standard

can pinpoint anomalies.

Resource and Performance Metrics in [19, 21, 27, 33]: Monitoring

various metrics, including CPU usage, memory allocation, network

activity, response time, and throughput, offers pivotal insights into

the system’s performance and health. Unforeseen spikes, drops, or

inconsistencies in these metrics might be indicative of performance

bottlenecks, inefficiencies, or other health-related concerns within

a service.

However, recent studies [14, 15, 36] suggest that relying solely

on single-modal data for failure localization may not be adequately

efficient. One primary reason is that a single failure can have cascad-

ing effects on multiple facets of microservices. Such a failure might

manifest itself in various modalities, leading to multiple anomaly

patterns. For instance, a database slowdown might result in both

extended response times (observable in traces) and a surge in error

logs.

Furthermore, there exist certain failures thatmight not be evident

in specific modalities. If detection methods rely solely on one modal-

ity, they risk missing out on these anomalies. A classic example

might be an internal logic error in a service that doesn’t necessarily

result in increased resource usage or evident trace anomalies but

could still produce erroneous outputs.

Given these complexities, there’s a growing consensus in the

research community about the necessity of a multi-modal approach,

combining data from various sources to create a holistic and more

accurate picture of the application’s health.

In this paper, through the introduction of InstantOps, we aug-
ment the existing state-of-the-art research [14–16, 34, 36] by fusing

multimodal data source including logs, traces, resource metrics, and

microservices events (e.g. Image Pull Back Off, PVC pending) in a

time series format to predict system failures at the service (node)

level. In this paper, we characterize a ‘node’ as an individual service

within the micro-service architecture. Specifically, our objective is

to predict, identify, and localize the nodes in the system that might

be responsible for imminent system failures. By pinpointing and

localizing the problematic node within the microservice architec-

ture, we can strategize appropriate remediation measures, such as

node scaling or resource configuration.

We stitch the multi-modal data for a time window in a novel

fashion, where traces act as a thread. We serialize logs, traces,

and metrics for each time window. In this process, we intertwine

traces as the stitching thread, serializing logs, and metrics for each

time window. This serialized data aids in constructing a dynamic

dependency graph that delineates the interconnections among ser-

vices—wherein nodes represent services and their interactions are

depicted as edges.

Moreover, we enrich this dependency graph by merging both

logs and resource metrics as attributes assigned to its nodes. This

augmentation enhances the representation of the system’s spatial

features at specific points in time. To analyze and comprehend

these spatial features, we employ Graph Neural Networks (GNN),

recognizing that a system’s failure isn’t a single-point occurrence

but a lifecycle that gradually progresses toward a system crash.

Understanding the temporal evolution of these spatial features is

imperative. To address this, we utilize Gated Recurrent Unit (GRU)

models, acknowledging the importance of capturing the system’s

changing dynamics over time.

Our focus lies not only in training a multi-modal GNN-GRU

model for predicting system failures but also in utilizing the learned

node scores to localize the root cause. This approach allows us to

repurpose the trained model for the specific task of root cause

analysis. By leveraging the insights gained from failure prediction,

particularly the node scores, we aim to guide the root cause analysis

process. We believe that the predictive learning captured in failure

prediction can significantly aid in root cause localization, thereby

aligning our methodologies for a more comprehensive understand-

ing of system behavior and failure analysis.

The contributions of this paper can be summarized as follows:

• Novel System Failure Prediction: We introduce a unique

approach to predict system failures by fusing multimodal

observability data in a novel fashion wherein we overlay

the logs and metrics data as node attributes in the graph

constructed using the traces.

• We propose to capture both temporal and spatial aspects in

effective failure prediction.

• Innovative Root Cause Analysis Method: We use the multi-

modal system failure prediction model for pinpointing the

root causes of failures at the node level.

• Comprehensive Experimental Study: We conduct an exten-

sive experimental analysis to evaluate the efficiency of our

model in terms of both prediction accuracy and root cause

analysis. This assessment is based on two open-source and

one proprietary dataset derived from open-source microser-

vice systems.

The remainder of the paper is organized as follows: Section 2

describes the motivation behind our experiments and study. In

Section 3, we discuss recent related works in failure predictions and

anomaly detection in microservices, specifically focusing on the

use of multimodal datasets. Section 4 details our methodology and

elaborates on our GNN-GRU based algorithm for detecting failures

in microservices. Section 5 delves into our approach to temporal

failure prediction and root cause analysis including an explanation

of the algorithms. In Section 6, we discuss the evaluation of our

experimental study. Section 7 addresses the potential threats to

validity. Finally, in Section 8, we conclude our findings and present

potential avenues for future research.
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2 MOTIVATION:
The analysis of system failures necessitates a thorough examina-

tion of diverse data modalities. Prior research indicates that relying

solely on single-modal data is inadequate for capturing the intri-

cacies of failure patterns, especially in microservice applications.

In this paper, we utilize three distinct datasets: Anafusion’s Mi-

croSS [36], TraceRCA’s Train Ticket [16], and an in-house dataset

for the “Quote of the Day (QOTD)" open-source application. These

datasets comprise different combinations of logs, traces, events,

and metrics, depending on the specific experiment. For instance,

the QOTD dataset incorporates logs, traces, events, and resource

metrics, while the Train Ticket dataset emphasizes traces and met-

rics. To ensure a comprehensive evaluation, all datasets encompass

records of every failure injection. Our primary objective is to deter-

mine the precision of system failure predictions when leveraging

supervised learning. Distinctly from previous models, we incorpo-

rate edges into the system to systematically assess the impact on

specific nodes. Furthermore, in this paper, the edges are constructed

by the communications among the services in the microservice ap-

plication.

The analysis of these interactions offers critical insights into

which nodes require interventions, such as scaling, restarting, or

remediation of various failures.

For system failure prediction, multiple neural network models

are tested to ascertain the most efficient predictive methodology.

The effectiveness of InstantOps is subsequently quantified using

metrics including accuracy, precision, recall, and the F1 Score. To

benchmark its performance, InstantOps is compared against two

established methods, Anafusion and TraceRCA.

3 RELATEDWORKS
Recent works have significantly leaned into exploring methods for

anomaly and failure detection within microservices and cloud ap-

plications, leveraging various data-oriented and machine-learning

approaches.

Zhao et al. [36] proposed a novel approach called AnoFusion

for unsupervised failure detection through multimodal data for

microservice systems. AnoFusion uses GTN to learn the correlation

of the heterogeneous multimodal data and constructs a heteroge-

neous graph structure. Then, GAT is utilized to capture significant

features and update the heterogeneous graph. Finally, GRU is used

to predict the data pattern at the next moment. However, while

AnoFusion looks at the system level to predict the failures of the

microservice, we focus our attention on the service level to localise

which nodes are the leading cause in predicting the system failures

and take that into account in our system failure prediction. In Ana-

fusion, the authors model one node, in this paper, we model the

entire microservice application. Furthermore, our model is built

with multiple data sources such as events from each microservices.

Zhang et al. [34] proposed an alternative method known as Di-

agFusion. This approach leverages multimodal data to enhance

fault detection by employing advanced embedding techniques fast-

Text and data augmentation. It constructs a dependency graph and

employs a graph neural network to pinpoint the root cause and

identify the type of failure.

Li et al. [16] proposed TraceRCA, a root cause microservice

localization approach designed for trace anomaly detection and

flagging abnormal traces to predict the root cause. Zhou et al. [38]

presented MEPFL, a model designed to predict latent errors that

possess the potential to precipitate failures, especially during the

runtime in production environments of microservice applications.

This approach is realized through the comprehensive analysis of

system trace logs and the training of prediction models utilizing fea-

tures distilled from these logs. In essence, MEPFL aims to empower

developers by providing them with the capacity to identify and

rectify faults before their manifestation as failures in a production

setting. The model specifically addresses three predominant types

of faults in microservice applications: system overload, memory

leak, and sudden node crash. These fault types constitute nearly

half of all microservice application faults, substantiated by existing

empirical studies, underscoring the pivotal role and applicability of

MEPFL in fortifying the reliability of microservice applications. The

TraceRCA and MEPFL approaches are designed to take not only

account traces but metrics, logs, and events using edge interactions

of the nodes to localize the faults at the service level.

Lee et al. [15] introduced a novel approach named Hades, de-

signed for detecting system anomalies in software systems. Hades

seamlessly integrates heterogeneous data sources, including logs

and metrics, to proficiently identify system anomalies. These anom-

alies, which encompass system failures, performance degradation,

and other unanticipated behaviors, are detected promptly, thereby

enabling system administrators to enact corrective actions swiftly.

To facilitate the prediction of system anomalies, the authors employ

a binary classification approach, wherein each data chunk is labeled

as either ’normal’ or ’anomalous.’ Lee et al. [14] proposed Eadro,

an approach for anomaly detection within microservices. Eadro

operates by modeling the standard behavior of microservices and

identifying deviations from this established normalcy. Specifically,

it employs a deep neural network to derive discriminative repre-

sentations of microservice statuses through multi-modal learning,

compelling the model to apprehend fundamental features indica-

tive of anomalies through multi-task learning. The model, which

ingests multi-source monitoring data—including traces, logs, and

Key Performance Indicators (KPIs)—generates a score for each mi-

croservice, reflecting the likelihood of an anomaly. A higher score

indicates a greater probability of the microservice encountering an

anomaly. Eadro’s anomaly detection module is capable of identi-

fying various types of anomalies, such as network-related issues,

resource exhaustion, and software bugs. By pinpointing the root

causes of anomalies, Eadro assists system administrators and devel-

opers in promptly troubleshooting and addressing issues. Research

works similar to Hades and Eardo aim to detect system anomalies

and failure, our intention is not to detect system anomalies but to

predict the anomalies at the next minute based on the last 5 minute

time window.

4 METHODOLOGY
In this section, we provide a systematic approach designed to pre-

dict system failures and facilitate subsequent root cause analysis

using Graph Neural Networks (GNNs) in a Microservice application.

We initiate with the standardization of features and then proceed

121



ICPE ’24, May 7–11, 2024, London, UK Raphael Rouf et al.

Figure 1: InstantOps Offline Training Model

to the systematic construction of a graph. In this representation,

nodes symbolize system components, while edges correspond to

the interactions between these components, quantified on a per-

minute basis. To quantify the frequency of these interactions, we

incorporate the concept of ‘weights’.

When an interaction between or services is observed for the first

time within a specified duration, we create an edge between the two

corresponding nodes in GNN, and the weight of the edges is 1. If an

edge between these nodes already exists within this timeframe, its

weight is incremented by 1, marking an additional recorded inter-

action. Essentially, this weight serves as a metric, representing the

number of interactions between two nodes within the designated

interval. For example, if the weight of an edge between node A and

node B is 10, it indicates that Service A interacted with Service B

10 times within the specified observation period.

Further, a GNN model is developed, integrating node feature

information and graph topology to generate node embeddings.

The mathematical framework defines the forward propagation and

convolution operations within the GNN and Graph Convolutional

Network (GCN) layers. Additionally, the model is extended to incor-

porate edge features, enhancing the representation of interactions.

Temporal aspects and dependencies of the system are incorporated

by using a Gated Recurrent Unit (GRU) model. During the train-

ing phase, the cross-entropy loss function is employed to optimize

model parameters to minimize the difference between predicted

outputs and actual labels. We predict system failure when the entire

application crashes or if the application receives 500 errors more

than 99% of the time in the 𝑡 + 1 time windows. Finally, the model’s

predictive accuracy, a quantifiable metric that measures the propor-

tion of correct predictions relative to the total, is used to evaluate

its ability to predict system failures and enable root cause analysis.

As shown in Figure 1, the workflow of InstantOps is divided

into multiple stages:

First, we preprocess and serialize the multi-modal data-set within

a controlled time-frame. For each data source, we define time win-

dows with the same size. The sequence of the time windows defines

the stream of graphs for our model. Next, we construct the Graph

Neural Networks using edges and nodes. For each time window, we

add the features to the nodes in the graph. The layers of the GNN

aggregate information from neighbors in a graph. We then filter

features by selecting important keywords from logs and events that

serve as features and correlating them with resource metrics. The

first layer takes the features, while the second layer accepts the

output from the first and produces additional graph neural network

features.

After processing the node features with the GNN layers, the node

embeddings are further refined through a GRU cell. For failure pre-

diction, we consider both the features and temporal aspects across

different timestamps to predict system failures in the subsequent

time moment, which in our case is 𝑡 + 1. This layer can capture

temporal dependencies in the node embeddings produced by the

GNN layers. While GRU models are traditionally used for sequence

data, in our approach, we use it as an additional transformation for

node embeddings.

We further elaborate on our steps below:

4.1 Data Preprocessing and Graph Construction
Data normalization is conducted to maintain consistency among

the dataset features, expressed mathematically as:

𝑥
std

=
𝑥 − 𝜇
𝜎

where 𝑥 is the raw feature, 𝜇 is the mean, and 𝜎 is the standard

deviation of the feature across all data points.

A graph𝐺 is then defined as𝐺 = (𝑉 , 𝐸), where𝑉 is a set of nodes

representing microservices, and 𝐸 is a set of edges representing
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interactions between services. The adjacency matrix 𝐴 ∈ R𝑛×𝑛
encapsulates the number of interactions, where 𝐴𝑖 𝑗 = 1 if an inter-

action exists between services represented by nodes 𝑣𝑖 and 𝑣 𝑗 , and

0 otherwise. In other paper, authors define Edges 𝑒𝑖 𝑗 ∈ 𝐸 can also

be defined based on metrics between nodes:

𝑒𝑖 𝑗 = 𝑓 (logs𝑖 𝑗 ,metrics𝑖 𝑗 )

where 𝑓 represents a function determining interactions between

nodes based on logs and metrics.

4.2 Log Parsing
To predict system failure and their respective causes, serialization

of the logs is an integral part of our work. The architectural design

of this project is inspired by our previous work, BERTOps [8],

which utilizes the Drain [10] to extract structured information from

raw log data by clustering log lines into templates based on their

structural similarity and BERT [3] for building an encoder based

Large Language Model (LLMs) for the log data. By fine-tuning the

pre-trained BERTOps model on labeled data from downstream tasks

such as log classification and fault category prediction, BERTOps

can learn to accurately represent log data and perform various log

analysis tasks with high accuracy. While BertOps aims to classify a

log line, in this paper, we classify each node and extract vital features

from the logs, such as the number of errors a node receives within

the specific time window. For instance, given the log structure

“[2023-08-22T17:20:12.083] [Error] default - [418241] Quote request

timeout", we extract the following features: timestamp, node id,

number of errors. These features will be added to the nodes for a

corresponding time window.

4.3 GNN Model Formulation
Leveraging the ability of GNNs to capture localized graph struc-

tures and enable accurate predictions, the formulation and forward

propagation within a GNN layer include the transformation and

aggregation of node features across successive layers, adhering to:

𝐻 (𝑙+1) = 𝜎

(
�̃�−

1

2 �̃��̃�−
1

2𝐻 (𝑙 )𝑊 (𝑙 )
)

where:

• 𝐻 (𝑙 ) is the matrix of node features at layer 𝑙 ,

• �̃� = 𝐴 + 𝐼 includes the adjacency matrix 𝐴 fortified with

self-loops 𝐼 ,

• �̃� represents the degree matrix of �̃�,

• 𝑊 (𝑙 ) denotes the weight matrix at layer 𝑙 ,

• 𝜎 embodies a non-linear activation function.

This structural formulation of GNN simultaneously ensures the

preservation of spatial relations between nodes and facilitates an

iterative enhancement of node representations through the aggre-

gation of neighboring information. This mechanism is instrumental

in decoding intricate patterns, which are crucial for the predictive

analysis of system failures, and provides a robust foundation for

subsequent root cause analysis.

4.4 Graph Neural Network Model Development
The GNN model leverages both node feature information and topo-

logical structure. The forward propagation of a GNN model is often

expressed as:

ℎ
(𝑙+1)
𝑣𝑖 = 𝜎

©«
∑︁

𝑣𝑗 ∈𝑁 (𝑣𝑖 )
𝑊 (𝑙 ) · ℎ (𝑙 )𝑣𝑗

ª®¬
where ℎ

(𝑙 )
𝑣𝑖 represents the feature vector of node 𝑣𝑖 at layer 𝑙 and

𝑁 (𝑣𝑖 ) is the set of neighbors of node 𝑣𝑖 .
The operation in a Graph Convolutional Network (GCN) layer

can be expressed as:

𝐻 (𝑙+1) = 𝜎

(
�̃�−

1

2 �̃��̃�−
1

2𝐻 (𝑙 )𝑊 (𝑙 )
)

where �̃� = 𝐴 + 𝐼 and �̃� is the degree matrix of �̃�.

Enhancing the GCN model to include edge features, the node

representation becomes:

ℎ
(𝑙+1)
𝑣𝑖 = 𝜎

©«
∑︁

𝑣𝑗 ∈𝑁 (𝑣𝑖 )
𝑊 (𝑙 ) · ℎ (𝑙 )𝑣𝑗 +𝑈

(𝑙 ) · 𝑒𝑖 𝑗
ª®¬

where 𝑈 (𝑙 ) is a trainable weight matrix for edge representations at

layer 𝑙 .

5 TEMPORAL FAILURE PREDICTION AND
ROOT CAUSE ANALYSIS

In this section, we discuss the approaches for failure prediction and

root cause analysis.

5.1 Temporal Failure Prediction
In our approach, we integrate the power of Graph Neural Networks

(GNN) with Gated Recurrent Units (GRU) to predict temporal fail-

ures. The GNN captures the spatial structure of the data by operat-

ing on a graph, encapsulating local neighborhood information of

each node through iterative feature aggregation from its neighbors.

The propagation in GNN is steered by the adjacency matrix Ã and

its diagonal degree matrix D̃, formalized as:

X(𝑙+1) = 𝜎

(
D̃−

1

2 ÃD̃−
1

2X(𝑙 )W(𝑙 )
)

The Gated Recurrent Unit (GRU) captures the temporal dynamics

across sequences. The GRU discerns sequential patterns using its

intrinsic update and reset gates. The vital computations within the

GRU include:

𝑟𝑡 = 𝜎 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟 ) (Reset gate)

𝑧𝑡 = 𝜎 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (Update gate)

ˆℎ𝑡 = tanh(𝑊𝑥𝑡 +𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏) (New potential hidden

state)

ℎ𝑡 = (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ˆℎ𝑡 (Actual hidden state

update)

For each sequence and its respective time step, the GNN first

imbibes spatial information derived from the graph. The conjoined

features from the GNN for every time step are subsequently fun-

neled into the GRU, which modifies its hidden state according to

its preceding state and the contemporary input. The culminating

output of the GRU forms the basis of the prediction. The associated

loss is computed relative to the true labels, followed by a backward
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pass to refine the model parameters. Upon training, this model can

be employed to prognosticate failures for imminent time steps.

Algorithm 1 Temporal Failure Prediction using GNN with GRU

1: procedure GNN_TemporalFailurePrediction(nodes, edges,
y)

2: Standardize nodes
3: Map node names to integers in edges and nodes
4: Convert nodes, edges, y to data
5: Initialize GNN-GRU model with 2 GCN layers and a GRU

layer

6: for each epoch do
7: for each time window in train_loader do
8: Get temporal sequence of nodes for the time window
9: for each time-step 𝑡 do
10: X(𝑙+1) ← 𝜎

(
D̃−

1

2 ÃD̃−
1

2X(𝑙 )W(𝑙 )
)

11: 𝑟𝑡 ← 𝜎 (𝑊𝑟𝑥𝑡 +𝑈𝑟ℎ𝑡−1 + 𝑏𝑟 )
12: 𝑧𝑡 ← 𝜎 (𝑊𝑧𝑥𝑡 +𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)
13:

ˆℎ𝑡 ← tanh(𝑊𝑥𝑡 +𝑈 (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏)
14: ℎ𝑡 ← (1 − 𝑧𝑡 ) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ˆℎ𝑡

15: Use ℎ𝑡 for prediction

16: Compute loss with CrossEntropy

17: Backward pass

18: Update model parameters

19: Evaluate on the validation set

20: Compute metrics (Accuracy, Precision, Recall, F1 Score)

21: Predict failure for 𝑡 + 1 using current model state

22: return Trained GNN-GRU model

Table 1: Conjoined features from the GNN

Features Traces Metrics Logs Events

# of Node Interactions ✓
CPU Usage ✓
Memory Usage ✓
Disk I/O ✓
Network I/O ✓
5XX Errors ✓
2XX Requests ✓
4XX Errors ✓
API Latency ✓
CrashLoopBackOff ✓
ImagePullBackOff ✓
NodeNotReady ✓
PodScheduled ✓
NodeReady ✓
Unhealthy ✓
VolumeMount ✓
Failed (Image Pull) ✓
Resource Constraints ✓

Figure 2 depicts the model architecture of a system designed for

predicting system failure at the node level in a microservice applica-

tion. This system employs a hybrid approach, integrating a Graph

Neural Network (GNN) with a Gated Recurrent Unit (GRU) model.

The GNN component is responsible for capturing the interactions

among microservice nodes, effectively learning from the topologi-

cal structure of the microservices network. Each node in the GNN

represents a microservice, and the edges reflect the interactions

between these services.

The GRU part of the model handles the temporal aspects of the

system’s features, such as resource utilization and error rates, which

are critical for understanding the state of the system over time. The

GRU’s ability to maintain information across time steps makes it

particularly suitable for this task, as it can recognize patterns that

precede a system failure.

The figure illustrates nodes representing different layers and

operations within the neural network, such as convolutional layers

(conv1.lin.weight, conv2.lin.weight), which are used in process-

ing nodes interactions, and GRU components (gru_cell.weight_ih,

gru_cell.weight_hh), which are adept at handling temporal aspects.

The AccumulateGrad nodes suggest the accumulation of gradient

values for each parameter across multiple batches or time steps.

In the computational graph shown, we see the backward propa-

gation flow, which is part of the training phase where the model’s

parameters are adjusted. The backward nodes represent the deriva-

tives of the loss function with respect to the model’s parameters,

and the arrows indicate the direction of the gradients’ flow.

Figure 2: The Diagram for GNN+GRU Neural Network Model

5.2 Root Cause Analysis
In complex microservice applications, identifying the root causes of

faults is critical for maintaining operational efficiency and reliability.
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To systematically analyze and diagnose faults in our system, we

employ a two-fold metric-based approach. This approach focuses

on evaluating the effectiveness of InstantOps root cause localization

processes at the node level. Specifically, we utilize Mean First Rank

(MFR) and Mean Average Rank (MAR) as our primary metrics.

Mean First Rank (MFR):MFR focuses on the position where

the first correct item (fault) appears in a ranked list. In the context

of fault analysis, this means identifying the most likely root cause

of a problem as quickly as possible. The quicker a primary fault is

identified, the faster remedial actions can be taken. This is crucial

in systems where prompt fault resolution is essential to minimize

downtime or prevent cascading issues. In practice, MFR is calculated

by averaging the ranks at which the first true fault appears across all

instances in a dataset. A lowerMFR value indicates higher efficiency

in pinpointing the primary fault quickly.

Mean Average Rank (MAR): MAR extends the analysis to

consider the average rank of all relevant items in the ranked list.

This is particularly important in scenarios where multiple potential

faults might contribute to a problem. MAR provides a broader view

of the system’s diagnostic accuracy. It is essential for comprehensive

fault identification, especially in complex systems where multiple

issues can coexist or be interrelated. MAR is calculated by averaging

the ranks of all relevant faults across each instance in the dataset.

It involves more intricate computations as it takes into account the

position of each relevant item, not just the first one.

To implement these metrics, we utilized three different datasets,

each comprising a ranked list of potential faults for each node gen-

erated upon the detection of a fault in the system. For instance, in

the case of the QoTD datasets, we encountered three distinct faults:

CPU, Memory, and DNS. The ranked lists from these datasets are

then scrutinized using the MFR and MAR metrics, allowing us to

quantify the accuracy and efficiency of our fault identification pro-

cess. This methodology ensures a robust analysis of the diagnostic

capabilities at the node level within our system.

6 EVALUATION
Here, we present the data for evaluation, evaluate our methods for

failure prediction and root cause analysis, and present the perfor-

mance of the models on various datasets and baselines.

6.1 Datasets
In this paper, we utilized two open-source microservice datasets:

Train-Ticket and MicroSS, and Quote of the Day (QoTD) application

that was deployed in-house on IBM OpenShift Clusters V4.12.36

with 16 CPU cores, and 32 GB Ram.

Train-Ticket [37]which comprises 41microservices, is frequently

used by researchers for root cause identification and localization.

We accessed this application made available online by Li et al., [16]

to enable comparative analysis with their findings. Three types of

faults were introduced [16]: application bugs, CPU exhaustion, and

network congestion. While these faults were introduced at various

system levels, we specifically focused on those injected into the

microservices, aligning them for comparison with the other two

datasets.

MicroSS, also known as the Genetic AIOps Atlas (GAIA) dataset
1
,

contains 10 microservices, two databases (MYSQL and Redis), and

is supported by five host machines. It is designed to cater to both

mobile and PC users. The GAIA dataset encompasses five distinct

faults: system hang-ups, process crashes, system failures like login

issues, missing files, and access denials. A record detailing the in-

jection of these failures is provided alongside the data. This dataset

has been widely used for predicting system failure and root cause

localization in [36] and [34].

The QoTD open-source application
3
consists of eight distinct

microservices. We deployed QoTD on IBM OpenShift clusters and

introduced a variety of faults using Chaos-Mesh
4
. These faults

include disruptions in CPU, memory, and DNS.

Formonitoring purposes, we employed Instana
5
, which provided

data points such as API response times, error codes, and various

resource utilization metrics: CPU, memory, disk, and network. We

utilized LogDNA
6
to extract application logs. Furthermore, we

devised a custom script to capture events per minute at the node

level. This script monitored events like “Scheduled", “Unscheduled",

“Pulled", “Failed", “Started", etc. These events were retrieved by

querying ‘oc describe <resource> <resource-name>’.

6.2 Evaluation Metrics
6.2.1 Failure Prediction: The model is trained using CrossEntropy

loss, formulated as:

𝐿 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )

where 𝑦𝑖 and 𝑦𝑖 are the true label and predicted probability for

sample 𝑖 , respectively.

To assess the model, accuracy and F1 Score are computed. Accu-

racy is given as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions

F1 Score is calculated using precision and recall, which con-

sider the model’s performance regarding false positives and false

negatives. F1 Score is expressed as:

𝐹1 = 2 × Precision × Recall
Precision + Recall

with

Precision =
True Positives

True Positives + False Positives
and

Recall =
True Positives

True Positives + False Negatives
6.2.2 Root Cause Analysis: To validate and understand the impact

of crucial nodes for the root cause, we employed a function for

evaluating the accuracy without k nodes. This function deliberately

nullifies the top k nodes (based on their importance) and evaluates

how the model’s accuracy is affected without their presence:

12

3
https://gitlab.com/quote-of-the-day/quote-of-the-day/-/tree/master

4
https://chaos-mesh.org/

5
https://www.ibm.com/products/instana

6
https://www.ibm.com/case-studies/logdna-cloud
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• Ranking Nodes: Nodes are ranked in descending order

based on their computed importance.

• Nullification of Top Nodes: Features of the top k nodes

are set to zero, effectively removing their influence from the

network.

• Model Evaluation: With these nodes nullified, the model’s

accuracy is gauged again, highlighting the impact of these

crucial nodes on the network’s overall performance. A pro-

nounced drop in these accuracies compared to the baseline

underscores the critical nature of these nodes within the

network.

Top-k accuracy is a metric commonly used in retrieval and rec-

ommendation tasks. It measures how often the true item (or one of

the true items) appears in the top 𝑘 items of the ranked list and is

defined as:

𝐴@𝑘 =
1

|𝐴|
∑︁
𝑎∈𝐴

{
1 if 𝑅𝐶𝑎

𝑖
∈ 𝑅𝐶𝑎

𝑠 [𝑘]
0 otherwise

where,

• 𝐴 is the set of test samples.

• 𝑅𝐶𝑎
𝑖
is the true root cause instance for sample 𝑎.

• 𝑅𝐶𝑎
𝑠 [𝑘] is the set of top-k predicted instances for sample 𝑎.

Mean First Rank (MFR) evaluates the average rank at which the

first correct item is found in the ranked list and is defined as:

MFR =
1

𝑁

𝑁∑︁
𝑖=1

rank𝑖

where,

• 𝑁 is the total number of ranked lists.

• rank𝑖 is the rank of the first true item in the 𝑖𝑡ℎ ranked list.

Mean Average Rank (MAR) measures the average rank of all

relevant items in the ranked list. It’s a s metric when there are

multiple relevant items per query, and you want to assess how well

the system ranks all of them on average and is defined as:

MAR =
1

𝑁

𝑁∑︁
𝑖=1

©« 1

|𝑅𝑖 |
∑︁
𝑟 ∈𝑅𝑖

rank𝑖,𝑟
ª®¬

where,

• 𝑁 is the number of ranked lists.

• 𝑅𝑖 is the set of relevant items for the 𝑖𝑡ℎ ranked list.

• rank𝑖,𝑟 is the rank of relevant item 𝑟 in the 𝑖𝑡ℎ ranked list.

6.3 Results and Discussions
In this paper, we focus on the resources’ over-utilization (also

known as overload) use case as the cause of anomalies. The assump-

tion is that resource utilization happens due to causes external to

the applications we monitor. Within this particular use case, our ex-

periments are organized around several research questions, which

are discussed below.

• RQ1: How efficient is InstantOps for system failure predic-

tion compared to other neural network algorithms?

• RQ2: How does the efficiency of InstantOps for failure

prediction compare to state-of-the-art methods?

• RQ3: How does InstantOps perform root cause analysis as

compared to other neural network algorithms?

• RQ4: How does InstantOps perform in terms of root cause

node localization compared to existing methods?

6.3.1 RQ1: How efficient is InstantOps for system failure predic-
tion compared to other neural network algorithms? To assess the

efficiency of InstantOps, three distinct datasets were utilized, as
shown in Table 2. The first, MicroSS, is an open-source dataset

comprising 419,959 data. This data was divided into training and

testing sets with 84,026 and 335,933, respectively. The Train Ticket

open-source dataset encompasses 24,492 data, which are further

divided into 19,337 for testing and 5,085 for training. Lastly, our in-

house dataset includes 450,000 data, with a distribution of 360,000

for testing and 90,000 for training.

Table 2: Data Overview for Applications

Application Total Samples Test_data train_data

MicroSS 419959 335933 84026

Train Ticket 24492 19337 5085

QoTD 450000 360000 90000

For each dataset, several applications metrics were considered

which we defined as features: application resource utilization, logs

detailing errors for each node within specific timeframes (e.g., 1

minute), edge constructions that link nodes with traces within

certain time windows, and the frequency of interactions between

nodes. These metrics assist in identifying anomalies by observing

deviations in standard node interactions. Specifically for the QoTD

dataset, we also incorporated event metrics, capturing events such

as out of memory, scheduled activities, pull events, failed creation

events, and image pull back-offs on a per-node basis. Using this

data, we aimed to predict systemic failures.

We adhered to a standard Service Level Agreement (SLA) that

designates a system as “failed" if 99.9% of the total requests received

on the server resulted in errors, such as a 503 error, within a specific

timeframe (e.g., 1 minute). The labeled dataset was employed to

validate the accuracy of our predictive efforts.

Further validation was sought by leveraging multiple neural

network models, as delineated in Table 3. These models, previously

utilized by other researchers [34, 36], were examined to compare

the effectiveness of InstantOps. Notably, InstantOps employs a

Graph Neural Network (GNN) to structure the relationships be-

tween features and nodes. Additionally, a Gated Recurrent Unit

(GRU) captures temporal aspects of each node in the system, such

as time lags of t-2 and t-5.

The performance metrics revealed that InstantOps achieved

the highest F1 score for MicroSS at 0.98, with a recall of 0.98 and a

precision of 0.97. Similar scores were observed for the Train Ticket

dataset. For the QoTD dataset, the F1 score was 0.96, with a recall

and precision both measuring 0.96. When comparing other neural

network algorithms using the MicroSS dataset, the combination of

GTN with GRU and LSTM yielded an F2 score of 0.94. The Train

Ticket dataset registered a score of 0.92 for the integration of GTN

and LSTM, while GNN and LSTM achieved 0.94.
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Table 3: Comparison of different algorithms for MicroSS,
Train Ticket, and QoTD datasets

MicroSS Train Ticket QoTD

Algorithm Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

InstantOps 0.97 0.97 0.98 0.98 0.98 0.97 0.98 0.98 0.97 0.96 0.96 0.96
GNN+LSTM 0.93 0.93 0.93 0.93 0.91 0.87 0.91 0.89 0.91 0.94 0.94 0.94

GNN 0.90 0.93 0.90 0.91 0.87 0.83 0.87 0.85 0.92 0.93 0.92 0.93

GTN 0.73 0.93 0.73 0.81 0.92 0.86 0.92 0.89 0.88 0.89 0.88 0.88

GTN+LSTM 0.95 0.93 0.96 0.94 0.93 0.92 0.96 0.92 0.91 0.90 0.94 0.93

GTN+GRU 0.96 0.92 0.96 0.94 0.93 0.86 0.93 0.90 0.92 0.94 0.89 0.92

RQ1: We showed that by fusing traces, logs, and met-
rics and capturing temporal aspects using GRUs to
identify anomalies by observing deviations in the
interactions between services, InstantOps obtained
higher precision, recall and F1 scores in comparison
to other neural network algorithms on three data-
sets: QoTD, MicroSS and Train Ticket.

6.3.2 RQ2: How does the efficiency of InstantOps for failure pre-
diction compare to state-of-the-art methods? Table 4 illustrates a

comparison study between InstantOps, JLT and Anafusion to es-

tablish a multimodal baseline.

The JLT method aggregates the results from JumpStarter [22],

LogAnomaly [23], and Traceanomaly [20]. It employs majority vot-

ing, marking a failure if two or more modalities fail simultaneously.

A notable observation about JLT is that it disregards the correlation

among different modalities. For the MicroSS dataset, which inte-

grates metrics, logs, and traces, JLT achieves an F1 score of 0.61, a

recall of 0.94, and a precision of 0.46.

To further improve JLT’s performance for fault prediction, Zhao

et [36]. proposed Anafusion, an unsupervised failure detection

technique that integrates multimodal data for microservices. It uses

a graph neural network to learn the correlations in the heteroge-

neous multimodal dataset. For the sameMicroSS dataset, Anafusion

achieved an F1 score of 0.85, a recall of 0.94, and a precision of 0.79.

In InstantOps, we have further refined the Anafusion model by

constructing a graph based on traces, which displays interactions

among the nodes in real time. InstantOps employs both GNN and

GRU to account for the system’s temporal aspects. Our experimental

results indicate that InstantOps, when applied to the MicroSS

dataset, achieves an F1 score of 0.98, a precision of 0.97, and a recall

of 0.98.

Table 4: The Average Percentage Among Precision, Recall,
and F1-Score of Different Approaches on MicroSS Dataset

Approach

Modality MicroSS Dataset

Metric Log Trace Prec. Rec. F1

InstantOps ✓ ✓ ✓ 0.970 0.980 0.980
AnoFusion ✓ ✓ ✓ 0.795 0.945 0.857

JLT ✓ ✓ ✓ 0.461 0.940 0.618

RQ2: We showed that by constructing a dependency
graph based on traces to depict the service interac-
tions of the faulty service using GNN and GRU to
incorporate temporal aspects, InstantOps achieves
higher precision, recall and F1 score than the state-
of-the-art methods.

6.3.3 RQ3: How does InstantOps perform root cause analysis as
compared to other neural network algorithms? To assess the effi-

ciency of InstantOps in root cause localization at the node level,

we used two metrics: MFR (Mean First Rank) and MAR (Mean Aver-

age Rank) described earlier on three datasets: MicroSS, Train Ticket,

and QoTD as shown in Table 5.

As can be seen from the table, InstantOps achieves an MFR

score of 1.49 and a MAR score of 1.51 on the QoTD dataset. On the

MicroSS dataset, InstantOps achieves a score of 1.51 for both MFR

andMAR. On the Train Ticket dataset, InstantOps achieves a score
of 1.06 for both MAR and MFR. We also observed that the combina-

tion of GNN and LSTM exhibited similar strong performance. For

the QoTD dataset, GNN+LSTM achieved a score of 1.51 for both

MAR and MFR. On the MicroSS dataset, GNN+LSTM achieved a

score of 1.06 for MAR and a score of 1.07 for MFR. On the Train

Ticket dataset, GNN+LSTM achieved a score of 1.6 for both MAR

and MFR.

Table 5: Effectiveness of failure type determination at the
node level

Algorithm

QoTD MicroSS Train Ticket

MAR MFR MAR MFR MAR MFR

InstantOps 1.51 1.49 1.06 1.06 1.06 1.06
GNN+LSTM 1.51 1.51 1.06 1.07 1.06 1.06

GNN 1.51 1.51 1.59 1.59 1.06 1.19

GTN 1.67 1.62 1.15 1.24 1.47 1.47

GTN+LSTM 1.89 1.89 1.18 1.11 1.37 1.47

GTN+GRU 1.89 1.56 1.06 1.14 1.90 1.95

RQ3: We showed by localizing the root causes at the
node level, the InstantOps approach performs better
in terms of MAR and MFR in comparison to other
neural network algorithms in its effectiveness of de-
termining failure type at the node level on three
datasets: QoTD, MicroSS and Train Ticket.

6.3.4 RQ4: How does InstantOps perform in terms of root cause
node localization compared to existing methods? In this experiment,

we compare InstantOps with seven algorithms. Microscope and

MEPFL are microservice anomaly detection approaches where Mi-

croscope collects network and SLO metrics to infer root causes

during SLO violations while MEPFL predicts latent errors and

faulty microservices by integrating trace logs and injecting faults.

TraceAnomaly, an unsupervised approach, learns trace patterns

to detect abnormal traces and localise root causes. MonitorRank
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employs Random Walk, which combines historical and real-time

metrics for root cause ranking in service-oriented web architectures.

RCSF, designed for enterprise systems, analyses performance logs

and dependency models to identify fault propagation sequences.

InstantOps is designed to fuse features such as resource utiliza-

tion, events and logs and construct graph neural network based on

the interations among the nodes in microservice. and it localize the

faulty node that corresponds to system failure.

Table 6 provides a quantitative comparison of InstantOps with

seven algorithms such as TraceRCA [16], MicroScope [17], MEPFL

(RF) [38], TraceAnomaly[20], Random-Walk [31], and RCSF [30]

benchmarked against other methods sourced from [16]. The metrics

𝐴@1, 𝐴@2, and 𝐴@3 are utilized as evaluative standards.

As is evident from the table, InstantOps demonstrates a high

degree of effectiveness. With an 𝐴@1 score of 0.92, it surpasses

the majority of the algorithms in the list and maintains consistent

performance across 𝐴@2 and 𝐴@3. This consistent high perfor-

mance across metrics suggests the reliability and robustness of the

InstantOps algorithm.

Algorithms such as Random Walk and RCSF, although displaying

commendable values in 𝐴@2 and 𝐴@3, have relatively lower 𝐴@1

values. This difference could indicate potential variability in their

performance across different stages or conditions.

Conversely, TraceAnomaly and MicroScope consistently per-

form worse, further delineating the performance gap between these

methods and InstantOps.

Table 6: Comparison of root cause localization on faults of
different levels on A

Algorithm A@1 A@2 A@3

InstantOps 0.92 0.95 0.98
TraceRCA 0.83 0.93 0.97

MicroScope 0.56 0.62 0.7

MEPFL (RF) 0.94 0.97 0.97

Random Walk 0.51 0.86 0.94

RCSF 0.52 0.86 0.93

TraceAnomaly 0.49 0.59 0.63

RQ4: We showed by localizing the root causes at the
node level, InstantOps outperforms in terms of the
evaluative standards A@1, A@2 and A@3 in compar-
ison to other existing methods in root cause localiza-
tion on faults of different levels on A, demonstrating
higher effectiveness than existing methods.

7 THREATS TO VALIDITY
In our research, we’ve identified several threats to validity that

warrant careful consideration. The first threat pertains to the accu-

racy of failure labeling within our microservices study. Specifically,

while examining the ’Quote of the Day’ (QoTD) application, we

established a performance baseline with JMeter and subsequently

annotated failure events using Chaos Mesh for fault injection. This

process was supplemented by observations of microservice crashes

in OpenShift clusters. Nevertheless, any potential mislabeling or

misinterpretation of these events could compromise the integrity

of our findings.

Further complicating our validity is the diversity of our data

sources. We’ve utilized three datasets, including two open-source

ones, to support the generalizability of our results. However, the

variance in size and scope between our experimental data and the

real-world complexity of microservice operations could limit the

applicability of our conclusions.

Another significant validity threat arises from the granularity

of our data collection. By capturing a wide array of metrics—from

resource usage to node interactions—on a one-minute interval, we

assume that this level of granularity is sufficient for predicting

imminent system failures. Yet, there is a risk that more nuanced

or granular data could yield different insights, which means our

current approach may overlook certain subtleties.

Lastly, the scope of our datasets, which are smaller in comparison

to those used in extensive industrial microservice systems, could

undermine the scalability of our algorithm. While we believe our

algorithm should function effectively even with coarser-grained

datasets, the true test of its applicability will come when it is applied

to the larger and more complex datasets that we plan to obtain from

our clients in future work. This step is crucial for us to validate

the efficiency of our model and ensure that it can withstand the

demands of a full-scale industrial environment.

8 CONCLUSION
In this work, we proposed InstantOps, an approach that takes

in multi-modal data to construct a graph using traces with logs

and metric data as node attributes. Through this, we use our multi-

modal system failure prediction approach and capture temporal

and spatial aspects to precisely and effectively predict failures and

determine the root causes of failures at the node level. In addition

to using our in-house data set: QoTD, we used two open source

datasets: MicroSS and Train-Ticket. In our experimental studies, we

have shown how InstantOps can identify and localize the faulty

node in microservice which can facilitate the root cause analysis of

the system failure. We believe that the use of a Graph Neural Net-

work to construct topology and interaction among the nodes and

incorporating temporal information using the GRUmodel improves

the prediction of system failure. We aim to evolve InstantOps into
an online learning system capable of updating its models in real

time. This continuous learning approach would allow for immediate

adjustments based on the latest system behavior, thereby enhancing

predictive accuracy over time.
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ABSTRACT
Distributed Stream Processing (DSP) systems are capable of process-
ing large streams of unbounded data, offering high throughput and
low latencies. To maintain a stable Quality of Service (QoS), these
systems require a sufficient allocation of resources. At the same
time, over-provisioning can result in wasted energy and high oper-
ating costs. Therefore, to maximize resource utilization, autoscaling
methods have been proposed that aim to efficiently match the re-
source allocation with the incoming workload. However, determin-
ing when and by how much to scale remains a significant challenge.
Given the long-running nature of DSP jobs, scaling actions need to
be executed at runtime, and to maintain a good QoS, they should
be both accurate and infrequent. To address the challenges of au-
toscaling, the concept of self-adaptive systems is particularly fitting.
These systems monitor themselves and their environment, adapting
to changes with minimal need for expert involvement.

This paper introduces Daedalus, a self-adaptive manager for
autoscaling in DSP systems, which draws on the principles of self-
adaption to address the challenge of efficient autoscaling. Daedalus
monitors a running DSP job and builds performance models, aim-
ing to predict the maximum processing capacity at different scale-
outs. When combined with time series forecasting to predict future
workloads, Daedalus proactively scales DSP jobs, optimizing for
maximum throughput and minimizing both latencies and resource
usage. We conducted experiments using Apache Flink and Kafka
Streams to evaluate the performance of Daedalus against two state-
of-the-art approaches. Daedalus was able to achieve comparable
latencies while reducing resource usage by up to 71%.
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1 INTRODUCTION
Distributed Stream Processing (DSP) is an important paradigm that
enables quick extraction of insights from unbounded data streams
with high throughput and low latencies. The generation of stream-
ing data is continually increasing and this trend is evident across
a range of contexts, including online advertising, financial trans-
actions, and IoT sensor networks [4, 20, 21]. In order to provide a
good Quality of Service (QoS), DSP systems need to be properly
configured. Insufficient allocation of resources can lead to unstable
service delivery, while over-provisioning results in wasted energy
and higher operational costs. Achieving the right balance in re-
source allocation is therefore crucial to optimize both performance
and cost-effectiveness. However, due to the dynamic nature of
streaming workloads, configurations can quickly become obsolete.
Likewise, because the manual tuning of configurations is infeasible
over the course of a long-running job, resources can only be ad-
justed through an automated approach. Therefore, it is prudent to
provide DSP systems with self-adaptive capabilities, enabling them
to monitor themselves and respond to environmental changes by
autonomously tuning their configurations during runtime.

Automated scaling of computational resources, commonly known
as autoscaling, serves as the key method for aligning resources
with dynamic workloads in DSP systems. The scaleout, defined
by the number of worker nodes and processing slots per node, di-
rectly determines the system’s level of parallelism and influences
the overall resource allocation. This, in turn, affects each worker
node’s processing potential. Popular DSP frameworks like Apache
Flink [3], Kafka Streams [19], and Apache Spark [23], support dy-
namic adjustments in scaleout during runtime, which impacts the
job’s parallelism and subsequently its resource utilization. Typically,
these systems are deployed in cloud environments, where resources
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are provisioned elastically and can be scaled in or out as required,
directly affecting the processing capabilities of the DSP job.

Autoscaling approaches are optimized towards various adapta-
tion goals, with most research primarily focusing on enhancing
DSP system performance by maximizing throughput or minimiz-
ing latency [4, 18]. Additionally, secondary goals like minimizing
resource usage, reducing monetary costs, lowering energy con-
sumption, or shortening recovery times are also considered [4, 21].
Despite active research in this area, there is still potential for further
advancements. Many existing methods demand in-depth system
or job knowledge, such as setting scaling thresholds or altering
DSP source code [13, 14, 24]. Often, scaling decisions lead to down-
time for initializing new workers or recalculating data distribution
among operators, yet few strategies account for this overhead. Addi-
tionally, many presume an even distribution of data across parallel
operators, which is not always the case in practical scenarios.

This paper approaches the challenges of autoscaling DSP systems
from the perspective of self-adaptation. It proposes a self-adaptive
manager called Daedalus that targets a running DSP job and hori-
zontally scales its parallelism to adapt to the incoming workload
while minimizing resource usage. In order to meet QoS require-
ments, Daedalus can optimize towards a target recovery time and
ensure that a job will recover between scaling actions. Because
scaling decisions incur an overhead cost, Daedalus employs Time
Series Forecasting (TSF) to predict the future workload in order
to reduce the frequency of scaling actions. By ensuring that the
incoming workload can be processed and minimizing system down-
time, Daedalus can achieve reasonable latencies. Scaling decisions
are realized through a combination of monitoring, performance
modeling, and TSF. Unlike most existing approaches that ignore
how data is split among parallel workers, Daedalus explicitly incor-
porates data skew in its capacity models. It is a general approach,
applicable to containerized DSP systems running in cloud environ-
ments. Daedalus has been evaluated using three benchmark DSP
jobs, employing two DSP frameworks, Apache Flink and Kafka
Streams, and is compared against two state-of-the-art approaches.

This paper is structured as follows: Section 2 reviews related
work on autoscaling, recovery time, and time series forecasting.
Section 3 describes the approach taken to realize self-adaptive au-
toscaling. In Section 4, the approach is evaluated, and the results
are discussed. Lastly, the paper is concluded in Section 5.

2 RELATEDWORK
Adaptive autoscaling for DSP systems is an active field of research.
This section describes the most relevant state-of-the-art solutions
that Daedalus builds upon and work relevant to recovery time and
TSF.

Heinze et al. [12] assess the viability of both threshold-based and
reinforcement learning autoscaling techniques using their approach
called FUGU. The authors find that reinforcement learning produces
scaling decisions that best maximize system utilization, and that
global thresholds are not well-suited for autoscaling. However, it
should also be noted that reinforcement learning techniques can
take a long time to adequately train and need to make ill-suited
scaling decisions to learn.

Dhalion [8] is a self-adaptive system developed for Heron that
employs user-defined policies to enable autoscaling. By monitoring
metrics such as backpressure, tuples waiting in buffers, and data
skew across operators, Dhalion determines if resources are over-
provisioned or under-provisioned and scales in or out accordingly.
Although Dhalion aims to be a comprehensive self-adaptive DSP
solution, defining suitable policies requires expert knowledge of the
job and system. Additionally, its autoscaling capabilities have been
found to over-provision resources. Because individual operators
are scaled one at a time after detecting backpressure, Dhalion needs
a long time to converge to an optimal configuration [13].

DS2 is a reactive autoscaling approach that monitors a running
DSP job to calculate true processing rates in order to determine
the proportional processing relationships among operators [13]. By
scaling in response to the workload, DS2 can accurately adjust the
parallelism of operators. However, DS2 assumes data skew is not
present and that workloads remain stable during scaling operations.
It also requires manual implementation of the true processing rate
metric, as this metric is not readily available in all DSP systems.

AuTraScale [24] utilizes Bayesian Optimization for operator au-
toscaling to minimize latency while maximizing total throughput.
Like DS2, it uses the true processing rates to find the minimum
parallelism needed to process a static workload. When the system is
over-provisioned or latency exceeds a target threshold, AuTraScale
reactively rescales. Although designed to find the optimal configu-
ration for a static workload, AuTraScale includes a transfer learning
algorithm to more quickly find optimal configurations if the input
rate would change. However, the authors do not evaluate their
approach on a dynamic workload and assume no data skew.

Caladrius [14] is a performance modeling tool that uses TSF to
anticipate future workloads and predict the throughput and CPU
usage for both the current and other scale-outs to enable proactive
scaling decisions. Like DS2, Caladrius models the operator topol-
ogy and relationship between operator input and output rates. The
authors make the important observation that throughput rates and
CPU utilization are linearly related. Therefore, by predicting the
throughput, the authors can predict CPU utilization. Daedaulus
is heavily influenced by this and uses the linear relationship be-
tween throughput and CPU to estimate capacity. However, whereas
Daedalus uses a CPU-throughput regression model to estimate
capacity, Caladrius relies heavily on backpressure to observe maxi-
mum throughput rates, which is an unreliable metric in presence
of data skew or slow nodes.

Relatively few DSP autoscaling approaches incorporate the over-
head cost of scaling decisions [21]. Phoebe chooses scale-outs that
can guarantee a target recovery time [10]. Martin et al. [15] pro-
vide a self-adaptive approach for a DSP system to adjust its fault
tolerance mechanism during runtime. While not an autoscaling ap-
proach, their approach allows users to provide high level constraints
such as a target recovery time. Lastly, Borkowski, Hochreiner, and
Schulte [2] note the downtime caused by autoscaling and aim to
reduce the number of rescaling actions for a threshold-based au-
toscaler. Their approach uses an extended Kalman filter to estimate
trends in the workload, similar to ARIMA. By ignoring short-term
variations in the workload, they are able to reduce the number of
scaling decisions, thereby reducing overall recovery time over the
course of the DSP job.
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Gontarska et al. [11] compare commonly used TSF methods
to assess their use in predicting DSP workloads. They compare
seven methods, including ARIMA and two deep learning methods.
Although deep learning methods produced the best predictions
overall, they also required much longer training times. The ARIMA
model, on the other hand, was trained faster and yielded good
results for making short-term predictions in the tested 5 and 15
minute forecasts. Caladrius and Phoebe both use TSF to predict
future workloads [10, 14]. Caladrius uses Facebook’s Prophet while
Phoebe also uses ARIMA.

3 APPROACH
In this paper, the challenges of autoscaling a DSP system for per-
formance optimization are approached from the perspective of
self-adaptation [5, 7, 16, 17]. Using self-adaptive autoscaling en-
ables a DSP system to monitor itself and make scaling decisions
to meet DSP requirements and adaptation goals while processing
dynamic workloads. This paper proposes a self-adaptive DSP au-
toscaler called Daedalus. Its main objectives are to ensure enough
resources are allocated to process the incoming workload while
minimizing resource usage, meet QoS requirements by targeting
a recovery time, and providing a stable level of service by enact-
ing long-lived scaling decisions over the course of a long-running
DSP job. On a high level, Daedalus uses the self-adaptive MAPE-K
control loop to continuously monitor a running DSP job by col-
lecting metrics stored in a time series database. It analyzes the
data, builds models to estimate the capacity across all potential
scale-outs, and predicts the future workload using TSF. Using both
the historical and predicted workload, it decides if a scaling action
is necessary and determines how to scale based on the described
adaptation goals and estimated recovery time. Lastly, it executes a
scaling action if necessary. A high-level overview of the approach,
its architecture, and components can be seen in Figure 1.

In order to determine when and how to scale, Daedalus builds
capacity models at the worker level using throughput and CPU uti-
lization metrics. These metrics are typically already exposed by DSP
systems so that their performance can be monitored. Monitoring
provides accurate, up-to-date insights for a job running in a cloud
environment. Previous observations, including a series of profiling
runs conducted at the beginning of a deployment as in [10], have
the potential to become less reliable over time. Since the underlying
resources or placement of operators can change over the course of
a long-running job, continually collecting metrics and monitoring
the system performance is prudent.

Developing separate self-adaptive autoscaling solutions for each
individual DSP system and job is complex and time-intensive. There-
fore, Daedalus aims to provide a general solution for containerized
DSP systems by requiring only a few commonly exposed metrics. In
this paper, Daedalus is tested with Flink and Kafka Streams, though
it is applicable to other systems as well.

Our approach makes the assumption that the DSP system is
running in a cloud environment where homogeneous resources can
be elastically scaled. However, it is also taken into account that these
homogeneous resources may not provide identical performance by
monitoring each worker individually. This approach also relies on
a few metrics being available. These include the throughput, CPU

Daedalus

Cloud Execution Environment

Scaling configurations

Adaptation
Goals

Monitor

Analyze Plan

Execute

Knowledge

Metrics
Distributed Stream
Processing System

Time Series
Database

Collect metrics

Figure 1: Daedalus architecture overview

utilization, and consumer lag for each worker, collected from the
DSP system, and the workload, collected from the data source.

3.1 Performance Modeling
At the core of our approach is a capacity model, which provides a
basis for all scaling decisions. It estimates the maximum number of
tuples that can be processed per second at a given scale-out. Know-
ing this information along with the current and future workload
informs if scaling is necessary and if so, how to scale. The capacity
model is based on the observable relationship between metrics,
especially, throughput and CPU utilization.

Figure 2 shows the relationship between the incoming workload,
CPU utilization, throughput, and end-to-end latency at a fixed
parallelism. The metrics were taken from a running job and are
therefore not influenced by a warm-up period. As long as sufficient
resources are available, the throughput of the DSP system will
match the workload. When there are no longer resources to keep
up with the rate of incoming tuples, the DSP system reaches its
maximum capacity, and CPU utilization is 100%. In this example,
throughput is capped at 60,000 tuples per second. As can be seen,
the relationship between throughput and CPU utilization is linear.

End-to-end latency is impacted by several factors and is often
job dependent. In jobs that use windowing, for example, end-to-end
latency can increase when not enough tuples exist to trigger the
end of the window. In Figure 2d, the latency is slightly influenced by
the workload while processing capacity exists. However, this effect
is minor when compared to the sharp increase when the workload
exceeds maximum processing capacity. When the system cannot
keep up with the incoming workload, either due to insufficient
resources or downtime, tuples accumulate and end-to-end latency
increases. It is therefore a main objective of Daedalus to ensure that
sufficient capacity exists to process the incoming workload and to
minimize downtime in order to limit spikes in end-to-end latency.

Much existing research on DSP autoscaling assumes that data
is split equally among parallel operators, i.e. that data skew is not
present. However, ignoring data skew can be a major weakness in
these approaches as it is often present in reality.
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Figure 2: Relationships between metrics
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Figure 3: Maximum throughput at a parallelism of 12 show-
ing data skew and an average CPU utilization of 0.8.

Figure 3 shows metrics from a DSP job with stateful operators
processing tuples at maximum capacity with a parallelism of 12. In
this example, the data is generated randomly across 100 keys, and
each worker reads from its own Kafka partition. In theory, the keys
could be almost evenly distributed among parallel operators, with
each worker handling eight or nine keys. However, as can be seen
in Figure 3a and Figure 3b, data skew is apparent and the workers
display a spectrum of throughput and CPU utilization. Although a
worker using only 75% CPU is theoretically capable of processing
more tuples, it cannot receive more tuples due to how the keys are
distributed. Its maximum capacity is thus capped at its throughput

at 75% CPU utilization. As seen in Figure 4, data skew across work-
ers remains proportional at different levels of throughput and is
most prominent at high CPU utilization. Following these observa-
tions, in general, the maximum capacity of a worker is limited by
its proportion to the worker with the highest CPU utilization.
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Figure 4: Proportional data skew over CPU utilization

A worker’s theoretical maximum capacity corresponds to how
many tuples it can process at 100% CPU utilization. The calculation

Capacity =
Throughput

CPU Utilization
yields a quick estimation of a worker’s maximum capacity. How-
ever, as can be seen in Figure 5a, the accuracy of this estimation
is highly dependent on the level of CPU utilization. Although this
simple capacity calculation provides a reasonable estimation when
CPU utilization is greater than 70%, and the maximum capacity
estimation at a given CPU utilization is higher than the observed
throughput, a more accurate capacity estimation is needed to in-
form stable scaling decisions. Given the linear relationship between
throughput and CPU utilization, seen in Figure 5b, linear regression
lends itself well to this task. Because only one explanatory variable
is required to predict a worker’s maximum throughput, it is pos-
sible to build a simple regression model using an efficient online
analytical calculation. Using throughput as the dependent variable
𝑦 and CPU utilization as the independent variable 𝑥 , the throughput
at a given CPU utilization can be predicted using the simple linear
regression formula 𝑦 = 𝛼 + 𝛽𝑥 , where 𝛼 is the y-intercept and 𝛽 is
the slope. The slope can be calculated by dividing the covariance
of CPU (𝑋 ) and throughput (𝑌 ) observations by the variance of
CPU observations. The y-intercept is given by subtracting the slope
multiplied by the mean of all CPU observations (𝑋 ) from the mean
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Figure 5: Capacity over CPU utilization
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of all throughput observations (𝑌 ). Put together, this yields the fol-
lowing equation to predict the capacity at a desired CPU utilization
CPUdesired:

Capacity = 𝑌 − cov(𝑋,𝑌 )
var(𝑋 ) · 𝑋 +

cov(𝑋,𝑌 )
var(𝑋 ) · CPUdesired

To update such a model with new observations, the running co-
variance, variance, and means can be computed using an adaptation
of Welford’s online algorithm for calculating variance [22]. The
algorithm passes over new observations once, updating the count of
observations and the delta for the new mean CPU and throughput
observations. These values are then used to update the variance,
covariance, CPU, and throughput means. Welford’s algorithm is
numerically stable and all required values can be computed on one
pass of the data, meaning that there is no need to save observations,
which could require much storage space over the course of time.

A linear regression model is computed for each worker individ-
ually to increase the accuracy of the overall capacity estimation
at a given scale-out. To find the capacity for each worker while
accounting for data skew, the linear regression model can predict
the value at the expected maximum CPU utilization. As described
previously, the expected maximum CPU utilization of a worker is
proportional to the worker with the maximum CPU.

Daedalus differentiates capacity estimations at seen and unseen
scale-outs. The capacity at the current scale-out is calculated by
summing the estimated capacity across all workers. The estimation
for a current scale-out can accurately assess how data is distributed
among workers. The capacity at other scale-outs is estimated us-
ing the average capacity multiplied by the scale-out. While this
can not guarantee how data will be distributed at that scale-out,
it provides an adequate heuristic. When possible, Daedalus uses
previously observed capacity estimations over purely predicted
estimates for seen scale-outs. Ideally, the regression models would
have a range of CPU observations in order to be more robust and
accurate. However, due to the low variance present in the CPU-
throughput regression (as seen in Figure 5b), relatively few data
points are needed to accurately estimate capacity. From experimen-
tation, the regression model is able to accurately estimate capacity
in as little as 60 seconds, the time of a single loop. This observation
holds across different jobs and various scale-outs.

3.2 Scaling Decisions
Central to any autoscaling approach is how it makes scaling de-
cisions. While reactive approaches benefit from being able to use
real observations to inform scaling decisions, the point at which
this data is available can lead to QoS violations until an acceptable
scale-out is deployed. On the other hand, proactive approaches
need to deal with the uncertainty of predicting the future. Daedalus
uses a hybrid of reactive and proactive approaches, using both ob-
served data and future forecasts in order to reactively scale in and
proactively scale out.

In a reactive manner, Daedalus uses historical workload data
since the last iteration of the MAPE-K loop to find the minimum
scale-out needed to process the workload. This helps to offset un-
certainty from inaccurate future predictions, such as when future

forecasts are lower than the actual workload. Using TSF the work-
load can be anticipated to enable proactive scaling decisions. TSF
grants the ability to scale out before capacity is exceeded, helping
to reduce QoS violations and minimize end-to-end latency. It also
enables making long-lived scaling decisions, as a scale-out can be
chosen that can handle the current and future workload. It also al-
lows to more accurately calculate recovery time, instead of needing
to assume that the workload will remain constant.

In each iteration of the MAPE-K loop, the workload since the
last iteration is collected, capacities are estimated for all scale-outs,
and the future workload is predicted. With this information, it can
be determined if rescaling is necessary and if so, how to rescale.

The pseudocode for determining the appropriate scale-out is
shown in Algorithm 1. Because Daedalus aims to make long-lived
scaling decisions, the algorithm first checks if rescaling is abso-
lutely necessary in case a rescale recently occurred. If a rescale was
done in the last ten minutes, it checks that the current capacity
can handle the average observed workload and maximum future
workload until the next loop iteration. The average workload is
used instead of the maximum in order to remove noise from the
actual workload, such as any spikes that may have occurred. In
case both of these conditions are true, the algorithm returns and
no rescaling is necessary.

Algorithm 1: An algorithm to determine the scale-out

Data: C := Capacities, W := Workload, TSF
if time since last rescale < 600s then

if C𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > W𝑎𝑣𝑔 and TSF𝑚𝑎𝑥 until next loop then
return current parallelism

for 𝑖 = 1 to MaxScaleout do
if C𝑖 > W𝑎𝑣𝑔 then

𝑅𝑇𝑖 ← predict_recovery_time(i)

if 𝑅𝑇𝑖 > 𝑅𝑇𝑡𝑎𝑟𝑔𝑒𝑡 then
continue

if 𝐶𝑖 < TSF𝑚𝑎𝑥 until 𝑅𝑇𝑖 then
continue

if i = current parallelism then
return i

if i < current parallelism and𝐶𝑖 < consumer lag then
continue

if C𝑖 > TSF𝑚𝑎𝑥 then
return i

return MaxScaleout

The algorithm then iterates over all possible scale-outs to find
the lowest number of workers that can process the incoming work-
load for the next 15 minutes and ensures that recovery is possible
within a target time. In the first step, it is checked that the scale-out
is capable of processing the average observed workload, similar to
reactive autoscaling approaches. This prevents assessing the valid-
ity of smaller scale-outs that cannot handle the incoming workload,
which would produce an inaccurate scaling decision.

Next, the recovery time is predicted for the scale-out. The recov-
ery time estimates the time needed to process accumulated tuples
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while the system is down until it can catch up to a normal state.
This handles cases for scaling in and out (when the examined scale-
out is different from the current scale-out) as well as failure (when
the scale-out is the same as the current scale-out). If the estimated
recovery time is greater than the specified target recovery time, the
currently investigated scale-out is invalid and the next scale-out
is examined. It is also checked that the scale-out can handle the
future workload while recovering. Otherwise, a rescale would be
necessary while the system is recovering. If this is the case, the
next scale-out is examined.

At this point in the algorithm, the examined scale-out is valid. In
case the current parallelism is the same as the examined scale-out,
the algorithm returns and no rescaling is necessary. Otherwise, the
examined scale-out requires scaling in or out. To prevent scaling in
too early, the consumer lag is investigated. In case the consumer lag
is larger than the examined capacity, it is a good indication that the
system is recovering or potentially overloaded. Even though the
target recovery time would be met when scaling in, it is beneficial
to wait until the system has caught up to provide better end-to-end
latencies. Therefore, the next scale-out is examined, potentially
pushing the decision to scale in until the next iteration.

Lastly, to ensure that the scale-out will be long-lived, it is checked
that the capacity is greater than the maximum of the full TSF pre-
diction of 15 minutes. Doing so also helps to minimize the need to
scale again after 10 minutes, making the first check of the algorithm
a precautionary measure. After a scaling action has been initiated,
the system is given three minutes to adjust to the new scale-out
before another scaling action can occur. This allows the system to
stabilize and helps prevent flapping, where autoscaling alternates
between scaling in and out. Including a grace period is a common
practice. For example, Kubernetes Horizontal Pod Autoscaler (HPA)
uses a default stabilization time of five minutes. Since Daedalus
anticipates the future workload and scaling decisions are designed
to be long-lived, this arbitrary threshold should have little impact.
However, because no scaling actions can be taken in this period, it
increases the need to generate accurate scaling decisions.

3.3 Time Series Forecasting
TSF is used to anticipate future workloads and enables proactive
scaling decisions that help to make long-lived scaling decisions, re-
duce the overhead cost of rescaling, and minimize latencies. Despite
DSP workloads being dynamic and therefore difficult to predict,
TSF has been shown to improve autoscaling decisions to reduce
resource consumption and better meet QoS requirements [10, 11].
Multiple TSF methods exist including ARIMA, Holt-Winters, FB
Prophet, and deep learning methods. TSF models often need to
be configured themselves, which can be challenging and require
expert knowledge. Fortunately, models such as auto-ARIMA ex-
ist that automatically find optimal parameters based on provided
workload data. Using the pmdarima1 library, an initial model is
trained with the available workload, and the model is updated with
the latest workload observations in every iteration of the MAPE-K
loop. A new forecast is generated in each loop to predict the next
15 minutes of the workload at second-level granularity.

1https://alkaline-ml.com/pmdarima/index.html, Accessed: March 2024

Though ARIMA has been extensively evaluated and has been
found to produce good forecasts for up to 15 minutes [11], it is
essential to evaluate the quality of the forecasts and include a mech-
anism to retrain models that consistently deliver poor predictions.
In each iteration of the MAPE-K loop, the latest workload metrics
are collected and a new forecast is generated. At this point, it is
possible to compare the previous forecast with the latest workload
observations. To gain an insight into the overall accuracy of the
forecast, the weighted absolute percentage error (WAPE) is used,
which is calculated by weighting the error between the actual val-
ues and forecasts with the sum of the actual values over all units of
time. A lower WAPE indicates a better forecast. In case the previous
forecast was inaccurate with respect to the workload, it is possible
that the next forecast will be similarly inaccurate. If this happens,
the ARIMA forecast is replaced with a forecast that applies a simple
regression on the workload. This heuristic uses the slope from the
latest workload observations and projects the workload 15 minutes
into the future. This linear approximation only provides a fallback
forecast when the previous TSF prediction was poor. If the TSF
predictions are consistently poor for 15 consecutive iterations, the
TSF model is retrained in a background thread to not interrupt the
execution of the MAPE-K loop. Once training is completed, the
newly trained model replaces the existing one.

3.4 Recovery Time
Recovery time is a vital, yet often overlooked, aspect of autoscaling
DSP systems. DSP systems must be fault tolerant and continue to
operate despite failures that are likely to occur over the course of a
long-running job. In addition to failures, when rescaling, processing
must often be stopped temporarily in order to start new workers
and recompute data parallelism among stateful operators. To ensure
exactly-once processing, the DSP system must reprocess tuples that
occurred after the last completed checkpoint as well as process
tuples that arrived while the system was down. In addition to this
accumulated backlog, tuples will continue to arrivewhile the system
is catching up. As depicted in Figure 6, recovery time describes the
time from when processing stops, due to rescaling or failure, until
the system has caught up and processed the accumulated backlog.
Only then can normal processing resume.

Recovery time has a direct impact on end-to-end latency. While
the DSP system is down tuples cannot be processed, increasing
their end-to-end latency. While the system is recovering, the accu-
mulated backlog must be processed before the tuples that continue
to arrive can be processed, creating a cascading effect. Therefore,
by incorporating a target recovery time into autoscaling decisions,
latency can be better minimized by avoiding long recovery times.

Recovery time can be predicted by calculating the accumulated
backlog and estimating how long it will take to process the backlog
in addition to the incoming workload using the extra processing
capacity of the targeted scale-out.

The accumulated backlog of tuples is given by the tuples that
need to be reprocessed since the last completed checkpoint and
tuples that arrive while the system is down. For calculating the
number of tuples since the last checkpoint, the worst case is as-
sumed, for example, 10 seconds for a 10 second checkpoint interval.
The number of tuples to be reprocessed can therefore be calculated
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Figure 6: Predicting recovery time

by taking the number of tuples that occurred in the last checkpoint
interval seconds using the historical workload. The worst case is
assumed in order to provide a comparative baseline regardless of
when the last checkpoint actually occurred with respect to the pre-
diction. Failures and rescaling can occur at any time. Assuming the
worst case also results in a larger recovery time prediction than
would be expected on average, which provides a buffer to better
achieve the target recovery time.

To estimate the number of tuples that arrive while the system is
down, it is necessary to anticipate the time the system is down and
use the workload forecast. The anticipated downtime is initially
set to 30 seconds for scaling out and 15 seconds for scaling in.
However, this value can be adaptively updated by monitoring the
actual recovery time, discussed in the next section. This generally
yields more accurate recovery time predictions over time.

After the DSP system restarts, it can begin processing the accu-
mulated backlog using themaximum capacity of the target scale-out.
While doing so, tuples will continue to arrive. Though the system
will process the backlog first, when determining the point at which
the system is caught up, the order tuples are processed is irrelevant.
The end of the recovery time can thus be determined using the ex-
tra capacity, forecast, and accumulated backlog. The extra capacity
available at the target scale-out can be obtained by subtracting the
forecast from the capacity. For each future step, it is then checked
if the cumulative extra capacity exceeds the accumulated backlog.
When this is the case, the system has recovered, and the predicted
recovery time can be returned.

3.5 Monitoring with Anomaly Detection
To improve the accuracy of recovery time predictions, the actual
recovery time after a scaling action is observed using statistical
anomaly detection. When monitoring recovery time, the goal is to
identify when processing returns back to normal after rescaling.
Anomaly detection is therefore a fitting paradigm, as it provides
a means for classifying normal and abnormal behavior. Because
the objective is to find points when the system’s throughput devi-
ates from the incoming workload, it is sufficient to use statistical
anomaly detection on the difference between the workload and
throughput. Statistical anomaly detection classifies observations as
anomalous if the distance of an observation to the mean is above
a certain threshold. Daedalus uses the threshold of one standard
deviation. The anomaly detection model keeps track of the job’s
running mean and variance of the difference between workload and
throughput usingWelford’s previously mentioned online algorithm.
After a rescaling action, Daedalus checks for anomalies until the

system has recovered. Because it takes time for a system to recover,
the anomaly detection monitoring is run in a background thread to
prevent interfering with the MAPE-K loop.

3.6 Implementation
Daedalus uses the proven MAPE-K control loop for self-adaptive
systems to provide structured execution. The monitor, analyze, plan,
and execute phases are structured as follows:
• Monitor: Daedalus collects metrics from Prometheus. From
the DSP system, it collects the throughput for each worker
measured by the number of records consumed by the source
operator, CPU utilization of each worker using a moving
average of one minute to reduce noise, and the overall con-
sumer lag representing available, but not processed, tuples.
For convenience, the job up-time and current parallelism are
also collected. From the data source, the incoming workload
rate is collected and measured in tuples per second.
• Analyze: The maximum capacity of each worker is calcu-
lated using CPU-throughput regression models, and the ca-
pacity for each scale-out is estimated. The ARIMA TSF and
anomaly detection models are updated, and the future work-
load is predicted using the TSF model.
• Plan: The optimal scale-out is determined using the algo-
rithm described in Algorithm 1. The chosen scale-out must
be able to process the incoming workload and recover within
the target recovery time. If rescaling is necessary, the scale-
out must also be able to process the predicted workload.
• Execute: Any planned scaling action is executed by the Ku-
bernetes client. The actual recovery time is then monitored
with anomaly detection in a background thread.
• Knowledge: Knowledge represents the shared information
between models. This is the collected metrics, capacity mod-
els, forecasts, anomaly detection, scaling actions, and recov-
ery time information.

The MAPE-K loop runs every 60 seconds and takes on average
one second to execute because of its low computational complexity.

4 EVALUATION
To demonstrate the effectiveness of Daedalus, it is evaluated with
three DSP jobs and two DSP systems, Flink and Kafka Streams.
The next sections describe the DSP jobs, the comparison systems,
experimental setup, and results. This chapter concludes with a
discussion that evaluates the overall performance of Daedalus.

4.1 DSP Jobs
Daedalus is evaluated with three representative DSP jobs: Word-
Count, Yahoo Streaming Benchmark, and Traffic Monitoring. All
relevant code can be found in the Daedalus GitHub repository2.

4.1.1 WordCount. WordCount is a popular DSP job that is readily
available for different DSP systems, as it frequently serves as the
exemplary tutorial to illustrate stream processing. Because of its
simplicity and ubiquity, WordCount is often used to compare DSP
systems [1]. WordCount computes a running total of word occur-
rences in a given text corpus. It takes lines of text as input, splits

2https://github.com/dos-group/daedalus
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the line into words, and returns each word along with its cumula-
tive word count. In order to test the job with dynamic workloads,
WordCount has been modified to read input from a Kafka source.
The output of words and their count are written to a console sink.

4.1.2 Yahoo Streaming Benchmark. The Yahoo Streaming Bench-
mark was one of the first benchmarks to evaluate major modern
DSP systems including Apache Storm, Apache Spark, and Apache
Flink [6]. Though created in 2016, it continues to be used to com-
pare DSP systems and the pipeline serves as a baseline for further
benchmarking jobs [20]. The pipeline features representative op-
erations of stream processing jobs such as filtering, windowing,
aggregation, and joining data with a database. The job is an ad-
vertising analytics use case that consists of deserializing JSON ad
events from a Kafka source, filtering ads based on an event type
and removing unnecessary fields, matching the ad to a campaign ID
stored in Redis, and counting the number of times an ad was viewed
within a ten second tumbling window. In the original benchmark,
read and write operations to Redis became a bottleneck when oper-
ating at larger scales. For this reason, the job has been modified so
that campaign IDs from Redis are cached in the DSP job and the
resulting ad counts are written to a Kafka sink instead of Redis.

4.1.3 Traffic Monitoring. The Traffic Monitoring job is an IoT use
case that calculates the average speed of moving vehicles in a partic-
ular radius adapted from the IoT Vehicles Experiment [9]. The job
reads JSON vehicle events from a Kafka source, filters out events
not contained within a radius of interest, calculates the average
speed of vehicles in a ten second tumbling window, and enriches
the vehicle information before outputting to a Kafka sink.

4.2 Workload Generation
In order to test the effect of dynamic workloads on autoscaling
approaches, each job is run with a generator that produces a con-
figurable amount of tuples per second to a Kafka topic. The data
generators use the Akka actor system to simulate tuples in a highly
scalable way. Generators are run inside the Kubernetes cluster to
increase scalability and reduce the impact of network latency.

Each job is tested with a representative workload. Given its arti-
ficial nature, the workload for the WordCount job is a sine wave
with two periods. The Yahoo Streaming Benchmark workload is
taken from realistic online advertising click-through rate data3.
Lastly, the traffic monitoring workload was generated based on
the TAPASCologne scenario and SUMO to simulate realistic traffic
patterns in the city of Berlin [9]. Each job was benchmarked to
determine the maximum throughput achievable with 12 workers.
All workloads have been scaled so that the maximum number of
tuples is less than this throughput in order to more fairly compare
autoscaling approaches to a static scale-out with 12 workers. Addi-
tionally, workloads are scaled to a duration of 6 hours. With these
parameters, the workloads allow for a range of scaling decisions to
test autoscaling approaches.

3https://www.kaggle.com/competitions/avazu-ctr-prediction, Accessed: March
2024

4.3 Comparison Systems
In order to demonstrate its usefulness, Daedalus is compared to a
static deployment capable of processing the peak workload, HPA
native to Kubernetes, and Phoebe, a recent state-of-the-art approach
conceptually comparable to Daedalus.

4.3.1 Static Deployment. To serve as a baseline, a static deployment
with 12 workers is deployed. As previously stated, this scale-out is
capable of processing the peak workload for each job. It can there-
fore indicate if autoscaling approaches over-provision resources.
While it is likely to have the highest resource consumption, it should
also provide stable latencies because it will not rescale. It there-
fore provides a baseline latency comparison as well as showing the
potential reduction of resource usage achieved through autoscaling.

4.3.2 Horizontal Pod Autoscaler. Kubernetes provides a built-in
method for automatically scaling resources called a Horizontal Pod
Autoscaler (HPA). A HPA monitors one or more metrics, such as
CPU utilization or memory, and horizontally scales the target de-
ployment in accordance with a user-defined policy. By default, the
HPA monitors whether metrics violate the defined thresholds every
15 seconds. The HPA ignores instances that have not started yet
in its calculation and waits for a default of five minutes between
performing scaling actions to avoid flapping. While HPAs are com-
monly used and intuitive to understand, choosing a reasonable
threshold to fairly compare with Daedalus is not simple. In line
with Daedalus’s objectives, the DSP system should target a high uti-
lization to process the incoming workload with minimal resources
while leaving extra processing capacity to recover from failure or
rescaling actions. As shown in Figure 3, a system operating at full
capacity does not necessarily use 100% CPU. Though Daedalus
does not use CPU utilization thresholds to trigger scaling decisions,
most scaling decisions occurred between 80% and 85% when testing
with Flink. Therefore, two HPA deployments are tested. One target-
ing 80% utilization, and one targeting 85% utilization. With Kafka
Streams, the HPA deployments target 60% and 80% utilization.

4.3.3 Phoebe. Phoebe is an approach fairly similar to Daedalus,
and unlike many other DSP autoscaling approaches, its source code
is publicly available4. Phoebe uses initial profiling runs to build
QoS models and TSF to better meet QoS requirements. Similarly to
Daedalus, it is capable of choosing worker parallelism in accordance
with a target recovery time. Unlike Daedalus though, Phoebe ex-
plicitly models and accounts for latency. It also injects failures into
profiling runs, measures the resulting recovery times, and incor-
porates them into its QoS models. Phoebe was implemented using
Flink and also evaluated using the Yahoo Streaming Benchmark.

4.4 Experimental Setup
Experiments were run on a five-node Kubernetes cluster with ample
CPU and memory, totaling 160 cores and 640 GB RAM. Details can
be seen in Table 1. The experiments make use of Apache Kafka as a
data source and sink. Kafka topics have been created with the same
number of partitions as the maximum scale-out so that each worker
can consume from its own partition. Prometheus is used as a time
series database and periodically scrapes metrics from Kafka and

4https://github.com/dos-group/phoebe, Accessed: March 2024
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Resource Details

OS Ubuntu 20.04.3
CPU AMD64 Processor, 32 cores, 2.8GHz

Memory 128 GB RAM
Storage 3TB RAID0 (3x1TB, Linux software RAID)

Network 10 GBit Ethernet NIC
Software Kubernetes v1.24.3, Docker v19.3, Java v1.11,

Flink v1.16.0, Kafka v3.2, ZooKeeper v3.8,
HDFS v2.8, Redis v6.2.7, Prometheus v2.39.1
Table 1: Cluster specifications

the target DSP system. Redis is used as a data store for the Yahoo
Streaming Benchmark. Lastly, HDFS is used by Flink for saving
checkpoints to storage.

All approaches are deployed at the same time and read from the
same Kafka source topic. For Flink deployments, each approach is
deployed in application mode, ensuring resource isolation as there
is no shared JobManager. The Flink deployments also make use of
Flink’s recently introduced reactive-mode,5 a built-in method that
allows elastic scaling. With reactive mode, Flink will automatically
scale to the number of desired replicas and rescale the job from
the last completed checkpoint. Defining the desired number of
replicas is done using Daedalus or HPA. For both Flink and Kafka
jobs, a custom metric was added to measure end-to-end latency.
This metric measures the time from tuple generation until the end
of processing, ignoring windowing periods. The 95th percentile
latency is reported in the results. Across all our setups, we provided
workers with significant memory access to preemptively ensure
that memory constraints did not become a bottleneck. This was
validated through empirical observations.

Approaches are evaluated by the quality of their scaling deci-
sions. All jobs use exactly-once processing semantics and the DSP
systems process all tuples. Therefore, end-to-end latency is a more
suitable metric to indicate the processing performance. End-to-
end latencies are reported by an empirical cumulative distribution
function. Average latencies are also reported, though they can be
misleading, since peaks of high latency during rescaling can skew
an average upwards. While some papers exclude rescaling down-
time in result calculations, this is misleading as recovery time is a
crucial factor. Therefore, no metrics are excluded in the results.

4.5 Flink Experiment Results
This section contains the results for the Wordcount, Yahoo Stream-
ing Benchmark, and TrafficMonitoring experiments run using Flink
as the target DSP system. For these experiments, Daedalus used a
recovery time of 600 seconds. Each experiment was executed five
times to ensure consistency of the results. As the form of presen-
tation of the results is repeated, we briefly explain the individual
subplots on the basis of Figure 7: Figure 7a shows the workload over
time; Figure 7b illustrates the number of workers over time as a
result of the respective scaling method; Figure 7c presents the cumu-
lative probability of observed latencies, which allows for statements

5https://flink.apache.org/2021/05/06/reactive-mode.html, Accessed: March 2024
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Figure 7: Flink WordCount results

such as "more than 80% of all latency values where smaller or equal
103ms for Daedalus"; Lastly, the total resource usage, normalized
with respect to the static baseline, is displayed in Figure 7d.

4.5.1 WordCount Results. The results for the WordCount job are
shown in Figure 7. Despite the job’s simplicity, WordCount is highly
susceptible to data skew, making it challenging to accurately esti-
mate capacity for unseen workloads. In practice, this also means
that the maximum observed capacity of workers at a specific scale-
out can vary after rescaling to that scale-out again later in the job.
Nevertheless, all autoscaling approaches were able to match the
resources to the workload and process tuples in a timely manner.
In general, the autoscaling approaches scale out around the same
time, but Daedalus is able to scale in faster than the HPA methods.

As can be seen in Figure 7c, generally, all approaches perform
very similarly with most latency measurements falling between
102ms and 103ms. Average latencies over the span of the job are
as follows: Daedalus with 1,171 ms, HPA 80 with 1,791 ms, HPA
85 with 961 ms, and Static 12 with 1,408 ms. Notably, the static
scale-out has proportionally slightly higher latencies. As found in
previous research [24] and shown in Figure 2d, over-provisioning
resources does not guarantee optimal latencies. Proportionally, the
autoscaling approach latencies are quite similar. The larger increase
in latencies above the 95% mark indicates when the systems are
temporarily unavailable due to autoscaling.

When comparing resource utilization, Daedalus uses signifi-
cantly fewer resources. On average, Daedalus used 5.4 workers,
HPA 80 used 7.8, HPA 85 used 7.0, and the static scale-out natu-
rally used 12. Overall, Daedalus used 55% less resources than the
static scale-out, 31% less resources than the HPA 80, and 23% less
resources than the HPA 85. So with fewer resources, Daedalus was
able to achieve comparable latencies to HPA.

4.5.2 Yahoo Streaming Benchmark Results. The results for the Ya-
hoo Streaming Benchmark are shown in Figure 8. Here, the HPA 80
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Figure 8: Yahoo Streaming Benchmark results

and 85 deployments scale very similarly. As can be seen in Figure 8b,
they also allocate more workers than is necessary for a significant
portion of the experiment. Both HPA deployments scale over 12
when the workload is around half of its maximum. Daedalus also
over-provisions resources during the highest peak due to TSF pre-
dictions that the workload will continue to rapidly increase. As
with the WordCount experiment, Daedalus scales in more quickly.

As seen in Figure 8c, Daedalus was proportionally able to achieve
the lowest latencies while having slightly more downtime than the
HPA deployments. Overall, average latencies for all approaches
were similar, being within 1.5 seconds of each other. On average,
Daedalus had 9,106 ms, HPA 80 had 7,862 ms, HPA 85 had 8,042 ms,
and Static 12 had 7,576 ms. Also for this experiment, the latter did
not proportionally achieve lower latencies. The highest latencies
for the static scale-out come from when the workload is lowest.

On average, Daedalus used 5.5 workers, HPA 80 used 10, HPA
85 used 9.6, and the static scale-out naturally used 12. Daedalus
used 54% less resources than the static scale-out, 45% less resources
than the HPA 80, and 43% less resources than the HPA 85. Again,
Daedalus was able to process all tuples with reasonable latencies
using minimal resources.

4.5.3 Traffic Monitoring Results. The results of the Traffic Monitor-
ing experiment can be seen in Figure 9. The major challenge of this
workload comes from two large spikes where the workload rapidly
increases and decreases. As with the Yahoo Streaming Benchmark,
the HPA methods scaled similarly and allocated more workers than
necessary. Again, Daedalus was able to scale to match the workload.
It was able to react more quickly to the falling workload, scaling in
faster than both the HPA approaches.

As seen in Figure 9c, for the majority of the job, Daedalus and
the HPA methods had very similar proportional latencies. All au-
toscaling approaches had lower average latencies than the static
scale-out: Daedalus with 6,176 ms, HPA 80 with 5,566 ms, HPA
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Figure 9: Traffic Monitoring results

85 with 5,671 ms, and Static 12 with 8,778 ms. As with the Yahoo
Streaming Benchmark, the lowest latencies for the static scale-out
occurred during the highest peaks of the workload.

Daedalus also used fewer resources than the comparison ap-
proaches. On average, Daedalus used 3.5 workers, HPA 80 used
5.9, HPA 85 used 5.6, and the static scale-out naturally used 12.
Percentually, Daedalus used 71% less resources than the static scale-
out, 41% less resources than the HPA 80, and 38% less resources
than the HPA 85. For all Flink experiments, Daedalus was able to
achieve similar latencies with fewer resources.

4.6 Kafka Streams Experiment Results
To show that Daedalus is a general approach that can work with
any DSP framework, it is tested with Kafka Streams using the
WordCount job. The other two DSP jobs used so far, namely Yahoo
Streaming Benchmark and Traffic Monitoring, do not qualify for
this comparison as no implementations for Kafka Streams exist.
The results are shown in Figure 10. As with the Flink WordCount
job, the job is susceptible to data skew and the maximum capacity at
a given parallelism is highly dependent on how data is split among
workers. This is especially apparent when observing the peaks
of the workload in Figure 10b. Unlike in the Flink experiments,
HPA 80 was not able to process tuples in a timely manner and
under-provisioned resources. This is also evident in the empirical
cumulative distribution function.

The static workload had an almost constant latency and was
able to achieve the best overall latencies with an average of 8,343
ms. Daedalus performed next best with an average of 10,566 ms.
HPA 60 was slightly worse with an average latency of 15,453 ms.
Lastly, the HPA 80, which was not able to match the workload had
an average of 102,153 ms.

Compared to the deployments that were able to process the
workload, Daedalus used fewer resources. On average, Daedalus
used 5.2 workers, HPA 60 used 5.8, HPA 80 used 4, and the static
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Figure 10: Kafka Streams WordCount results
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Figure 11: Comparison with Phoebe

scale-out naturally used 12. Daedalus used 57% less resources than
the static scale-out and 11% less resources than the HPA 60. From
these results, one can infer that Daedalus is a generally applicable
solution. With Kafka Streams, it was able to provide a stable level
of service using minimal resources.

4.7 Comparison with Phoebe
The results of comparing Daedalus to Phoebe using the Yahoo
Streaming Benchmark can be seen in Figure 11. For this experi-
ment, a sine workload was chosen to compare Phoebe’s scaling
decisions to those in its paper. In addition, the recovery time target

of 600 seconds was chosen, since lower recovery time targets (e.g.
180 seconds as in the original publication) caused Phoebe to stay
primarily at the maximum scale-out of 18 with the tested workload.

When looking at the parallelism in Figure 11b, the scaling deci-
sions of Phoebe do not appear to mirror the workload. However,
when examining the logs, the scaling decisions are reasonable and
balance achieving a minimum latency with a recovery time below
the 600 second target. It should also be noted that these results
do not match those from the initial paper, where the number of
workers were more in line with the workload. In contrast, Daedalus
scaled more frequently, but also more in line with the workload.

When examining latencies, Phoebe outperformed Daedalus by
achieving proportionally lower latencies and faster recovery times.
Daedalus achieved an average latency of 9,624 ms and a maximum
latency of 88 seconds, while Phoebe achieved an average latency
of 3,340 ms and a maximum latency of 65 seconds. The maximum
latencies indicate the longest time that the system was unavailable,
and both maximum latencies were under the target recovery time.

When comparing resources used during the autoscaling part of
the experiment, Daedalus used 19% less resources, using an aver-
age of 10.1 workers while Phoebe used an average of 12.4 workers.
However, Phoebe also requires initial profiling runs to build perfor-
mance models. When incorporating profiling time, Daedalus used
53% less resources.

4.8 Discussion
The conducted experiments show that Daedalus achieves its goals:
It allocates sufficient resources to process the incoming workload,
processes tuples in a timely manner to achieve reasonable latencies,
minimizes resource usage, and makes long-lived scaling decisions.

For methods such as HPA, adequate thresholds must first be
determined. Even then, these fixed thresholds do not guarantee op-
timal resource usage or meeting QoS requirements. As an example,
for Flink, the HPA 80 over-provisioned resources (i.e. competitive
latencies in exchange for higher resource usage), while for Kafka
Streams, it under-provisioned resources (i.e. lower resource usage in
exchange for undesirable latencies). Seemingly, technical variations
in DSP systems and the implementation of DSP jobs pose challenges
to the HPA methods to achieve generalization. In addition, the HPA
methods do not incorporate data skew, which occurred in these
experiments, leading to suboptimal scaling decisions.

Comparing Daedalus to an approach like Phoebe highlights the
trade-offs that can be made in autoscaling. By using initial pro-
filing runs to build latency models, Phoebe can target scale-outs
that result in minimal latencies. However, this comes at the cost
of increased resource usage as a result of the required initial pro-
filing runs. In contrast, Daedalus focuses on minimizing resource
usage and builds its capacity models by monitoring a running job.
It focuses on ensuring throughput and does not explicitly model
latency. The autoscaling approach to use ultimately depends on
the requirements of the DSP job. An approach similar to Phoebe is
more appropriate when the primary goal is to minimize latencies
as much as possible, while Daedalus is more suitable for optimizing
resource efficiency. To further attain lower latencies, Phoebe manu-
ally creates a checkpoint before rescaling, minimizing the amount
of tuples that need to be reprocessed. In contrast, Daedalus uses
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Flink’s reactive mode, which restarts the job from the last com-
pleted checkpoint. While this adaptation could improve achievable
latencies, the implementation to configure a manual checkpoint
before rescaling is dependent on the DSP system and would make
Daedalus less generalizable.

The effectiveness of Daedalus relies on its ability to accurately
ascertain worker capacity across all scale-outs.While it is difficult to
truly determine the maximum capacity given factors like data-skew,
it can be approximated by ensuring ample tuples in the data source
to saturate the system and observing the throughput at different
scale-outs. Comparing the observed capacities to the estimates from
Daedalus gives insights into the estimation accuracy. Generally, the
estimated capacities typically differ less than 5% from the observed
capacities, with the majority between 0% and 3%. Therefore, it can
be concluded that Daedalus can accurately estimate capacity.

Since the quality of scaling decisions are also impacted by TSF,
the accuracy of TSF predictions was evaluated. TSF predictions
were generally accurate with errors typically falling below 5%. In
fact, the threshold for poor predictions at 25% was never reached.

In this evaluation, the recovery time heuristic was tested using
the time needed to recover from a rescale. However, real failures
typically incur longer recovery times since the DSP system must
first detect the failure. While Daedalus accounts for failure by using
a worst-case recovery time calculation, an evaluation that injects
failures is left for future work. In general, a lower desired recov-
ery time will lead to higher resource utilization, making recovery
time the primary factor influencing autoscaling decisions. On the
contrary, a higher desired recovery time will have less impact on
scaling decisions, with actual processing capacity becoming the
key determinant. To align with HPAs for comparison purposes, we
opted for a higher recovery time of 600 seconds without exploring
the boundaries or quantifying the precise influence of the recov-
ery time parameter. In our experiments, the predicted recovery
time was almost always greater than the measured recovery time.
However, due to the worst-case calculation, the accuracy ranges
wildly from a 1% difference to a 140% difference when comparing
the actual and predicted recovery times. This lack of precision is a
limitation to this approach and could be improved in future work.

5 CONCLUSION
This paper presents Daedalus, a self-adaptive autoscaling approach
for DSP systems. Daedalus monitors running DSP jobs, builds
worker-level capacity models using readily available CPU and
throughput metrics, and scales resources to meet adaptation goals.
Its primary objectives are to process incoming workloads efficiently
while minimizing resource usage and to make long-lived scaling de-
cisions to reduce system downtime. After evaluation with three rep-
resentative DSP jobs in two DSP systems, Flink and Kafka Streams,
Daedalus proves to be an effective autoscaling method. It accurately
estimates the maximum processing capacity across different scale-
outs and matches resources to the incoming workload. Using up
to 71% fewer resources, Daedalus achieves latencies comparable to
those of a static scale-out and HPA. When compared to Phoebe, a
state-of-the-art approach that explicitly models latency, Daedalus
does not quite achieve the same low latencies, nonetheless, it still
provides a stable level of service with fewer resources than Phoebe.

A current limitation of Daedalus is its inability to target scale-outs
for minimal latencies, and incorporating a fitting latency model is
considered a direction for our future work.
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ABSTRACT
Distributed Stream Processing (DSP) focuses on the near real-time
processing of large streams of unbounded data. To increase process-
ing capacities, DSP systems are able to dynamically scale across
a cluster of commodity nodes, ensuring a good Quality of Service
despite variable workloads. However, selecting scaleout configu-
rations which maximize resource utilization remains a challenge.
This is especially true in environments where workloads change
over time and node failures are all but inevitable. Furthermore,
configuration parameters such as memory allocation and check-
pointing intervals impact performance and resource usage as well.
Sub-optimal configurations easily lead to high operational costs,
poor performance, or unacceptable loss of service.

In this paper, we present Demeter, a method for dynamically
optimizing key DSP system configuration parameters for resource
efficiency. Demeter uses Time Series Forecasting to predict future
workloads andMulti-Objective BayesianOptimization tomodel run-
time behaviors in relation to parameter settings and workload rates.
Together, these techniques allow us to determine whether or not
enough is known about the predicted workload rate to proactively
initiate short-lived parallel profiling runs for data gathering. Once
trained, the models guide the adjustment of multiple, potentially
dependent system configuration parameters ensuring optimized
performance and resource usage in response to changing workload
rates. Our experiments on a commodity cluster using Apache Flink
demonstrate that Demeter significantly improves the operational
efficiency of long-running benchmark jobs.
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1 INTRODUCTION
Distributed Stream Processing (DSP) is a paradigm in the big data
domain that focuses on processing large streams of unbounded
data in near real-time. As streaming workloads are typically dy-
namic in nature, DSP systems such as Apache Flink [7], Spark
Streaming [37], and Storm [33] are designed to scale horizontally,
distributing the load across multiple nodes within a cluster. When
configured correctly, this enables high throughput, low latency, and
fault tolerance in cloud-based environments. This is essential in
areas such as real-time analytics, IoT data processing, click stream
analysis, network monitoring, and more, where data needs to be
analyzed on-the-fly continuously [18, 25, 26]. In these areas, ensur-
ing minimal latencies is vital as the value of results is often greatest
at the time of data arrival. Therefore, by maintaining the fastest
response times, the maximum value of these results is captured,
enabling timely decision-making. Likewise, in the event of failures,
the ability to both recover quickly and maintain the consistency of
results is important for preserving system reliability.

However, the manner in which these systems are configured
has a significant impact on the Quality of Service (QoS) they are
able to deliver as well as the resources they consume. Given the
dynamic nature of cluster environments and streaming workloads,
ensuring near-optimal configurations becomes inherently challeng-
ing. Relying on static configurations can lead to over-provisioning,
wasting energy and resources, or under-provisioning. The man-
ual fine-tuning of configuration parameters for individual stream-
ing jobs is likewise impractical, involving considerable trial and
error, and necessitates continuous adjustments to align with the
ever-changing workload. As a result, configurations would quickly
become outdated, leading to a diminished QoS and significantly
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higher operational costs. It is evident that adaptive configuration op-
timization strategies are essential, as they can dynamically respond
to changing workloads, ensuring both reliability and efficiency.

A number of methods have been proposed that optimize the
configuration of DSP jobs adaptively. The underlying principle is
to identify a configuration parameter that, when adjusted, can im-
prove the performance of the DSP job. For instance, some methods
focus on optimizing the scaleout [1, 2, 11–13, 17, 21, 27], while oth-
ers concentrate on adjusting the checkpoint interval [8, 9, 20, 36].
They can broadly be categorized as either reactive or proactive.
Reactive strategies [11, 12] typically rely on threshold monitor-
ing, adjusting the parameter when the established upper or lower
bounds are violated. However, these approaches are imprecise and
prone to initiating re-configurations in response to transient condi-
tions such as load spikes or failures. This can lead to unnecessary
changes that disrupt the service. Alternatively, proactive strate-
gies [1, 2, 13, 17, 21, 27] often employ modeling techniques, using
historical data to predict a near-optimal configuration setting for
the workload. Nonetheless, these methods are not without their
challenges, especially when historical data is limited, complicating
accurate predictions in dynamic environments.

Although these methods have shown improvements in certain
aspects of system performance, the focus on a single parameter
does not fully capture the complex interdependencies among vari-
ous key configuration parameters that are common in real-world
DSP systems. Take, for example, the concepts of scaleout and local
parallelism. In a DSP system, the scaleout for each job is reflected
by the total number of processing slots, and the ratio of processing
slots to each worker node determines the level of local parallelism.
Generally, previous methods have kept this ratio at one-to-one, re-
sulting in the total processing slots equalling the number of workers.
They do not explore how local parallelism might boost efficiency
beyond identifying the optimal scaleout for a particular workload
rate. Despite these interdependencies, the simultaneous optimiza-
tion of multiple configuration parameters for enhancing resource
efficiency in DSP systems remains largely unexplored.

In this paper, we introduce Demeter, a novel approach intended
for cloud-based environments that dynamically optimizes multiple
key configuration parameters for targeted DSP jobs. We focus on
the following critical parameters:

• No. of Workers: Workers are responsible for orchestrating
and supervising the execution of processing tasks. Their
configuration affects the overall capacity of the system to
handle parallel tasks and its resilience against failures.

• CPU Cores: These refer to the computational resources
assigned to each worker. Workers receive an equal share of
computation resources, ensuring homogeneous processing
potential throughout the system.

• Memory Allocation: Memory is important for buffering
incoming data streams, storing intermediate results, and
facilitating various in-memory operations. As with the CPU
cores, each worker is assigned an equal share of memory.

• Processing Slots:Aworker canmanagemultiple processing
slots, determining the number of concurrent processing tasks
it can oversee. These slots utilize CPU andmemory resources
from the collective resource pool assigned to each worker.

• Checkpoint Interval: This involves periodic snapshots of
the system’s current state as a part of its fault-tolerance
mechanism. The checkpoint frequency is important; while
more frequent snapshots can facilitate faster recovery from
failures, they also introduce overheads.

Demeter aims to find the best combination of settings for the
aforementioned parameters, ensuring both near-optimal perfor-
mance and resource efficiency in response to changing workloads.
To achieve this, Demeter makes use of two statistical modeling
techniques: Time Series Forecasting (TSF) for predicting workload
rates, and Multi-Objective Bayesian Optimization (MOBO) to model
runtime behaviors in relation to parameter settings and workload
rates. From a high-level perspective, Demeter operates through two
independent processes: profiling and optimization. Both processes
execute iteratively and begin with a prediction of the upcoming
workload rate. In profiling, when the MOBO models lack sufficient
data for confidently selecting a near-optimal configuration at the
predicted rate, Demeter initiates short-lived parallel profiling runs
to gather data to enhance the models. On the other hand, dur-
ing optimization, once the models are sufficiently informed about
the predicted workload rates, Demeter selects appropriate config-
urations. The objective is to minimize resource usage such that
processing latencies and recovery times remain within the bounds
of a runtime-derived latency constraint and a user-defined recovery
time constraint. With continued iterations, Demeter’s understand-
ing of how configuration impacts on performance at specific work-
load rates increases along with resource efficiency. Over time, as the
models become more accurate, the need for profiling decreases, fur-
ther decreasing overheads. We implement Demeter prototypically
with Apache Flink and conduct experiments on a commodity clus-
ter with established benchmark jobs to demonstrate its usefulness
in comparison to two state-of-the-art methods.

2 APPROACH
In this section, we provide a detailed description of Demeter, ex-
plaining the general idea and its processes.

2.1 General Idea
Demeter’s goal is the runtime optimization of a target DSP job,
ensuring near-optimal performance and resource efficiency across
dynamic workloads. We measure resource efficiency in terms of
resource usage (𝑈 ) and performance in terms of the average end-
to-end latency (𝐿𝑎𝑣𝑔) and recovery time (𝑅). The process is guided
by two constraints: an average end-to-end latency constraint (𝐿𝐶)
which is determined at runtime based on observed latencies; and a
user-defined recovery time constraint (𝑅𝐶). Therefore, the objective
is to minimize 𝑈 while ensuring 𝐿𝑎𝑣𝑔 and 𝑅 are always kept below
𝐿𝐶 and 𝑅𝐶 , respectively. The decision variables consist of a set
of key configuration parameters: number of workers, CPU cores,
memory allocation, processing slots, and checkpoint interval.

To achieve its goal, Demeter employs a proactive modeling strat-
egy, gathering performance data through short-lived parallel pro-
filing runs of identical jobs with varying configuration sets. This
strategy is enabled by using two fundamental statistical model-
ing techniques: Time Series Forecasting (TSF) to predict upcoming
workload rates and Multi-Objective Bayesian Optimization (MOBO)

143



Demeter: Resource-Efficient Distributed Stream Processing under Dynamic Loads with Multi-Configuration Optimization ICPE ’24, May 7–11, 2024, London, United Kingdom

Profiling JobsProfiling Jobs

Streaming

Sink
Streaming

Source

Demeter

Cloud Environment

2.2.Modeling

Profiling Executions

Target DSP Job

2.3.Profiling 2.4.Optimizing

TSF Model MOBO Models

Proactive

runtime

optimization of

target job

Models guide the
selection of

profiling configs
to maximize

knowledge gain

Models used to

identify configs

that improve

operational

efficiency &

performance

Execution of

parallel
profiling runs &

gathering of
profiling data

Same Input

Topic

Historical

workload data 

Different

Output Topic

Figure 1: High-level representation of Demeter, illustrating the interplay between internal processes and external systems.

to model runtime behaviors in relation to parameter settings and
workload rates. TSF grants insight into upcoming workloads, facili-
tating informed decision-making. This is important for preventing
performance from degrading beyond a critical point before mitigat-
ing actions can be taken and ensures the longevity of configuration
changes, thereby reducing the frequency of restarts. When working
with exactly-once processing guarantees, restarts are expensive and
introduce interruptions to the service. MOBO complements this
by not only providing a means of simultaneously modeling multi-
ple possibly competing criteria, but also a mechanism for guiding
the exploration of the configuration search space. Together, TSF
and MOBO establish a comprehensive approach for well-informed
multi-configuration optimization under dynamic workloads.

Demeter is designed as a standalone client, interfacing with
systems within a cloud-based environment. Our methodology is
built on three foundational processes: Modeling, Profiling, and Op-
timizing. Next, we present an overview of Demeter’s approach,
accompanied by a graphical representation in Fig. 1. For any target
job, a maximum configuration (𝐶max) is defined, where parameters
are set to allocate a large amount of resources, thereby guarantee-
ing consistent high performance in terms of 𝐿avg and 𝑅 across any
reasonable workload1. After initiating the target job with𝐶max, two
iterative processes begin executing asynchronously. The first pro-
cess focuses on profiling. Based on the predicted workload rate, the
need for profiling is evaluated through a series of MOBO models,
with each model dedicated to a particular configuration parameter.
When required, they suggest configurations that maximize infor-
mation gain, which are then applied in parallel profiling runs. This
approach enables efficient exploration of the large configuration
space. After these runs, data is collected to update the models. If

1Here, ’reasonable’ refers to workloads within an upper bound determined by
expert knowledge.

profiling is deemed unnecessary, it is skipped. The second process
focuses on optimization. It uses the TSF prediction and the MOBO
models to check whether sufficient information is available for job
optimization at that workload rate. If a more efficient configuration
is found, a reconfiguration is initiated. If no better configuration is
available according to our models but the existing setup canmanage
the upcoming workload, it remains unchanged. In situations where
the current configuration is inadequate, or if there is insufficient
information, such as encountering a new workload rate, the system
reverts to the 𝐶max configuration, unless it is already in use.

2.2 Modeling
In this section, we provide a description of the modeling techniques
used in our approach. As previously stated, Demeter follows a proac-
tive strategy, using predictions of future workload rates to inform
and guide the profiling and optimization processes. To achieve this,
we firstly use a multistep-ahead TSF model, trained on historical
data. This model not only provides insights into the expected work-
load rate at a specific time horizon but also reveals the behavior
of the rate over time leading up to this point. Understanding both
the expected future workload rate and its behavior over time is
important for our method’s effectiveness. Whenever a forecast is
generated, it is partitioned into separate averaging bins and the
bin with the highest average value is calculated and selected. The
value of this bin will be used for all subsequent profiling and op-
timization processes. This ensures that if an increase in workload
is anticipated, the system will select the furthest bin for analysis,
guiding the profiling and optimization efforts to address higher
workload rates expected in the future, rather than focusing on the
current point in time. Conversely, if the workload is anticipated to
decrease, the model selects the nearest bin, focusing the profiling
and optimization efforts on lower workload rates that are expected
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Figure 2: Model generation and selection based on observed
workload rates, categorized by specific workload segments.

to occur closer to the current point in time. This is done to ensure
that reconfigurations are valid at least up until the forecast hori-
zon, thereby increasing their longevity. For our method, we use an
online ARIMA model for workload predictions.

Addressing the challenge of optimizing multiple parameters, our
approach shifts focus towards exploring a discrete search space,
represented as x. This space consists of the Cartesian product of all
relevant parameters, each with its discrete set of potential values.
Initially, we have no prior knowledge of this space. In anticipation
of future streaming workloads, our primary goal is to identify an
optimal configuration within x. Such a configuration should not
only comply with predefined constraints, including 𝐿𝐶 and 𝑅𝐶 , but
also demonstrate resource efficiency, in terms of CPU and memory
utilization. To address this challenge, we adopt MOBO, where each
objective and constraint is represented using an individual Gauss-
ian process. The optimization procedure aims to maximize the sum
of their marginal log likelihoods. In this context, we weight the
expected improvement of one or more objectives by the probability
of feasibility, considering all the modeled constraints. Ultimately,
the MOBO model is proficient in identifying near-optimal con-
figurations for scenarios characterized by low workload variance.
However, its performance diminishes when dealing with streaming
workloads that present a wider range of variance, highlighting the
need for a more adaptable optimization strategy.

To manage workload variability, we apply the concept of Rank-
Weighted Gaussian Process Ensembles (RGPE), a method proven
effective in similar scenarios [28, 38]. All collected observations,
comprising various configurations and their corresponding perfor-
mance metrics, are organized into 𝐾 segments based on workload
rate, denoted as𝑊𝑆 = {𝑤𝑠𝑖 }𝐾𝑖=0. The size of each workload segment
is defined by the segment size (𝑆𝑆) hyper-parameter, and segments
are added dynamically as they are detected. We train a set of MOBO
models𝑚𝑖 for each segment𝑤𝑠𝑖 using the included observations𝐷𝑖 .
Referring to Fig. 2, we present an example of a variable workload
over time. As Demeter identifies new workload segments𝑤𝑠0,𝑤𝑠1,
𝑤𝑠2, and𝑤𝑠3 at time instances 𝑡0, 𝑡1, 𝑡2, and 𝑡5, it correspondingly
creates MOBO models𝑚0,𝑚1,𝑚2, and𝑚3 to model the configu-
ration parameters for these segments. Following this, whenever
the workload prediction falls within a segment’s range, the sys-
tem utilizes the associated MOBO models for both profiling and
optimization purposes. These models then contribute to approxi-
mating the target MOBO model𝑚𝑡𝑎𝑟 for the anticipated streaming

workload in an ensemble manner:

𝑚𝑡𝑎𝑟 (x|𝐷𝑡𝑎𝑟 ) ∼ 𝒩
( ∑︁
𝑤𝑠𝑖 ∈𝑊𝑆

𝑎𝑖`𝑖 (x),
∑︁

𝑤𝑠𝑖 ∈𝑊𝑆

𝑎2𝑖 𝜎
2
𝑖 (x)

)
In this formulation, `𝑖 and 𝜎2𝑖 are the mean and variance parameters
of the BO model𝑚𝑖 , tailored for segment𝑤𝑠𝑖 , while 𝑎𝑖 represents
the correspondingweight within the ensemble, defined by a ranking
loss specific to RGPE. This approach offers several benefits, includ-
ing the ability to leverage previously trained models, effectively
addressing the cold-start issue by utilizing existing knowledge, even
if partial, of the configuration search space. Concurrently, these
support models play a crucial role in pinpointing the optimum of
the desired function. Consequently, we expedite the identification
of promising configurations by utilizing previously profiled config-
urations across varied workload rates. So, our outlined approach,
combined with RGPE, allows us to leverage existing knowledge for
more informed configuration recommendations. For simplicity, in
this paper, the RGPE ensemble model, target MOBO models, and
base MOBO models for a specific segment are collectively referred
to as the MOBO models for that segment.

2.3 Profiling
The profiling process evaluates the need for profiling, selects fit-
ting configurations, and supervises execution. Operating within a
time-delay loop, the profiling algorithm begins each iteration by
consulting the TSF model for a workload prediction. This predic-
tion then guides the selection of configurations by referencing the
MOBO models corresponding to the specific workload segment.
For generating profiles, the method focuses on configurations with
the highest expected hyper-volume improvement, essentially those
with the best knowledge acquisition value. The number of configu-
rations chosen for profiling aligns with the resources assigned for
this task within the cluster. Within each workload segments, an
annealing factor adjusts this number, leading to a reduced extent of
exploration as more knowledge about that segment is accumulated.

Additionally, the system uses domain knowledge from past con-
figurations to make strategic profiling decisions. For example, if
during a previous re-configuration, a selection was found to be
unsuitable for a workload rate similar to the prediction, and the
system had reverted back to the𝐶max, it would then give preference
to profiling configurations that have greater resources than the pre-
viously unsuitable one. On the other hand, should historical data
show an earlier decision to downscale, the system will prioritize
configurations that use fewer resources for the projected workload.
This approach allows the system to streamline its selection process,
capitalizing on historical data and specialized expertise.

Upon determining suitable profiles for the predicted workload,
jobs are deployed in parallel with their own unique configurations.
A graphical representation of the profiling process can be seen
in Fig. 3. Each profile is set to read from the same data source
as the target job, yet directs its output to a separate temporary
sink. Once deployed, a stabilization phase is allowed for metrics to
achieve equilibrium. After stabilization, a fixed duration of standard
execution is observed, after which the 𝐿avg are computed. Next,
timeout failures are injected into the profiling jobs to measure how
long each job takes to recover. Demeter will then continuously
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Figure 3: Profiling lifecycle from deployment to recovery to
recovery time measurement.

re-evaluate the status of the jobs, ensuring they either attain a full
recovery or exceed a designated maximum timeout constraint. In
order to measure the recovery time, Demeter monitors specific
metrics related to the recovery process:

• Input Throughput: This metric indicates the total number
of events consumed by the source operators of the DSP job
every second. It provides a measure of the system’s capacity
to handle incoming data.

• Average Consumer Lag: This metric represents the accu-
mulated events in the messaging queue, still awaiting con-
sumption by the source operators of the DSP job. It gives an
indication of any potential backlog.

These metrics are used to train an anomaly detection algorithm
on positive executions, i.e. let the function 𝑠 : 𝑋 → 𝑋 perfectly
represent the metrics data stream such that for any given data point
𝑥 ∈ 𝑋 the prediction is always 𝑠 (𝑥) = 𝑥 . Given that the majority of
data collected within the standard execution period is expected to
be normal, this approach allows the algorithm to recognize devia-
tions from the norm. Should these deviations surpass a predefined
threshold, derived from past errors, the system is deemed to be in
an anomalous state. The length of time spent in this anomalous
state therefore is equivalent to the recovery time. To implement
this, we utilize an online ARIMA method as proposed in [30].

Importantly, in this context the recovery time encompasses more
than just the period during which the system is in an inconsistent
state before processing resumes. For systems using checkpoint and
rollback recovery strategies, processing restarts from a previously
saved offset. It then works to catch up to the latest offset, even as
new events keep arriving. We aim to measure the entire duration –
from the moment the failure begins until processing has once again
caught up to processing events at the latest offset. This provides a
more accurate measure of system availability for steam processing.

Upon the completion of profiling, the associated jobs are termi-
nated, and metrics relating to workload, throughput, and latency
are subsequently used to update the model.

2.4 Optimizing
The optimization process is tasked with tuning the configuration
parameters of the target job in relation to changing workloads.
Central to this process is the optimization algorithm,which operates
within a time-delayed loop to periodically assess the state of the
target job. Intervals between evaluations are essential, particularly
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Figure 4: Flow chart depicting the optimization algorithm of
the Optimizer component.

following events like re-configurations or failures that both require
restarts. They ensure that metrics stabilize between evaluations
and increase the longevity of changes. A simplified overview of this
algorithm can be seen in Figure 4. After each interval, metrics from
the target job are collected and the current 𝐿avg is evaluated. Unlike
our other constraints and objectives, determining whether the 𝐿avg
aligns with typical expectations presents a challenge, primarily
because ’normal’ latencies vary significantly, changing from one job
and environment to another. To address this, we utilize the MOBO
models, which are trained on the specific current workload rate
segment, in combination with a clustering technique to establish a
benchmark for near-optimal latencies.

Firstly, we need to identify two clusters among the latencies ob-
served so far: those considered normal and those considered abnor-
mal, and hence invalid. If a configuration resulted in the job being
able to keep up with the current workload, its latencies would stabi-
lize around the shortest possible lengths. Thus, the cluster with the
smallest centroid represents configurations that yield near-optimal
latencies. In order to do this, we start by normalizing the values
according to the first percentile. Then, we apply a transformation to
the values so that they fall within the [0, 1] interval. Values smaller
than 0.5 are considered normal, while those equal to or greater than
0.5 are considered abnormal. This technique allows us to define the
latency constraint 𝐿𝐶 . If the current 𝐿avg falls outside the range
of 𝐿𝐶 , the job is assumed to be unstable and reverts to the 𝐶max
configuration, ensuring a rapid return to near-optimal operation.

Alternatively, if 𝐿avg falls within acceptable limits, there exists
an opportunity to further improve resource efficiency. In both cases,
we transform all latency values according to the observed clusters,
establishing a notion of normal and invalid latencies. The next
step involves retrieving a workload prediction from the TSF model.
We now aim to identify the near-optimal configuration that aligns
most closely with the predicted workload. Using this workload
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prediction, the algorithm references the MOBO models for the
corresponding workload rate segment. We then use the models to
retrieve predictions 𝐿avg and 𝑅 for a list of possible configurations.

We first filter out configurations with invalid 𝐿avg as well as those
where the 𝑅 is greater than the 𝑅𝐶 , ensuring we retain only valid
configurations that do not violate either constraint. Next, we sort
the list of valid configurations based on their resource usage, where
the smallest is predicted to result in the highest operation efficiency.
At this point, we introduce a safety buffer (𝑆𝐵) hyper-parameter.
Instead of directly selecting the most efficient configuration, 𝑆𝐵 is
applied to scale our selection, effectively moving us up the sorted
list by a certain percentile. For instance, if 𝑆𝐵 is set to 30%, we
would skip the bottom 30% of configurations and choose the one at
the 30th percentile mark, or with at least a 30% increase in resource
usage. This provides a margin of safety, ensuring that our selected
configuration is not too close to the lower bound of the system’s
requirements. Furthermore, this buffer approach allows us to ac-
count for and negate intermittent fluctuations in the cluster, which
could otherwise trigger unwarranted re-configurations, optimizing
for both efficiency and system stability.

Following our selection process informed by 𝑆𝐵, the need for
re-configuration is evaluated against the efficiency threshold (𝐸𝑇 )
hyper-parameter. Reconfiguration is triggered only if the expected
improvement in resource efficiency exceeds 𝐸𝑇 . For example, set-
ting 𝐸𝑇 at 5%means reconfiguration is only done when the resource
saving is equal to or greater than 5%. Therefore, if the proposed
configuration fails to meet this threshold, the current configura-
tion remains unchanged, and the current iteration concludes. Con-
versely, if the threshold is exceeded, signifying a potential reduction
in resource usage, reconfiguration is initiated. In instances where a
predicted configuration is not available, potentially due to a lack
of sufficient observations for modeling, a re-configuration to the
𝐶max configuration is prompted, provided it is not already in place.

3 EVALUATION
In this section, we assess the effectiveness of Demeter. We detail
our experimental cluster setup, outline the methods evaluated, and
specify how they were configured. Two distinct experiments are
presented, followed by a comparative analysis. All materials related
to our prototype, datasets, and tools are available in our repository2

3.1 Experimental Setup
Our experimental setup was based on a co-located 5-node Kuber-
netes [35] and HDFS [31] cluster with all servers interconnected
by a single switch. We developed and implemented a prototype to
work with Apache Flink. Additionally, we use the Flink Kubernetes
Operator3 to automate deployments and upgrades of streaming
jobs. We configured an Apache Kafka [22] cluster, serving as both
the sources and sinks for the streaming jobs, with 24 partitions
and a replication factor of 3. All sources and sinks of the experi-
mental processing pipelines were configured to use exactly-once
processing thereby guaranteeing the consistency of results 4. For

2https://github.com/dos-group/demeter
3https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-release-1.6,

Accessed: March 2024
4https://flink.apache.org/2018/02/28/an-overview-of-end-to-end-exactly-once-

processing-in-apache-flink-with-apache-kafka-too/, Accessed: March 2024

all experiments and methods, a maximum parallelism of 24 was
set, meaning that the number of processing slots, or task managers,
could not exceed 24 at any given time. Additionally, we set a 20s
timeout interval for Flink task managers. For end-to-end latencies,
measurements were taken over a 1-minute averaging window, with
a focus on the 95th percentile to minimize the impact of outliers
during periods of stable operation. Each experiment was conducted
three times with the median result being selected for further anal-
ysis and discussion. Chaos Mesh5 was used for injecting failures
into the Kubernetes pods. During each experiment, Chaos Mesh
injected 23 timeout failures at regular 45-minute intervals ensuring
a uniform distribution of failures across a broad range of workload
rates. Prometheus6 was used for metrics collection. Cluster node
specifications and software versions are summarized in Table 1.

Table 1: Cluster Node Specifications

Resource Details

OS Ubuntu 20.04.1
CPU AMD EPYC 7282 16-Core Processor, 32

cores, 2.8 GHz
Memory 128 GB RAM
Storage 2TB RAID0 (2x1TB SSD, software RAID)

Network 10 GBit Ethernet NIC
Software Java v11, Flink v1.17, Flink Operator v1.6,

Kafka v3.4, Docker v19.3, Kubernetes v1.26,
HDFS v2.8, Redis v5.0, Prometheus v2.25,
Chaos Mesh v2.1, pmdarima v2.0.4, BoTorch
v0.6.0

3.2 Demeter Setup
In configuringDemeter, the𝐶max configurationwas allocated amax-
imum scaleout of 24, dedicating a full CPU core and 4096 megabytes
of memory to each taskmanager, as well as a single processing slot.
The segment size (𝑆𝑆), safety buffer (𝑆𝐵), and efficiency threshold (𝐸𝑇 )
hyper-parameters were set to 10.000, 30%, and 5%, respectively. The
configuration space for profiling was defined by setting lower and
upper bounds on each parameter, yielding 2592 distinct parameter
combinations for each workload segment, as shown in Table 2. We
utilize BoTorch [5] for MOBO modeling as part of our prototype.

Table 2: Configuration Parameter Search Space

Parameter Min Max Step

Workers 4 24 4
CPU Cores 1 3 1
Memory Allocation (mb) 1024 4096 1024
Processing Slots 1 4 1
Checkpoint Interval (s) 10 90 10

Profiling runs incorporated a 2-minute stabilization period and
a 1-minute latency measurement window. We found that the best

5https://chaos-mesh.org, Accessed: March 2024
6https://prometheus.io, Accessed: March 2024
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possible recovery times with 𝐶max generally span between 90 and
120 seconds, even in scenarios of low workloads. This insight led
us to set the recovery time constraint (𝑅𝐶) at 180s for our experi-
ments, establishing the upper limit for acceptable recovery times.
To accommodate for potential deviations, we defined a maximum
timeout of 360s. For the optimization phase, the system was config-
ured to perform evaluations every 10 minutes, with a 10-minute
time horizon set for the TSF model. To predict future workloads,
we employ online ARIMA for our TSF model using the pmdarima7
python library. ARIMA was selected for its proven accuracy and
efficiency in forecasting streaming workloads, as detailed in our
previous research [16], and is favored due to its low computational
demand and minimal data requirements.

All of these default settings are designed to cover a wide range of
execution scenarios, providing good performance and should suffice
for the majority of users without requiring further adjustments.

3.3 Baselines Setup
For our comparative analysis, we included a static configuration
alongside two state-of-the-art baselines, both of which are inter-
operable with Apache Flink. As these methods do not focus on
optimizing CPU an memory allocations, we assign a full CPU core
and 4096 MB of memory to all taskmanagers. Moreover, all baseline
methods consistently used a 10s checkpoint interval.

3.3.1 Static Configuration. In our experiments, we employed a
static configuration with 24 worker nodes which aligns with Deme-
ter’s𝐶max configuration. This representing the maximum available
resources, guarantees the best latencies and recovery times due to
the highest resource allocation. This baseline serves as the standard
for comparing all other methods.

3.3.2 Flink Reactive. The first method we evaluated was Apache
Flink’s reactive mode scheduler [2]. This scheduler dynamically
optimizes cluster resources by adjusting to workload variations.
Monitoring each worker’s performance, any deviation from a spec-
ified utilization threshold prompts the scheduler to restart the DSP
job from its last successful checkpoint with an altered scaleout. Con-
figured to work with the Kubernetes Horizontal Pod Autoscaler
(HPA)8, our experiments set the HPA to target a CPU utilization of
35%, aligning with the recommended setup from the reactive mode
documentation. We experimented with several higher utilization
targets, but they consistently yielded inferior results.

3.3.3 DS2 Autoscaler. The second method we evaluated was the
DS2 Autoscaler [21], a solution designed for the dynamic scaling
of DSP jobs. It integrates historical data with real-time metrics,
employing forecasting techniques to proactively predict workload
variations. The system then makes informed scaling decisions, con-
sidering both current system state and anticipated workloads. This
is achieved by optimizing operator parallelism, which adjusts the
number of vertices in the execution graph to ensure efficient data
processing. For our evaluation, we used the implementation pro-
vided by the Flink Kubernetes Operator, configuring it in such a

7https://pypi.org/project/pmdarima/, Accessed: March 2024
8https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale, Ac-

cessed: March 2024

way as to align it with the other methods. The system used a sta-
bilization interval of 2 minute and metrics were aggregated over
1-minute windows. The target utilization was set at 35% and a
boundary of 15%. Following any scaling adjustments, a 1-minute
restart period was observed, and a 5-minute catch-up duration is
assumed to guarantee system equilibrium.

3.4 Experiments
For comparison, two experiments were conducted using established
benchmark jobs and real-world workload simulations.

3.4.1 Yahoo Streaming Benchmark (YSB) Experiment. For our first
experiment, we used the Yahoo Streaming Benchmark9. This bench-
mark simulates a streaming advertisement job, structured with
multiple advertising campaigns, each containing several individual
advertisements. Streaming sources retrieve events from a Kafka
topic, identify relevant events, and aggregate a windowed count of
these events, grouped by campaign. A key component of this setup
was the deployment of a Redis cluster10, which managed campaign
and advertisement data, streamlining event generation and data
aggregation processes. To align the benchmark with our objectives,
we enabled checkpointing and replaced the native windowing func-
tionality with the standard Flink implementation. We designed a
data generator, using a click-through rate dataset11, to emit events
characterized by attributes such as event_time, event_type, and ad_id.
From the initial 10-day dataset, we extracted a 3-day segment and
sub-sampled every 4th data point, resulting in a dataset that spans
18 hours. A graphical representation of the generated workload
is provided in Figure 6(a). This dataset is characterized by high
variability, covering a wide range of processing rates, and lacking a
discernible long-term trend.

3.4.2 Top Speed Windowing (TSW) Experiment. For our second
experiment we used a DSP job derived from the official Flink repos-
itory12. The primary focus of the job is on grouped stream win-
dowing, enabling the application of diverse eviction and trigger
policies. Each car-related event consists of attributes such as a
unique number plate, the current speed (km/h), the total elapsed
distance (meters), and an associated timestamp. The goal of the job
is to determine the top speed of each car over a span of 50 meters,
using only data from the immediate past 10 seconds. The job was
modified to enable it to consume events from and publish results
to separate Apache Kafka topics. To simulate workload variations,
represented by the changing number of vehicles over time, we used
the Sumo simulation tool to generate a 24-hour workload dataset,
specifically employing the TAPASCologne scenario13. Similar to the
YSB experiment, we reduced this to 18 hours by sub-sampling ev-
ery 4th data point and then repeating the resulting workload three
times. This resulted in a dataset characterized by a clear seasonal
pattern, with workload rates fluctuating within specific ranges, and
a weak upward trend over time. A graphical representation can be
seen in Figure 6(b). We created a generator program which would
produce events constrained by this dataset.

9https://github.com/yahoo/streaming-benchmarks/, Accessed: March 2024
10https://redis.io/, Accessed: March 2024
11https://www.kaggle.com/c/avazu-ctr-prediction, Accessed: March 2024
12https://github.com/apache/flink/; Accessed: March 2024
13https://sumo.dlr.de/docs/; Accessed: March 2024
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(a) YSB experiment: Workload rates & all configuration changes.
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(b) TSW experiment: Workload rates & all configuration changes.

Figure 5: Workloads, failure injections, & configuration changes for Demeter & state-of-the-art approaches.
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(a) YSB experiment: Average end-to-end latencies over time.
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(b) TSW experiment: Average end-to-end latencies over time.
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(c) YSB experiment: Total CPU & memory usage.
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(d) TSW experiment: Total CPU & memory usage.
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(e) YSB experiment: Resource usage for largest segment with regression.
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(f) TSW experiment: Resource usage for largest segment with regression.

Figure 6: Overview of performance comparison results for Demeter & state-of-the-art approaches.

3.5 Experimental Results
After completing the experiments, we analyzed the performance
metrics, with Figures 5(a) and 5(b) showing the workload rates over
time and scaleout decisions for all methods. The data shows that
Demeter tends to favor higher scale-out values, aligning with ex-
pectations as newly encountered workload rates trigger the use of
𝐶𝑚𝑎𝑥 , and the safety buffer hyper-parameter increases the optimal
amount of resources by 30%. Moreover, an increase in CPU usage
was consistently observed in the TSW experiment across all exe-
cutions, including static configurations. Further analysis identified
a statistically significant weak upward trend within this dataset,
likely explaining the observed increase in CPU usage.

3.5.1 Average End-to-End Latency Results: Our analysis first ex-
amines the 𝐿𝑎𝑣𝑔 of the static baseline, Demeter, and comparative
methods, shown in Figures 6(a) and 6(b) using an empirical cumu-
lative distribution function. The static configuration consistently
had latencies near 1000ms, a high proportion of optimal latencies.
Among the optimization methods, Demeter led with the most laten-
cies in the optimal range, followed by Flink Reactive and then DS2.

In the YSB experiment, Demeter and Flink Reactive achieved near-
optimal latencies in about 95% of cases, compared to DS2’s 80%.
In the TSW experiment, Demeter maintained over 95% in optimal
latencies, with Flink Reactive at about 85% and DS2 at 70%.

3.5.2 Recovery time Results: Recovery times were manually mea-
sured by analyzing consumer lag and throughput rate metrics (refer
to Section 2.3). The results, detailed in Table 3, use color highlights
to indicate performance: green for recovery times under the 180s
recovery time constraint, yellow for exceeding this constraint, and
red for surpassing the 6-minute maximum. The static configuration,
with maximum resources, set a benchmark with the fastest recov-
ery times, averaging 96s in the YSB experiment. Demeter showed
a minimal deviation in recovery times of 3.21% compared to this
benchmark, while Reactive and DS2 had deviations of 82.79% and
77.59%, respectively. In the TSW experiment, the static configura-
tion’s average recovery time was 107s, with Demeter at a 5.17%
deviation, maintaining consistent performance. Reactive and DS2
had higher deviations of 62.78% and 51.62%. These findings un-
derscore Demeter’s ability to closely match the optimal recovery
times of the static configuration, unlike the larger variances seen
with other methods. Additionally, Demeter was the method which
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Table 3: Recovery times & number of reconfigurations (Δ).

(a) YSB experiment results.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 Δ

Workload 30K 50K 80K 55K 25K 45K 30K 50K 35K 50K 40K 65K 45K 33K 25K 35K 45K 45K 50K 60K 65K 25K 27K –

Static 122s 95s 93s 94s 95s 92s 96s 96s 97s 96s 95s 95s 99s 94s 94s 95s 95s 96s 95s 94s 95s 96s 95s –

Demeter 123s 97s 97s 98s 90s 95s 90s 89s NR 120s 95s 96s 100s 96s NR 90s 87s NR 97s 96s 95s 96s 140s 33

Reactive 201s 200s 95s 145s 182s 255s 146s 252s 95s 165s 190s NR 143s 136s 193s 164s 185s 190s 266s 135s 152s NR 205s 87

DS2 187s 95s 125s 204s 330s 122s 6m+ 125s 6m+ 126s 95s 6m+ 125s 129s NR 95s 91s 120s 6m+ NR 155s 95s NR 77

(b) TSW experiment results.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 Δ

Workload 30K 50K 80K 55K 25K 45K 30K 50K 35K 50K 40K 65K 45K 33K 25K 35K 45K 45K 50K 60K 65K 25K 27K –

Static 95s 95s 95s 94s 96s 155s 98s 96s 100s 97s 96s 152s 127s 126s 95s 106s 96s 96s 98s 93s 97s 166s 95s –

Demeter 96s 95s 90s 90s 120s 127s 150s NR 90s 120s 100s 90s 116s 160s 95s NR 89s 95s 123s 120s 120s 160s 120s 30

Reactive 158s 210s 171s 175s 205s 200s 199s 170s 178s 95s 146s 198s 225s 150s 185s 220s 170s 192s 115s 170s 175s 146s 128s 49

DS2 125s 95s 95s 94s 125s 275s 6m+ 226s 95s 6m+ 127s 124s 125s 157s NR 135s NR 6m+ 95s 126s 95s 6m+ 97s 73

initiated the least number of reconfigurations (Δ). ’No Result’ (NR)
entries in our table reflect the dynamic nature of jobs; reconfigura-
tions for exactly-once processing sometimes overlap with failure
injections, leading to unsuccessful recovery attempts.

3.5.3 Resource Usage Results: Figures 6(c) and 6(d) display the cu-
mulative CPU and memory usage for both experiments, normalized
against the maximum resource usage benchmarked at 100%. For
Demeter, both the target job’s resource usage and the cost of profil-
ing are included. As expected, the static configuration consistently
showed the highest consumption. In the YSB experiment, Flink Re-
active achieved a 40% reduction in CPU and memory usage relative
to the static configuration. Demeter demonstrated a 19% reduction
in CPU usage and 37% in memory, while DS2 recorded a 14% im-
provement. Including Demeter’s profiling costs, the net resource
savings were 7% in CPU and 32% in memory usage compared to
the static configuration. Flink reactive was the best performer for
this experiment. In the TSW experiment, Demeter achieved a 20%
reduction in CPU usage and 43% in memory compared to the static
configuration. Flink Reactive showed a 17% reduction, and DS2 had
a 10% improvement. After factoring in profiling costs, Demeter’s
overall efficiency was a 3% saving in CPU and 35% in memory. In
this case, Demeter had the most efficient memory usage, while Flink
Reactive was the most efficient in terms of CPU usage.

3.6 Experimental Discussion
In both experiments, Demeter maintained latencies and recovery
times close to those of the static configuration, while also enhanc-
ing resource efficiency. Flink Reactive showed good performance in
terms of latencies in the YSB experiment; however, it was not able to
achieve comparable results in the TSW experiment. Moreover, both
Flink Reactive and DS2 had variable recovery times, often substan-
tially longer than the static configuration, indicating inconsistent

performance. For methods aimed at enhancing resource efficiency
to be considered effective, maintaining a high Quality of Service is
fundamental. If the service is not reliably available, the resulting
benefits of resource savings are irrelevant. This is further evidenced
by Demeter initiating significantly fewer reconfigurations across
both experiments, thereby minimizing disruptions to the service.
In the experiments, the only two methods that consistently met
this requirement were the static configuration and Demeter.

While the initial analysis indicates Demeter’s modest CPU usage
improvement of 7% and 3%, and a substantial decrease in memory
usage by 32% and 35% compared to the static configuration, contin-
uing the experiment could reveal further enhancements. Extending
execution beyond 18 hours would enable more profiling and the
selection of increasingly optimized configurations, thus reducing
the time spent at𝐶𝑚𝑎𝑥 . Assuming similar workload rates, we antic-
ipate a further decrease in resource usage over time. This trend is
illustrated in Figures 6(e) and 6(f), which show CPU and memory
usage over time, concentrating on the workload segments with the
highest data points in each experiment. We included regression
lines to highlight the resource usage trends. The data shows a gen-
eral decrease in resource utilization, with CPU usage potentially
dropping by 20% to 30%, and memory usage by 50% to 70%.

Similarly, if the experiment were to be extended, the annealing
factor applied to profiling would lead to a reduction in profiling
executions as knowledge is accumulated. Consequently, the cost of
profiling is expected to progressively decrease, further enhancing
Demeter’s resource efficiency. Considering this, it is possible that
Demeter would not only maintain its high performance but also
improve upon the resource usage results from the other methods.
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4 RELATEDWORK
In this section, we explore the work related to our own, examining
the domain of automatic configuration optimization.

4.1 Batch Processing Optimization
In batch processing, configuring resources to meet runtime targets
is a key challenge. In exploring methods similar to our own, we ex-
amined Bayesian Optimization in CherryPick [4], which efficiently
identifies near-optimal configurations for batch jobs using ade-
quately precise performance models. Karasu [28] likewise makes
use of this, employing MOBO and RGPE modeling for resource
optimization and introducing a strategy for profiling with shared
user data to overcome the cold start problem. Other methods focus
on modeling batch job scaleout behaviors, using historical data for
resource allocation—similar to our data gathering through profiling
runs. Ernest [34] predicts cloud resource needs by running jobs
with subsets of inputs and different configurations. Bell [32] uses
existing workload data from recurring jobs for its predictions, elim-
inating isolated training runs. In our previous work, we presented
Enel [29] which adopts a context-aware, graph-based approach for
more detailed insights within batch jobs’ synchronization barriers
by incorporating runtime metrics. Taking inspiration from these
methods, Demeter applies this to the stream processing domain.

4.2 Stream Processing Optimization
In stream processing, optimization approaches primarily focus on
elastic scaling of resources to adapt to runtime conditions. A number
of these focus on threshold monitoring and re-configuring after a
predefined threshold has been violated. Gedik et al. in [12] introduce
a control algorithm for IBM Infosphere Streams [6] that reacts to
congestion, while Dhalion [11] applies policy-driven strategies for
Heron [23]. TWRES [17] uses TSF for predicting future workloads
and adjusts resources based on a latency constraint. Prompt [3] is
a data partitioning scheme specifically for micro-batch DSPs, fo-
cused onmaintaining latency guarantees through a threshold-based
elasticity technique that dynamically adjusts execution parallelism.
Apache Flink’s Reactive Mode [2] automates the scaling process, dy-
namically adjusting resources to workload variations. Elastic Spark
Streaming [1] also adopts a similar automated scaling approach,
enhancing resource management in Spark environments.

However, the reliability of threshold-based autoscalers can be
affected by the transient nature of shared computing environments
and DSP job behaviors, leading to unnecessary adjustments. As
a result, stream processing research has more recently adopted
data-driven approaches using performance modeling for scaling
decisions. Petrov et al.[27] detail a model that bases scaling actions
on latency measurements, and DS2[21] uses historical and real-
time data for workload forecasting to dynamically scale streaming
dataflows. In our previous work with Phoebe [13], initial profiling
was conducted to establish models that map scaleout and workload
rates to latency and recovery times. TSF was then employed to pre-
dict future workloads, allowing for dynamic rescaling of resources
aimed at maintaining stable latencies and achieving optimal recov-
ery times. However, these data-driven methods can be limited by
the availability of historical data, challenging their accuracy in dy-
namic environments. In contrast, Demeter concurrently addresses

multiple configuration parameters and incorporates an efficient
profiling method for data gathering, enabling more comprehensive
optimization in stream processing.

In the context of Bayesian Optimization, a number of methods
have been proposed for the optimization of configuration param-
eters in DSP systems. Fischer et al., in [10], suggest a technique
for tuning multiple parameters that, while effective for Apache
Storm—an older DSP system—is not widely applicable, hence not
offering a generalizable solution. In [19], Jamshidi et al. present a
method for tuning configuration parameters to reduce latency and
maintain throughput. Their results are positive, but the paper does
not discuss workload rates, leading to an implicit assumption that
their optimization is designed for static workloads. ContTune [24]
focuses on a single configuration parameter which employs Con-
servative Bayesian Optimization to fine-tune DSP job parallelism
while ensuring SLA adherence. However, these methods overlook
fault tolerance and SLA-specific recovery time considerations.

4.3 Checkpoint Optimization
Another area of related work is fault tolerance, particularly the
optimization of the checkpoint and rollback recovery mechanism
in DSP systems. Here the system’s state is periodically saved, al-
lowing for restarts from the latest checkpoint after a failure. Our
approach, which involves optimizing the checkpoint interval to
enhance system performance, is related to other methods that ad-
just this parameter. In high-performance computing, some methods
determine the mean time to failure of cluster nodes and modify the
checkpoint interval to reduce downtime from failures [8, 9, 36]. In
the specific context of stream processing, [20] explore the effects
of system failures and configurations on recovery, aiding in the
development of more efficient checkpoint scheduling strategies.
Our work differs from theirs in that while they do not seek optimal
configurations for DSP jobs at runtime, Demeter actively does. In
our previous work, we also investigated parameter auto-tuning
of DSP jobs to improve end-to-end latencies and recovery time,
yet focused on optimizing checkpoint intervals while assuming
scaleouts to be static [14, 15].

5 CONCLUSION
In this paper, we presented Demeter, a method designed to en-
hance the resource efficiency of DSP jobs running in dynamically
changing environments. By utilizing TSF to predict future work-
loads and MOBO to model runtime behaviors, Demeter effectively
decides itself when to initiate short-lived parallel profiling runs
and when to proceed with optimization. This approach guides the
adjustment of multiple configuration parameters, providing near-
optimal performance as workload rates vary. Our evaluation results
show that Demeter not only matches the high performance of over-
provisioned static configurations in terms of average end-to-end
latencies and recovery times but also significantly improves re-
source efficiency. Specifically, Demeter showed improvements of
7% and 3% in CPU usage, and more substantially, 32% and 35% in
memory usage. As the experiments show, with further execution,
resource efficiency would increase, leading to additional cost sav-
ings, which is particularly important in cloud environments where
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memory resources are more expensive than CPU resources. Fur-
thermore, Demeter is designed for scenarios requiring strict data
consistency and the need for exactly-once processing guarantees.
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ABSTRACT
Flash SSDs have become the de-facto choice to deliver high I/O
performance to modern data-intensive workloads. These workloads
are often deployed in the cloud, where multiple tenants share ac-
cess to flash-based SSDs. Cloud providers use various techniques,
including I/O schedulers available in the Linux kernel, such as BFQ,
Multiqueue-Deadline (MQ-Deadline), and Kyber, to ensure certain
performance qualities (i.e., service-level agreements, SLAs). Though
designed for fast NVMe SSDs, there has not been a systematic study
of these schedulers for modern, high-performance SSDs with their
unique challenges. In this paper. we systematically characterize the
performance, overheads, and scalability properties of Linux stor-
age schedulers on NVMe SSDs with millions of I/O operations/s.
We report 23 observations and 5 key findings that indicate that (i)
CPU performance is the primary bottleneck with the Linux storage
stack with high-performance NVMe SSDs; (ii) Linux I/O schedulers
can introduce 63.4% performance overheads with NVMe SSDs; (iii)
Kyber and BFQ can deliver 99.3% lower P99 latency than None or
MQ-Deadline schedulers in the presence of multiple interfering
workloads. We open-source the scripts and datasets of this work at:
https://zenodo.org/records/10599514.
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1 INTRODUCTION
Modern flash-based NVMe solid-state drives (SSDs) are able to de-
liver millions of I/O operations per second (IOPS) and single-digit
microsecond-level latency [7, 11]. These SSDs are widely used in
multi-tenant cloud environments where their performance, band-
width, and latency are shared among multiple tenants or work-
loads [3, 5, 13, 28, 32, 38, 43, 44]. In multi-tenant cloud environ-
ments, there is commonly a scheduler of I/O requests designed to
deliver fairness with quality-of-service guarantees, also known as
service level agreements (SLA), for the cloud services [38, 44].

Designing a fair, high-performance, low-overhead I/O scheduler
has been a topic of extensive research over the past decade, with
studies focusing on providing proportional performance sharing
with request scheduling [1, 26, 40, 46, 52, 56, 57], low latency guar-
antees [27, 39, 42], and SSD-supported features acceleration [29,
31, 54]. Despite these studies, the emergence of high-performance
NVMe SSDs has created multiple unique challenges for storage
schedulers (or I/O schedulers) that have not been systematically
studied or characterized. These unique challenges come from three
distinct dimensions that we cover in this study: (i) performance
overheads from the complex storage software stack on fast SSDs; (ii)
scalability challenges in the presence of highly concurrent I/O op-
erations on NVMe SSDs; and (iii) interference management among
competing I/O requests at high CPU loads.

Firstly, state-of-the-practice I/O schedulers available in Linux
(BFQ, MQ-Deadline, and Kyber) are not yet studied at the per-
formance scale of millions of IOPS which modern NVMe SSDs
can deliver. At this scale, small overheads from the Linux storage
stack become a performance bottleneck [51, 55]. These overheads
come from operational complexity (dispatching, merging, sorting,
and staging I/O requests) that determine the maximum perfor-
mance a scheduler can deliver. Various enterprise software recom-
mends using no scheduler (also known in Linux as None) on high-
performance SSDs to limit or eliminate these overheads [49, 50].
However, in this work, we demonstrate that this decision can sacri-
fice the quality of service and fairness among workloads. Secondly,
modern server machines are highly parallel with multiple CPU
cores and SSDs with parallel I/O queues. Here, overheads related to
locking, synchronization, and queue management become the key
performance bottlenecks. Thirdly, the widely-adopted flash-based
SSDs have different read and write performance characteristics,
and the reads and writes interfere with each other [20, 25]. This
interference creates challenges for I/O schedulers to fairly schedule
mixed read-write workloads. Furthermore, a shared environment
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brings new challenges to I/O schedulers [30, 32, 45] since workloads
have diverse I/O requirements. For example, throughput-bound
workloads like batch analytics (e.g., Spark) require high IOPS, and
real-time workloads like interactive queries [16] expect low, pre-
dictable latencies. I/O schedulers need to provide SLA guarantees
to satisfy these requirements across all the tenants, possibly si-
multaneously [37, 41, 47, 48]. There have been attempts to design
SSD-aware schedulers [27, 46, 52, 56] (including Linux Kyber [8]).
However, the performance of these state-of-the-practice schedulers
(available in the Linux kernel) has not been studied or quantified
on high-performance NVMe SSDs with millions of IOPS. To sum-
marize, the high performance, scale, and interference properties
of modern NVMe SSDs motivate us to systematically study and
characterize the performance of Linux I/O schedulers.

In this study, we aim to measure, quantify, and analyze overheads
from three widely available Linux storage I/O schedulers, BFQ [1],
Kyber [8], and MQ-Deadline [9] on flash-based NVMe SSDs (§2).
We start our investigation by studying the performance (expressed
as IOPS or latencies) using fio, a widely used microbenchmark
with the high-performance io_uring storage engine [19] on our
8 NVMe SSDs setup with a peak performance of 5.9 million 4KiB
IOPS (see Table 1). We specifically motivate and investigate the
following research questions (RQ) around the performance and
overheads of Linux I/O schedulers with the key findings (KF):

(RQ1) What is the CPU overhead for modern fast NVMe
SSD devices? Can the Linux storage stack saturate multiple NVMe
SSDs? This research question is important to establish the baseline
performance of the SSDs around which the rest of the scheduler
analysis is done. The key motivation for this question is to estab-
lish under which configurations the CPU cores or SSDs become a
bottleneck, and how they influence the performance of I/O sched-
ulers. KF-1: for high-performance NVMe SSDs, the CPU is the key
bottleneck (even with the None scheduler), thus making the scheduling
“efficiency” of I/O schedulers a key factor in the performance delivered
to the workloads (§3).

(RQ2)What are the scheduler overheads, and how do these
overheads scale with the I/O and device concurrency? NVMe
devices have deep I/O queues with multiple parallel queues. Hence,
typically it takes multiple requests to saturate a single device. Here
we study the overhead of I/O scheduling and how it scales with
concurrent requests when requests come from a single workload
(intra-process) and multiple workloads (inter-process). KF-2: once
the CPU becomes the bottleneck, the Linux I/O schedulers can induce
63.4% overheads in throughout and 50× increase in the P99 latencies
over the None scheduler. We also report that the presence of multiple
SSDs helps to reduce overheads associated with the device-specific
locking and synchronization overheads (§4).

(RQ3) How can I/O schedulers help to control interference
in the presence of competing workloads, specifically latency-
vs-bandwidth and read-vs-write? These kinds of mixed work-
loads are quite common in the cloud/enterprise settings. Hence,
it is important to study what are the scheduler overheads in this
scenario. The extent of the interference typically governs what kind
of SLAs (99 percentile, worst-case performance scenarios) storage
service providers can offer to their tenants. KF-3 and KF-4: Kyber
and BFQ can provide good bounded performance in the presence of

Table 1: Details of the benchmarking environment.

Component Configuration
CPU Single socket Intel(R) Xeon(R) Silver 4210R CPU 10 cores

@ 2.40GHz, Hyper-threading disabled, Turbo disabled.
Memory 256GB, DDR4.
Storage 8× Samsung 980 PRO 1TB, Average latency (r/w):

∼68/15 𝜇s, peak random read IOPS: 1M@4KiB/device
at the queue depth 32.

Software Ubuntu 20.04 with Linux kernel v6.3.8 (released
April’23), fio v3.35, SPDK 22.09.

interference when the CPU is not the bottleneck, however, BFQ suf-
fers from performance scalability overheads. Hence, we conclude that
overall Kyber is the best fit Linux I/O schedulers for SSDs (§5).

(RQ4) How do a scheduler configuration parameters af-
fect the schedulers’ behavior on competing workloads? The
Linux I/O schedulers provide tunable parameters, which affect the
schedulers’ behavior. Based on our empirical findings, we further
present a detailed analysis of the Kyber scheduler which is specifi-
cally designed for modern SSDs. It has two unique configuration
parameters: read and write target latencies. We perform a configu-
ration space exploration for Kyber. KF-5: Kyber can be configured
to prioritize latency or total throughput by tuning its read and write
target latencies, but not both (§6).

Our key contributions in this work include:

• To the best of our knowledge, this is the first-of-its-kind
systematic study about overhead quantification and charac-
terization of state-of-the-practice I/O schedulers with modern
NVMe SSDs, exploring their performance, scalability, and
interference patterns, resulting in 23 observations and 5 key
findings.

• Weexplore the configuration space of Kyber, an SSD-optimized
scheduler. We report that Kyber has the least amount of CPU
overhead, and it can provide bounded performance in the
presence of read/write interference.

• To facilitate reproduction, we open-source the design and im-
plementation of our code and datasets at https://github.com/
stonet-research/icpe24_io_scheduler_study_artifact. Perma-
nent link: https://zenodo.org/records/10599514.

2 BENCHMARKING ENVIRONMENT
In this section, we present details about the benchmarking environ-
ment, workloads used, and selected Linux storage schedulers.

2.1 Hardware and Software
We use fio [4] as the workload generator with the io_uring I/O
engine [14, 19, 51]. Our setup is able to deliver a peak random
read performance of 3.4 Million IOPS with the Linux storage stack
under Linux v6.3.8 (5.9 Million IOPS with SPDK that by-passes
the kernel), and an average read latency of 68 𝜇s (4KiB, with a
queue depth of 1, QD=1); hence, creating a unique opportunity
to study I/O schedulers in this high-performance I/O setup. We
use three metrics to evaluate the performance of the Linux I/O
schedulers: throughput, latency, and CPU usage. We measure the
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throughput as I/O operations completed per second (IOPS). La-
tency measurements focus on the tail latency where we report 99
percentile latencies (P99) with a complete CDF distribution. The
average CPU usage is measured using fio, which reports “the CPU
time used by the process/run time”. CPU usage = 1 means that the
process uses a whole CPU core. fio gets the resource usage with
the Linux getrusage system call [6]. We precondition the flash
SSDs according to [18], by sequentially writing the entire device,
then randomly writing 4KiB blocks with a total of 2TiB data. Each
device can deliver 1MIOPS@4KiB random read according to the
specification. However, we only get ∼770 KIOPS with 4KiB random
read workload after the preconditioning.

2.2 Workload Patterns and Methodology
We focus on two kinds of applications in this work, latency-sensitive
and throughput-bound. We use L-app to represent latency-sensitive
applications such as database queries and T-app to represent throughput-
bound applications such as batch processing jobs like Map-Reduce.
We use three kinds of synthesized workloads to simulate these two
kinds of applications:

(1) L-app (latency-sensitive application) generates requests of
4KiB block sizes with an I/O depth of 1 (only one outstanding
request at a time, we also refer to the I/O depth as queue
depth or QD in the following sections).

(2) T-4KiB-app (small I/O, throughput-bound application with
4KiB block size) generates requests of 4KiB block sizes with
an I/O depth of 128. With 4KiB block size, a single core can
not saturate the evaluated Samsung SSD on our setup. We
use T-4KiB-apps to show the effect of I/O schedulers on I/O
performance when the CPU is the bottleneck.

(3) T-64KiB-app (large I/O, throughput-bound application with
64KiB block size) generates requests of 64KiB block sizeswith
an I/O depth of 128. With the 64KiB block size, the evaluated
Samsung SSD can be saturated with a single CPU core in our
setup for all I/O schedulers. We use T-64KiB-apps to show
the effect of I/O schedulers when the SSD is the bottleneck.

Experiments with read-only workloads run for 150 seconds (2 min-
utes + 30 seconds warm-up time) since the read performance of
flash-based SSDs is stable. For applications that issue writes, we run
each experiment for 12 minutes (6 minutes + 6 minutes warm-up
time) with 5 repetitions to get stable results, we report both the
average value and standard deviation.

2.3 I/O Schedulers Under Study
The Linux kernel has four multi-queue enabled I/O schedulers:
None, BFQ [1], Kyber [8], and MQ-Deadline [9]. For this study, we
use the default configuration of each scheduler as they are the most
likely used configurations for real workloads. For Kyber we further
explore the configuration space to synthesize guidelines (§6).

None is the default I/O scheduler for NVMe devices that is recom-
mended often to reduce the scheduling overheads with fast NVMe
storage devices [49, 50]. Technically, None is not an I/O scheduler
since it dispatches I/O requests to the NVMe driver immediately
when it gets a new request without reordering the requests. Due
to its simplicity, None has the lowest overheads among all I/O
schedulers. Hence, we select it as the baseline scheduler.

MQ-Deadline is the multi-queue version of the Deadline sched-
uler [2]. The main goal of MQ-Deadline is to guarantee the start
service time for a request. MQ-Deadline maintains two read-write
queue pairs, a sorted queue pair and a FIFO queue pair.MQ-Deadline
issues I/O requests in increasing sector orders (from the sorted
queue) unless there is a request that violates the service dead-
line (from the FIFO queue). When the service deadline is violated,
MQ-Deadline issues the request from the FIFO queue.

BFQ (Budget Fair Queuing) is a proportional-sharing I/O sched-
uler that is designed to provide fair bandwidth sharing and low
latency for latency-sensitive applications. BFQ associates each pro-
cess with an internal request queue and a budget according to each
process’ weight in the number of sectors. BFQ uses worst-case fair
weighted fair queuing+ (WF2Q+) [15] to select the next queue to
service and exclusive device access is given to the selected queue
until its I/O budget is used up or a timeout happens. To provide low
latency for real-time applications such as video players, BFQ uses
heuristics to detect applications that are sensitive to latency and
gives them higher priority. BFQ is the most complex Linux kernel
I/O scheduler (BFQ is ∼10,000 LOC, against ∼1,000 LOC for Kyber
and MQ-Deadline), and is believed to have the highest overhead
among the Linux I/O schedulers [1, 12].

Kyber is designed for fast multi-queue devices to deliver low
latency for reads. It is based on a heuristic that a process that issues
a read I/O request usually waits for the request to finish and the
data to be available (synchronous completion). In contrast, a pro-
cess that issues a write I/O request usually can continue executing
before the writes are finished (asynchronous completion). Thus,
Kyber prioritizes reads over writes, but not to the extent where
writes are starved. To achieve high responsiveness, Kyber prevents
requests from building up on the device side with tokens. A detailed
description of how Kyber works is presented in §6.

3 BOTTLENECK ANALYSIS: CPU OR NVME

We start our analysis by characterizing the performance of Samsung
NVMe devices with the None scheduler to explore how CPU or
NVMe devices become a bottleneck. Figure 1 shows our results. In
the graphs, each line (same block size, increasing QD) has a hook
shape: as QD increases, the throughput grows fast (x-axis), while
the latency remains stable. At a certain turning point, the latency
starts to grow fast with throughput remaining the same (because of
queuing delays). This turning point is called the saturation point
or knee point. At the saturation point, either the CPU or the SSD
becomes the bottleneck.

3.1 What throughput and latency can a single
SSD and a single CPU core deliver?

To answer this question, we configure a single SSD with a sin-
gle CPU core and issue a random read workload. We measure the
throughput and latency as we increase the number of outstanding
requests (i.e., queue depth). Figure 1a shows the throughput as
IOPS (x-axis) with the average latency (y-axis, the lower the bet-
ter) for multiple queue depths (points on the lines). In this setting,
we report that the performance of request sizes smaller than or
equal to 4KiB are similar in nature, all saturating at a queue depth
of 64 with 370KIOPS as the peak performance. After this point,
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Figure 1: Throughput and latency of a Samsung 980 PRO 1TB with varying queue depth and number of processes.

increasing the queue depth leads to further queuing delays, hence
an increase in the latency. At this point, the CPU is the primary
bottleneck as it is 100% utilized, yet the SSD device itself is not satu-
rated (Observation-1, O-1). For request sizes greater than 4KiB, the
throughput decreases proportionally, and the CPU gets saturated
at shallow queue depths, hence, the latencies start to increase.

3.2 How does the performance scale as we
increase the number of CPU cores or SSDs?

In the subsequent experiments, we increase the number of CPU
cores with one SSD (Figure 1b) and then the number of SSDs (Fig-
ure 1c). We observe in Figure 1b that with 4 cores (denoted as 4p, or
processes), a single SSD is saturated with the peak performance of
774 KIOPS. In Figure 1c, we continue to scale the number of CPU
cores with all 8 SSDs (the max possible). The figure shows that
the peak performance shifts from 774KIOPS (from Figure 1b) to
3.4MIOPS for 10 CPU cores (and 16 as well). In this configuration, all
10 CPU cores are 100% utilized and this is the peak performance the
Linux kernel can deliver with the io_uring engine (bounded by the
CPU performance). We also plot the SPDK performance, which is a
high-performance, kernel-bypass storage stack [10]. With SPDK, it
takes 6 CPU cores (“6p SPDK” line) to deliver 5.2MIOPS, saturating
the SSDs (within 85% of the peak possible 6.2MIOPS (8×774 KIOPS)
that our hardware should deliver). This demonstrates that SPDK
(1.3MIOPS/core) is still the state-of-the-art storage stack, which is at
least 3.6× more efficient (single core peak IOPS performance with 8
SSDs, “1p” and “1p SPDK” lines in Figure 1c) than the Linux storage
stack (370 KIOPS/core) (O-2). SPDK can deliver higher throughput
than the Linux storage stack when the CPU is the bottleneck be-
cause SPDK is more CPU efficient than the Linux storage stack.
Previous study shows that SPDK needs fewer CPU instructions to
process each I/O request than the Linux storage stack [51].

3.3 Summary
What is the key resource bottleneck for the L-app, T-4KiB-app, and T-
64KiB-app? The key finding (Key Finding, KF1) here is that as the
NVMe device speeds are improving, the CPU becomes the primary
bottleneck. Modern fast NVMe storage devices like Samsung 980
PRO 1TiB, can require more than a single CPU core to saturate
the performance of the SSD. On our setup, L-apps (QD=1), and
T-4KiB-apps (QD=128) are bounded by the CPU performance. We
report that the T-4KiB-app needs at least 4 T-4KiB-apps on 4 CPU
cores to saturate a single SSD. The T-64KiB-app can saturate a
single SSD with only one CPU core (not shown). Hence, the age-old

mantra of “CPU is fast, I/O devices are slow” does not hold anymore
for modern fast NVMe SSDs (O-3). We answer RQ1 by identifying
when the CPU or the SSD becomes a bottleneck (the inflection or
saturation points). With the Linux I/O stack, the CPU can only
deliver 51.6% of the peak hardware throughput (3.2MIOPS out of
a possible 6.2MIOPS) before it becomes the bottleneck. When we
introduce an I/O scheduler to deliver a quality-of-service (QoS) in
this setting, it also competes for the CPU cycles. The operational
complexity of the scheduler determines the raw performance loss
that is traded to deliver a quality-of-service (QoS). In the following
section, we study the impact of I/O schedulers (§4), and quantify
the performance loss and QoS in the presence of competing tenants
with interference (§5).

4 I/O SCHEDULER SCALABILITY
In the previous section, we show the baseline performance and
overhead between a CPU and NVMe devices without I/O sched-
ulers with multiple concurrent requests and processes. We report
that a single process gets 370 KIOPS at the queue depth (QD) of 64,
and the Linux storage stack can not fully saturate 8 SSDs even with
16 T-4KiB-apps (100% CPU utilization). In this section, we introduce
I/O schedulers and answer the RQ2 about how the performance
and overheads scale with increasing amounts of concurrency with
NVMe devices with I/O schedulers. We evaluate the scalability
by analyzing workload throughput (IOPS) and tail latency (P99)
with a varying number of hardware resources. Specifically, we
measure the scalability of both latency-sensitive and throughput-
bound workloads across 2 resource axes: number of SSDs and CPU
cores. We look at both intra- and inter-process scalability. Intra-
process scalability refers to configurations where we increase the
concurrency within a single process by increasing the number of
concurrently issued outstanding I/O requests. With inter-process
scalability, we increase the concurrency by increasing the number
of parallel processes while keeping the concurrency within each
process fixed. The expectation here is that multiple processes exer-
cise the scheduling, locking, and synchronization overheads within
the scheduler.

4.1 Scheduler Overheads on Latency
What are the scheduler overheads, and howdo they scalewith
increasing I/O concurrency? In this section, we study the impact
of I/O concurrency overheads from schedulers on latency-sensitive
applications (L-app). For this, we study the intra- (Figure 2) and
inter-process (Figure 3) concurrency overheads. For intra-process
concurrency, we have a single process (pinned to a core) that
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Figure 2: Intra-process scalability latency CDFs with increasing queue depth (QD); Note the different x-axis scale for (e).
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Figure 4: CPU usage for intra/inter-process concurrency.

issues 1, 16, 32, 64, or 256 outstanding requests at a time. For this
process, the latency CDF is shown in Figure 2 (annotations are for
P99 latency). There are two key observations here. Firstly, for the
concurrency of 1 and 16, the latency profile shape of different I/O
schedulers looks quite similar. This is due to the fact that as we
increase concurrency for a single process, the CPU load increases
but still remains under 100%, hence having spare capacity (Fig-
ure 4a). We still report that P99 latencies increase up to 73.9% for
all schedulers (from 78.3 to 136.2 𝜇s). As long as the CPU is not 100%
utilized, all three schedulers have comparable performance (O-4).
Secondly, when the CPU load is 100% (at QD=32), the scheduler per-
formance starts to diverge significantly (Figure 2 (c–e)). Hence, there
is a clear number of outstanding requests where BFQ introduces the
maximum overheads (43.2% over the None scheduler for QD=256) (O-
5). The overall P99 latencies deteriorate from 77.3–79.4 𝜇s (QD=1)
to 806.9–1,155.1 𝜇s (QD=256), due to the CPU overheads (as we
show previously that a single app can not saturate a single SSD).

In the case of inter-process concurrency (multiple concurrent
L-apps pinned on a single CPU core with each having QD=1), the
latencies deteriorate faster than the intra-process configurations
as shown in Figure 3. With the inter-process setup, the Linux ker-
nel has to deal with multiple concurrent processes and associated
abstractions and overheads (scheduling, context switching, virtual
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Figure 5: L-app inter-process scalability (10 cores, 1 SSD);
Note in (b) the y-axis is the CPU usage, which is from [0–10],
representing 10 CPU cores.

memory). In a single process case, many of these overheads could be
amortized or eliminated. Hence, we also report that the single CPU
core where all of these concurrent processes are pinned is saturated
with QD=16 via 16 processes as shown in Figure 4b. In comparison,
the intra-process saturation point is at QD=32. Overall as the con-
currency increases, the inter-process P99 latencies are approximately
4× higher than their intra-process latencies (O-6). For example, at
QD=256 concurrency, the intra-process and inter-process P99 la-
tencies with Kyber are 1,003.5 𝜇s and 4,227.1 𝜇s, respectively.

We further experiment with the inter-process setup with all
10 cores, thus no pinning and restricting the performance to a sin-
gle core. We show the results in Figure 5. An interesting observation
is that with more CPU cycles being available (single core to 10 cores),
all the schedulers improve their P99 latencies and bring it closer to
their single CPU core, intra-processes performances (Figure 2e), due
to the reduction of process scheduling and context switches (O-7).
Kyber and None improve much better than BFQ and MQ-Deadline.
Their performances are closer to each other with overlapping lines
in Figure 5a. BFQ has 1.57×worse P99 latency than its intra-process
counterpart. Both BFQ andMQ-Deadline have more slanted shapes,
thus having higher P50 and P75 latencies than None and Kyber.
This behavior can be explained by their CPU utilization as shown
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Figure 6: Normalized heatmap for P99 tail latency differences
(scale from 0–60×) for various concurrency levels (y-axis,
1–256) achieved with (a) QD increase with a single process
(intra-process) with 1 CPU core; (b) increasing the number
of processes with 1 QD on 1 CPU core (inter-process); and
(c) increasing the number of processes with 1 QD on 10 CPU
cores (inter-process). The baseline is the None scheduler with
1 concurrency (bottom left box with 1.0 value).

in Figure 5b where BFQ andMQ-Deadline have significantly higher
CPU utilization than Kyber and None. With 64 processes, both BFQ
and MQ-Deadline are CPU-bounded and thus experience quick
degradation of latencies. For 256 processes (for which Figure 5a
shows the latencies), None and Kyber use 7 out of 10 CPU cores
whereas BFQ and MQ-Deadline use all 10. These observations sum-
marize that among the three schedulers under study, Kyber is the most
light-weight, while BFQ is the most CPU intensive and complex (O-8).

In order to visualize the difference between intra- and inter-
process latencies overheads we also plot a normalized heatmap in
Figure 6. Here we illustrate P99 latencies degradation (normalized
to the 1 concurrency with None scheduler) as we increase the level
of concurrency in the system (the y-axis, from 1–256) in three
configurations: intra-process (1 CPU core), inter-process (1 CPU
core), inter-process (10 CPU cores). The heatmap shows that up to
a concurrency of 8, the P99 latencies increase slowly over the None
scheduler, and intra-process counterparts (the baseline, showing
the normalized value of 1.0). Between 8–16 concurrency, the CPU
becomes the bottleneck, and at this point, the deterioration starts very
quickly reaching higher than 50× for inter-process overheads on a
single CPU for all schedulers (O-9).

4.2 Scheduler Overheads on Throughput
We now bring our attention to the throughput-bounded T-apps
where we measure peak throughput (IOPS) and show what scal-
ability and overheads are observed by such workloads with I/O
schedulers. In this section, we study four specific questions regard-
ing the scalability properties of the CPU cores and SSDs:

Firstly, what are the scheduler overheads for the throughput-
bounded applications, andhowdo they scalewith the number
of CPU cores?We start with reporting the scheduler performance
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Figure 7: T-app inter-process scalability (10 cores, 1 SSD) with
an increasing number of T-4KiB-apps.
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(in IOPS) as we increase the number of T-4KiB apps. Recall from §3
that a single T-4KiB-app can not saturate a single SSD, and at least
3–4 T-4KiB-apps are needed to saturate a single SSD with the None
scheduler. Figure 7 shows scalability results in throughput (IOPS,
y-axis, higher is better) for multiple T-4KiB-apps (x-axis) on a single
SSD. There are two key observations here. Firstly, the Kyber sched-
uler performs very closely to None, where both reach the peak sin-
gle SSD performance of 785.7 KIOPS with 3 processes. For reference,
we also have a line for SPDK that can deliver 790.6 KIOPS with a sin-
gle CPU core, thus demonstrating a wide gap between the in-kernel
and kernel-bypass (SPDK) storage stacks. Secondly, both BFQ and
MQ-Deadline can not reach the peak device throughput with any
number of concurrent T-4KiB-apps. BFQ and MQ-Deadline deliver
a peak performance of 315.3 KIOPS (0.40× of the peak 785.7 KIOPS)
and 569.2 KIOPS (0.72× of the peak 785.7 KIOPS), respectively. This
loss represents a significant performance degradation, and we conclude
that BFQ and MQ-Deadline are unsuitable to be used with modern
NVMe SSDs (O-10). The reason for this performance degradation is
related to each scheduler’s complexity, CPU utilization, and scala-
bility bottlenecks, specifically lock contention.

Figure 7b shows the CPU utilization where we report that de-
spite having CPU available (not all 10 CPU cores are 100% utilized
until 10 processes), both BFQ and MQ-Deadline suffer from sig-
nificant lock contention, thus limiting their performance scalabil-
ity. To further analyze their CPU utilization behavior, we break
down the CPU utilization of these I/O schedulers. We count the
total number of CPU cycles (cpu-cycles counter with the Linux
perf framework) and classify lock-related CPU cycles by attribut-
ing them to specific lock-related functions: native_queued_spin-
_lock_slowpath, _raw_spin_lock, _raw_spin_lock_irq, _raw-
_spin_lock_irqsave, and mutex_lock. We then plot the fractions
of CPU cycles spent in such lock-related functions in Figure 8.
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Figure 9: T-app inter-process scalability (10 cores, 10 concur-
rent T-4KiB-apps) with an increasing number of SSDs.

From these graphs, we observe that even for one SSD, BFQ and
MQ-Deadline spend a significant fraction of their CPU cycles on
locking/synchronization functions (as high as 78.0% for 10–15 pro-
cesses). Increasing the number of available SSDs from 1 to 8 (Fig-
ure 8b) reduces the overall CPU cycles spent in lock-related func-
tions for BFQ and MQ-Deadline significantly, by up to 67.1%, sug-
gesting device-specific nature of these locking overheads. Yet even
in this case, almost a quarter of CPU cycles (up to 27.1%) are spent
on the locking-related functions. In comparison, Kyber only spends
14.7% (single SSD) to 6.2% (8 SSDs) of CPU cycles on lock-related
functions. Based on this analysis, we conclude that locking is the
cause of bottleneck for scalability of BFQ and MQ-Deadline and must
be urgently tackled (O-11). As of January 2024, Linux kernel devel-
opers have also identified this locking issue and are improving the
scalability of the BFQ and MQ-Deadline schedulers [35, 36].

Secondly, how does the performance scale in the presence
of lock-related overheads with the number of NVMe SSDs?
Figure 9 shows our results as we study the performance scalabil-
ity properties of the schedulers (as IOPS, on the y-axis, higher is
better) with 10 T-4KiB-apps (fixed) when we increase the number
of SSDs from 1 to 8 (x-axis). In this experiment, the relative over-
heads and ranking of I/O schedulers remain the same, where Kyber
performs the best, followed by MQ-Deadline and lastly BFQ. The
performance of BFQ and MQ-Deadline improves sub-linearly from
286KIOPS and 489KIOPS with a single SSD to 1.25MIOPS and
1.90MIOPS for 8 SSDs, respectively. An interesting observation
here is that even with a single SSD, the CPU load for BFQ and
MQ-Deadline is 100% for all 10 CPU cores, yet the performance im-
proves as the number of SSDs increases. We speculate (not verified)
that this is due to the presence of device-specific locking that exists
for a single device, but the presence of multiple devices offers more
opportunities for parallelism without being restricted by a single
device lock. In the case of Kyber and None, they reach the CPU
saturation points with 4 and 5 SSDs, respectively, thus showing
IOPS scaling up to those points, delivering a peak performance of
2.63MIOPS (Kyber) and 3.42MIOPS (None).

Thirdly, what is the peak performance that various I/O
schedulers can provide in Linux? We run the full hardware
configuration with 10 CPU cores, 8 SSDs, and vary the number of
processes from 1 to 15, and measure the peak IOPS performance
of different I/O schedulers. Figure 10 shows our results. There are
three specific observations from this experiment. Firstly, there is
a clear order in terms of performance among the schedulers (in
ascending order): BFQ (1.26MIOPS), MQ-Deadline (1.90MIOPS),
Kyber (2.67MIOPS) and None (3.42MIOPS). Secondly, all of these
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Figure 10: T-app inter-process scalability (10 cores, 8 SSDs)
with an increasing number of T-4KiB-apps (x-axis).

schedulers reach their peak throughput with 10 processes where
all CPU cores become 100% utilized. Lastly, for comparison, we also
show the performance of SPDK that can deliver 5.45 MIOPS with 9
CPU cores, demonstrating an almost 2× performance gap to the next
best I/O scheduler, Kyber. From this experiment, we conclude that the
CPU and associated heavy Linux software stack and I/O schedulers
have become the performance and scalability bottleneck with modern
NVMe devices (O-12). Though this final takeaway message is not a
surprising find, our key contribution is quantifying the gap between
schedulers via controlled experiments where we characterize the
performance of the I/O schedulers under various conditions (CPU
or SSD becoming the bottleneck). For example, between BFQ and
Kyber, there is a performance difference of 2.1×.

Lastly,Howdo I/O schedulers scalewith throughput-bound
applications on a single SSD with large request sizes (64KiB)?
Unlike the prior evaluation, where the CPU becomes the bottle-
neck with the T-4KiB-apps, we repeat the same experiments for
T-64KiB-apps and report that in this scenario all configurations are
SSDs bounded. In these experiments, the performance of all I/O
schedulers is almost identical (not shown in any graph). All the
I/O schedulers are able to saturate the SSD with only 2 processes for
bandwidth-driven workloads (O-13). The None scheduler reaches
a peak throughput of 232KIOPS with only a single T-64KiB-app
process. As the SSD is the bottleneck for the T-64KiB-apps, the
CPU utilization for all I/O schedulers remains low, (less than 2 CPU
cores). BFQ has a slightly higher CPU utilization of 1.3 CPU cores,
8.3% higher than None (1.2 CPU cores).

Answering RQ1 and RQ2 with KF-2: Based on the analysis in
this section, we summarize when the CPU is not the bottleneck, all
schedulers perform similarly. As the CPU progressively becomes a
bottleneck (i.e., 100% utilization), the Linux I/O schedulers can in-
troduce up to 63.4% performance overheads for the throughput, and
more than 50× degradation for P99 latencies over the None sched-
uler. We also report that the presence of multiple SSDs improves
the performance scalability of I/O schedulers due to eschewing the
device-specific locking overheads. Based on these findings we rec-
ommend using Kyber scheduler (lowest CPU overheads) for NVMe
SSDs with modern multicore CPU machines.

5 I/O INTERFERENCEWITH CONCURRENT
WORKLOADS

In this section we investigate RQ3: “how can I/O schedulers help to
control interference in the presence of competing workloads, specifi-
cally latency-vs-bandwidth, and read-vs-write”. Quality-of-service
(QoS) is an essential component of I/O schedulers in multi-tenant
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Figure 11: L-app tail latency with an increasing number of
interfering background applications; Note: scales differ on
the y-axis and they are in Milliseconds!

environments (e.g., defined as SLAs), especially for latency-critical
workloads. However, there is limited literature available on the
QoS of state-of-the-practice I/O schedulers available in Linux with
modern high-speed NVMe SSDs. In this section, we evaluate the
QoS of applications in multi-tenant environments. We define the
QoS as the P99 tail latency for latency-sensitive applications and
the IOPS for throughput-bound applications. The unique aspect of
our study is that we study the mixed settings (mixing latency with
throughput) as well as read-write interference, the latter of which
is unique to flash-based SSDs [20, 26, 33, 40, 46, 52, 56, 57].

5.1 Latency Interference from Concurrent
Read-Write T-4KiB-apps

For latency-sensitive applications (L-apps), it is essential that tail
P99 latency is low and bounded even in the presence of concur-
rent workloads. Below, we determine if Linux I/O schedulers are
able to meet such demands by controlling the interference among
workloads. We devise an experiment in which one foreground
L-app issues I/O requests concurrently with multiple interfering
throughput-heavy T-4KiB-apps and T-64KiB-apps workloads in the
background. Considering that SSD writes and reads typically have
a different performance within flash that can lead to read-write
interference, our background workloads issue both (random) read
and write I/O requests to the SSD.

What kind of bounded P99 latencies do the I/O schedulers
offer when a foreground L-app runs with background read
andwrite T-apps? For this experiment, wemeasure the P99 latency
of a single L-app while we increase the number of background read
and write applications. Figure 11 shows our results of P99 latencies
(y-axis, lower is better) with four different configurations with an
increasing number of background workloads (on the x-axis): (a)
multiple random read T-4KiB-apps (CPU bounded); (b) multiple
random read T-64KiB-apps (SSD bounded); (c) multiple random
write T-4KiB-apps (CPU bounded); and (d) multiple random write

T-64KiB-apps (SSD bounded). From Figure 11 we observe that BFQ
has the lowest P99 read latencies under themajority of the evaluated
scenarios (except for random read T-64KiB-apps), with up to 34.8%
lower latency than None (212.0 𝜇s vs. 138.2 𝜇s). The lower latency
for BFQ holds for small (4KiB) reads and small (4KiB) and large
(64KiB) write requests (O-14). We have two assumptions about why
BFQ achieves low latency for the L-app: (1) the BFQ-specific option
low_latency [1] automatically detects and provides low latency for
latency-sensitive applications, which is enabled by default; and (2)
BFQ gives exclusive access of the SSD to a workload (no concurrent
request dispatching from multiple workloads), which reduces the
interference from other workloads. From Figure 11 (c) and (d) we
also report that Kyber has low latencies with concurrent small
(4KiB) and large (64KiB) write requests (similar performance to
BFQ for writes). However, the latencies are only slightly better than
using the None scheduler for concurrent reads (Figure 11b). The
reason for Kyber’s low P99 latency in the presence of concurrent
writes (Figure 11 (c-d)) is that Kyber prioritizes read requests over
writes [8] under all circumstances. Considering that the L-app solely
issues reads, this means that the foreground L-app is prioritized
among the concurrently writing background workloads. Hence the
L-app with reads is prioritized among the concurrent writers, but is
treated similarly and reaps no benefit with concurrent readers (O-15).

We further identify that the None scheduler is not capable of
bounding or guaranteeing any latency performance, and performs
the worst in multiple scenarios. Specifically with read-write inter-
ferences, as shown in Figure 11 (c-d), the P99 latency deteriorates
very quickly. With 1 background workload, the performance of the
None scheduler is the same as other schedulers. However, as the
number of background workloads increases the gap widens to as
large as 139× (404.8ms for None vs. 2.9ms for BFQ in Figure 11d).

In Figure 11c and Figure 11d, the read latency of MQ-Deadline
increases significantly (up to 32.4× with T-4KiB-apps and 4,142.2×
with T-64KiB-apps) as the number of concurrent write applications
increases. The performance trend is very similar to the performance
trendwhenNone scheduler is used. The reason is thatMQ-Deadline
does not have different priorities between reads and writes, and
does not prioritize one application over the other. Therefore, the
effects of read/write interference are not controlled, as requests are
dispatched summarily to the SSD for both operations as they arrive
in the scheduler. As the SSD becomes the bottleneck with 3-4 con-
current workloads, the I/O latencies reflect the read-write latencies
of the SSD performance with interference. To summarize (KF-3), (i)
BFQ offers better control over interference (lower P99 latencies) for
latency-sensitive workloads (while trading performance, §4) than
other schedulers; (ii) Kyber and BFQ excel in managing read-write
interferences among concurrent workloads. However, Kyber has
poor performance with read-read interference.

5.2 Throughput Interference from Read-Write
Workloads

For throughput-bound applications (T-apps), throughput should be
as high as possible and shared evenly among concurrent applica-
tions. Therefore, we evaluate if a foreground T-app can maintain
a high throughput in the presence of concurrently running back-
ground workloads. We run a single foreground T-4KiB-app with an
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Figure 12: Read throughput (IOPS) of a T-4KiB-app work-
load with an increasing number of interfering background
T-64KiB-app workload. Note: The y-axis is log-scale.

increasing number of concurrent T-64KiB-apps in the background;
hence, introducing workload competition for throughput resources.
Similar to §5.1, we evaluate the interference from both read and
write background workloads. We plot the throughput of the fore-
ground T-4KiB-app in IOPS (y-axis, higher is better) in Figure 12,
with the number of concurrent background T-64KiB-apps increases.

Can I/O schedulers evenly share the IOPS performance
among concurrent throughput bounded (4KiB and 64KiB)
workloads?With the even sharing the expectation is that an IOPS-
driven workload (T-4KiB-app) should observe linearly bandwidth
deterioration as throughput-bounded workloads are run in the
background. Figure 12a demonstrates that none of the schedulers
are capable of offering a bounded and linear IOPS performance
sharing with read-read interference, and the performance of the
foreground workload drops very quickly (the y-axis is logarithmic).
An investigation of the total throughput (sum of the T-app and back-
ground operations) shows that the IOPS is divided equally among the
applications (O-16). However, a point to be noted here is that even
though 4KiB and 64KiB applications both receive equal IOPS, the
64KiB applications get 16× more bandwidth than the 4KiB appli-
cation due to their larger request size. Hence, all schedulers fail
to provide equal bandwidth sharing to ensure a proportional IOPS
sharing among the workloads.

IOPS sharing in the presence of read-write interference is man-
aged better. In Figure 12b we report that Kyber and BFQ offer the high-
est throughput for read operations for the foreground workload (O-17).
We have two key findings. Firstly, None andMQ-Deadline both lead
to read IOPS degradation for the foreground workload in the pres-
ence of read-write interference from the background writer work-
loads. A reason for this is that background writes are faster than the
reads (lower latencies), hence, they can occupy the device’s internal
bandwidth the majority of the time. None and MQ-Deadline do not
have any mechanisms to throttle writes to help reads. In contrast,
Kyber differentiates the two, and prioritizes the reads, hence, main-
taining a flat-line performance for the foreground T-4KiB-app. The
reasons that BFQ leads to a higher throughput are twofold: (1) the
fair sharing where BFQ equally divides the available bandwidth
between applications; (2) BFQ prioritizes interactive applications
(i.e. the foreground app could have been identified as interactive).
Beyond 16 concurrent applications in Figure 12b, a bottleneck can
be identified for BFQ (O-18). The throughput of BFQ decreases by
99.2% between 16 and 32 concurrent applications and averages at
1.2 KIOPS, down from 147.7 KIOPS with 16 background apps. This

leads to a significantly lower throughput than the throughput of
the other schedulers (from 73.9% up to 95.8%). This is a consequence
of its locking overheads as lock contention increases significantly
after 16 processes.

Hence, our findings recommend to (KF-4) (i) use Kyber or BFQ
to control read/write interference; (ii) be aware of concurrency
limits to the schedulers as the CPU becomes 100% occupied, a
configuration that can lead to significant performance losses.

6 KYBER CONFIGURATION EXPLORATION
In the previous sections, we observed that both BFQ andMQ-Deadline
are unable to saturate a single fast SSD because of high CPU
overhead and scalability issues, which makes them unsuitable for
such SSDs. Kyber, on the other hand, is specifically designed for
fast multi-queue devices and has better scalability than BFQ and
MQ-Deadline. Henceforth, we focus the rest of our studies on Kyber.
In particular, we look at configuring Kyber since Linux provides
various configuration parameters for this scheduler. We evaluate
how Kyber’s parameter configuration affects its performance char-
acteristics, and we give guidelines on configuring Kyber in practice,
thus answering how do a scheduler configuration parameters affect
the schedulers’ behavior on competing workloads? (RQ4).

Kyber has two configurable parameters [8], read_lat_nsec (de-
fault = 2ms) and write_lat_nsec (default = 10ms) — we will refer
to them as R lat andW lat. These parameters control the desired or
target request latencies. In order to prioritize a read or a write type
of I/O request, Kyber uses tokens for read and write requests. The
number of tokens helps Kyber to control the maximum number of
I/O requests of a particular type in flight, bounding the size of the
request queue to SSDs, and as a result, the maximum latency for
the I/O request. The number of tokens can not be configured with
Kyber’s parameters directly. Kyber controls the number of tokens
by closely monitoring the current read and write completion laten-
cies and comparing them against the target latencies, i.e., R lat and
W lat. The number of tokens remains the same if both achieved
read and write latencies are lower than the target latencies. If the
completion latency exceeds the target latency, Kyber increases the
number of tokens. Hence, setting a lower target latency for reads
or writes implicitly prioritizes it (by not letting the requests build
up in the queue, thus dispatching it immediately).

The number of tokens for a particular type of request (read or
write) is reduced when (1) the achieved P90 latency for that request
type is lower than the target latency (i.e., this type of request is well
served); and (2) the achieved P99 latency for the other type is higher
than the target latency (i.e., the other request type is badly served).
In this case, Kyber can re-prioritize the badly served request by
reducing the number of tokens for the other type. The minimum
number of tokens for both read and write is 1, and the maximum
number of tokens is 256 for read and 128 for write. We define the
number of read tokens as R Tokens and write tokens asW Tokens.
Below, we investigate how setting Kyber’s target latencies affects
Kyber’s throughput and tail latency.
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Table 2: Kyber configuration impact on the throughput of
a concurrent read and write application (R and W KIOPS).
Highlighted entries are discussed in §6.1.

ID R lat W lat R, in KIOPS W, in KIOPS R Tokens W Tokens

0 2ms 10ms 156.7±5.3 103.4±5.1 256±0 93±7
1 0 s 10ms 189.4±11.5 79.4±2.2 256±0 54±15
2 2ms 0 s 137.8±0.6 114.8±4.2 253±2 128±0
3 0 s 0 s 136.1±1.0 118.5±5.0 256±0 128±0
4 1 s 1 s 137.2±1.8 113.6±5.7 256±0 128±0
5 0 s 1 s 219.9±11.0 70.0±0.3 256±0 1±0
6 1 s 0 s 2.1±0.0 118.8±5.4 1±0 128±0

6.1 Mixing throughput-bound mixed read-write
workloads

Kyber limits the maximum number of concurrent requests on the
device side through the number of tokens. Limiting the number
of requests decreases the throughput, which prevents throughput
saturation and leads to SSD idling. Thus, the hypothesis is that
changing the target latency directly affects the throughput. To test
this hypothesis, we run a foreground T-4KiB-appwith random reads
and a background T-4KiB-app with random writes concurrently.
We issue I/O requests to one SSD and pin each process to a different
CPU core to avoid interference with the process scheduler. Table 2
shows the read andwrite throughput (and accompanying number of
tokens) under various Kyber configurations (identified with unique
IDs). The default configuration is ID 0 (R lat: 2ms,W lat: 10ms).

If we change the default R lat to the minimal value (0), the
read throughput increases significantly (20.9%) at the cost of write
throughput (a 23.2% decrease), a change that is reflected as a signif-
icant decrease in the number of write tokens (93 to 54). Similarly,
when W lat is changed to the minimal value (0), the write through-
put increases significantly (11.0%) at the cost of read throughput (a
12.1% decrease), a change that is reflected as a slight decrease in
the number of read tokens (256 to 253). In short, setting the target
latency to the minimum for a particular type of request (read or write)
leads to a significant increase in the throughput (up to 20.9%) at the
cost of the other type’s throughput degradation (up to 23.2%) (O-19).

In ID 3–4, we set R lat andW lat both to the same unrealistic ex-
treme values, the minimum (0 s, highest priority) and an arbitrarily
high value (1 s, least priority). This leads to the maximum number
of tokens for both reads and writes (256 for read and 128 for write).
Lastly, we set R lat or W lat to 0 s while the other is set to 1 s (ID 5,
6). With this configuration, we try to get the lowest latency possible
for either reads or writes. This configuration leads to a significant
throughput increase for the prioritized target request type (40.3% for
reads, 14.9% for writes), but leads to a significant throughput decrease
for the other type also (98.7% for reads, 32.3% for writes) (O-20).

6.2 Latency-sensitive Read Workload with a
Write-driven Throughput Workload

To investigate how configuring Kyber affects the latency of L-apps
with background write T-4KiB-apps, we run an L-app (read) with a
background T-4KiB-app (write) on a single SSD, with each appli-
cation pinned to a separate CPU core. In Table 3 we show the P99
tail latency in milliseconds of L-apps with the number of W Tokens

Table 3: Kyber configuration impact on read P99 latency in
milliseconds and W tokens (presented in “()”) of an L-app
running with an interfering T-4KiB-app (random write). The
highlighted entries are discussed in §6.2.

W lat

R
la
t

0 s 100 𝜇s 10ms 20ms 100ms
0 s 2.8 (128) 2.7 (119) 1.4 (10) 1.4 (1) 1.6 (1)

50 𝜇s 2.8 (128) 2.7 (119) 1.5 (17) 1.7 (1) 1.6 (1)
100 𝜇s 2.8 (128) 2.8 (116) 1.7 (39) 1.6 (1) 1.5 (1)
500 𝜇s 2.8 (128) 2.7 (118) 1.9 (50) 1.5 (1) 1.5 (1)
10ms 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128)
100ms 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128) 2.8 (128)

shown in parentheses. The chosen W lat is represented with the
columns and the R lat with the rows.

We first find a general trend between the achieved read latency
and the number of W Tokens: the higher the number of W Tokens,
the worse the achieved read latency (O-21). When the R lat is set
to an extremely high value that is unlikely to be reached by the
hardware (in our case higher than 10ms) or the W lat is set to the
minimum value (0), the number of W Tokens is set to the largest
value, i.e., 128, meaning that reads are not prioritized, leading to
high read latency (2.8ms). These entries are shown with gray back-
grounds. When R lat is set to a low value (less than or equal to
500 𝜇s), and the gap between R lat andW lat increases, the number
ofW Tokens decreases (from 128 to 1), meaning that reads are more
prioritized, leading to decreasing read latency (2.8ms to 1.4ms, 50%
lower). These entries are shown with green backgrounds. The larger
the gap between R lat and W lat (R lat is lower than W lat), the more
reads are prioritized, thus improving the achieved read latency (up to
50% lower) (O-22).

6.3 Write-driven Throughput Workload with a
Read Workload

To determine the effect of Kyber’s parameters on throughput-bound
applications in mixed workloads, we use the same experiment as
used for evaluating the effect on latency-sensitive applications, but
this time reporting the write latency for the T-4KiB-app. In Table 4,
we show the result with throughput in KIOPS (higher is better) of
the foreground T-4KiB-app writing workload. The number of write
tokens is already shown in Table 3. Since reads only have QD=1
(L-app), the number of read tokens has no influence on the read
performance, and we do not show the number of R Tokens. The
configured W lat is represented by the columns and the configured
R lat is depicted in the table rows. We observe that the lower the
number of W Tokens, the lower the write throughput. Configuring
W lat to a high value (higher than 10ms for our SSD), while setting
R lat to a low value (less than 500 𝜇s) has a negative impact on the
write throughput (up to 43.5% lower write throughput) (O-23). These
entries are shown with gray backgrounds. If we combine the result
with the previous table, we observe that if Kyber provides lower
read latency, it comes at the cost of write throughput. Thus, when
configuring Kyber for a workload, either read latency or write
throughput can be prioritized, but not both (KF-5).
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Table 4: Kyber configuration impact on write throughput
in KIOPS of a T-4KiB-app running with an interfering L-
app (random read). The highlighted entries are discussed
in §6.3.

W lat

R
la
t

0 s 100 𝜇s 10ms 20ms 100ms
0 s 129.4 103.4 77.3 73.6 73.1

50 𝜇s 116.5 111.6 80.3 71.2 73.3
100 𝜇s 128.8 128.0 82.4 73.2 73.3
500 𝜇s 122.2 115.6 96.0 73.8 73.5
10ms 119.6 130.9 127.5 125.4 131.8
100ms 135.0 123.7 119.7 129.7 118.0

7 RELATEDWORK
On State-of-the-Art I/O Schedulers. In this work, we investi-
gate Linux’s state-of-the-practice I/O schedulers. However, there
is also a vast literature on state-of-the-art schedulers, which are
not included with the default Linux kernel and require domain
expertise. Therefore, we consider such work orthogonal. Modern
SSDs use multiple channels internally to deliver high throughput
and have complex internal mechanisms such as FTL, buffers, and
garbage collection (GC). These idiosyncrasies require more novel
designs than the state-of-the-practice Linux I/O schedulers. Here,
we discuss state-of-the-art schedulers for fair-sharing, low-latency
applications, and schedulers that use flash-specific functionalities.

There are many fair-sharing I/O schedulers [17, 21, 26, 46, 52,
53, 56, 57] that can be used as alternatives for the fair-sharing BFQ
scheduler. Modern SSDs support multiple hardware dispatch queues
and it is necessary to use multiple queues to fully saturate the SSD’s
performance and to provide fair sharing [56]. Additionally, NVMe
features like weight round robin (WRR) allow assigning weights to
applications, which can also be used to guarantee fairness across
applications. This leads to designs that use multiple queues such
as MQFQ [26] and multiple queues with WRR such as D2FQ [56].
We do not measure fair-sharing in this work since most Linux
schedulers do not support it.

There are also a number of state-of-the-art schedulers optimized
for latency-sensitive applications like the L-app used in this pa-
per [27, 39, 42]. Such schedulers can be used instead of the Linux’
Kyber and BFQ schedulers, which both have options to priori-
tize low-latency applications. This includes solutions such as blk-
switch [27], which provide low latency while preserving high total
throughput, and FastResponse [39] that co-designs the I/O stack
and scheduler to reduce cross-layer I/O interference.

Flash-based SSDs have many idiosyncrasies that can be exploited
by schedulers [22, 23, 29, 31, 52, 54]. For example, increasing SSD
longevity by reducing wear-levelling [54] or reducing GC over-
head [22, 23, 29]. Generally, flash-aware schedulers also treat writes
and reads differently because of read/write interference [31, 46].

On Performance Characterizations. Parallel to this work, the
performance of the Linux storage stack is characterized in many pa-
pers. Whitaker et al. [55] characterize the performance of Linux’ I/O
schedulers for ULL non-flash-based SSDs. Their findings confirm
that schedulers inevitably lead to higher latency and lower through-
put. Additionally, this work looks at energy efficiency, where they
find that schedulers have high energy overhead, especially for BFQ.

We extend this work by looking at QoS and looking at the more
common flash storage (ULL SSDs are not widely deployed yet). The
Linux user community has investigated I/O schedulers for SSDs
as well [34], and their work showcases that using no scheduler,
followed by Kyber, leads to the highest throughput and low latency
for applications like MySQL and RocksDB. There are also various
works that do performance characterization of emerging storage
APIs such as io_uring [19, 24, 51]. Our work differentiates itself
in terms of scale, comprehensiveness, and its sole focus on the
performance characterization of Linux storage I/O schedulers.

8 CONCLUSION
In this paper, we investigate if the Linux I/O schedulers fit modern
NVMe SSDs. Our results show that BFQ and MQ-Deadline have
significantly high CPU overhead and scalability issues caused by
locking. Thus, we suggest that BFQ and MQ-Deadline should not
be used with these SSDs. Kyber has lower CPU overhead than BFQ
andMQ-Deadline with near-linear scalability and thus is the best fit
of these SSDs. However, the parameters of Kyber need to be tuned
carefully or Kyber harms the performance. Our analysis focuses
on the Linux I/O schedulers. This work can be expanded in (1)
evaluating how the start-of-the-art I/O schedulers perform on the
flash-basedNVMe SSDs, (2) comparing how different I/O scheduling
algorithms and techniques work on these SSDs and (3) optimizing
the current Linux I/O schedulers to make them SSD-friendly.
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ABSTRACT
Schedulers are a crucial component in datacenter resource man-
agement. Each scheduler offers different capabilities, and users
use them through their APIs. However, there is no clear under-
standing of what programming abstractions they offer, nor why
they offer some and not others. Consequently, it is difficult to un-
derstand their differences and the performance costs imposed by
their APIs. In this work, we study the programming abstractions
offered by industrial schedulers, their shortcomings, and their re-
lated performance costs. We propose a general reference archi-
tecture for scheduler programming abstractions. Specifically, we
analyze the programming abstractions of five popular industrial
schedulers, understand the differences in their APIs, and identify
the missing abstractions. Finally, we carry out exemplary exper-
iments using trace-driven simulation demonstrating that an API
extension, such as container migration, can improve total execu-
tion time per task by 81%, highlighting how schedulers sacrifice
performance by implementing simpler programming abstractions.
All the relevant software and data artifacts are publicly available at
https://github.com/atlarge-research/quantifying-api-design.
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Figure 1: Performance penalty due to amissing programming
abstraction: storage metadata access.

1 INTRODUCTION
Society’s increasing dependence on digital technologies and infras-
tructure has led to the widespread use of datacenters for deploying
digital services [20, 28]. Schedulers play a vital role in orchestrating
datacenter resources to meet the demands of these services [24, 45].
The interfaces schedulers offer to users determine the limits of the
users’ ability to mold the orchestration process to support their
application needs. Different schedulers offer different levels of pro-
grammability and control to users [27, 47, 51, 58]. For example, some
schedulers provide restricted programming abstractions 1, mini-
mizing user input, while others offer more flexible interfaces that
empower users with greater control over resource allocation and
job placement [47, 58]. This spectrum of scheduler programming
abstractions raises questions about the impact of design choices on
performance, simplicity, and control that users can achieve.

The first question we raise about scheduler abstraction design
is: What programming abstractions are common in current
schedulers? Knowledge of programming abstractions in exist-
ing industrial schedulers informs designers of what is currently
available to the users. The programming abstractions available in
academic research schedulers can also suggest to designers which
abstractions are necessary to incorporate the latest resource man-
agement techniques proposed by the research community.

The second question is:What programming abstractions are
sacrificed for simplicity? Usually, academic schedulers offer a
wide set of programming abstractions, allowing the users to cus-
tomize several aspects of scheduler operational behavior. On the
other hand, industrial schedulers usually implement a restricted
subset for increased security and robustness [46].

The third question is:What is the performance cost of the
sacrificed abstractions? Despite their security and robustness

1We use programming abstraction and API interchangeably.
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benefits, simpler abstractions have a performance cost. The perfor-
mance cost is usually in the form of underutilized resources and
slow-to-complete application jobs. To shed light on this issue, we
conduct three different experiments. Figure 1 depicts an exemplary
result with the median execution time of workflows in a trace from
Google [55]. We consider a scheduler that implements a crucial
abstraction lacking in many industrial schedulers: metadata access
to the data stored on datacenters’ object storage service (e.g., AWS
S3). Comparing it against a scheduler lacking this abstraction, we
observe a 24% reduction in median workflow runtime when using
the abstraction.

To address these questions and enhance our understanding of
scheduler programming abstractions, we develop a comprehen-
sive and structured reference architecture that provides a unified
view of the programming interfaces offered by schedulers. This
reference architecture compliments earlier work on scheduler inter-
nals [5, 30]. It guides developers and researchers in designing and
implementing scheduling APIs, capturing the essential abstractions
in task scheduling and resource management within datacenter
environments.

Establishing a common reference architecture brings several
benefits. First, the reference architecture provides a common frame-
work for analyzing and comparing existing industrial and aca-
demic schedulers. The comparison helps identify similarities, dif-
ferences, and potential shortcomings, thus enabling the assessment
of different implementations and design alternatives [5]. Second, it
serves as a knowledge base for designing better schedulers that can
meet the demands of modern applications by addressing shortcom-
ings [5, 11, 22, 36]. Finally, establishing a common reference model
reduces the risk of a scheduler being specialized to the current in-
terface by providing a view of all possible programming interfaces.
This helps avoid non-extensible designs that must be re-engineered
at great development cost, as has been the case with Condor [51]
and Borg [10] when the need for a new design arises.

To understand datacenter scheduler programming abstractions
and the cost of missing ones, we make a four-fold contribution:

(1) We design a reference architecture for datacenter scheduler
programming abstraction (Section 3). We propose a set of design
principles and, with them, design an architecture that considers
different stakeholders and the programming abstractions of
existing schedulers.

(2) We analyze existing industrial and academic schedulers by map-
ping them to the reference architecture (Section 4). This map-
ping allows us to compare them using a common language.
The comparison reveals abstractions proposed in literature but
missing from industrial schedulers.

(3) We analyze the effect of missing abstractions on the perfor-
mance of modern schedulers (Section 5). To this end, we imple-
ment three missing abstractions in an event-driven simulator
and conduct simulations using real-world traces collected by
major datacenter operators, e.g., Google and Microsoft.

(4) We contribute to open science and reproducibility by releasing
data and software artifacts. To enable the experiments in this
work, we have significantly extended OpenDC [39], a state-of-
the-art simulator. We release the code enabling this work’s ca-
pabilities through Github: https://github.com/atlarge-research/

Scheduler

Long running tasks

Application

Workflow

Storage Subsystem

Application

Cluster
Host

Hypervisor

VM / Container
Managed job

Bag of Tasks

Network Subsystem

API
API Extension

Figure 2: Datacenter scheduling system model.

quantifying-api-design. The repository has been archived using
Zenodo at: https://zenodo.org/doi/10.5281/zenodo.10605424.

2 DATACENTER SCHEDULER SYSTEM MODEL
This section contextualizes this work by describing common data-
center scheduling-related concepts depicted by Figure 2.

2.1 Workload
The workload is executed using the resources the scheduler assigns
to the user. Following the taxonomy proposed by Andreadis et al.
[5], we consider four types of workloads:

(1) Batch workflows are workloads comprising several tasks
with dependencies between them.

(2) Bag-of-tasks are jobs formed by several tasks without any
dependency between them.

(3) Long running tasks run for a very long time and are usually
inside a host such as a VM.

(4) Managed jobs are workloads where a manager coordinates
all the tasks, such as Spark.

The users specify the requirements to execute the workload.
Usually, these comprise the amount of CPU and memory. However,
in some cases, other requirements, such as the start time, the depen-
dencies between the tasks, the scalability of the resources, etc., are
also specified. To submit the workload requirements, users interact
with the scheduler through its API.

2.2 Scheduling
A user submits a workload to use the resources through a central
component, the scheduler [10, 41]. The scheduler takes care of sev-
eral tasks: finding resources to assign to the workload based on the
specified requirements, transferring the workload to the resources,
starting the execution of the workload, managing the workload
through its lifecycle (from placement to workload cleanup), and
notifying to the user about lifecycle events.

Throughout the execution of a workload, the resource require-
ments of the workload and the number of resources available to
the scheduler can change. Therefore, the scheduler must adapt
to changing workload requirements by increasing or decreasing
dynamically allocated resources. This is usually done through a
specific subcomponent (e.g., the autoscaler in Kubernetes [2]). A
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scheduler can also preempt, recover, and migrate workloads when
the amount of available resources changes.

Schedulers can be monolithic [35] and run in a single process
that handles all tasks. They can be distributed where tasks are split
into other components, such as the autoscaler [2]. In the same way,
the scheduler and its members can be replicated in several processes
in parallel. Still, they must coordinate among themselves when as-
signing resources to the workloads. In addition, schedulers can be
centralized [42], where a single entity implements the scheduler
and dictates the policies and mechanisms, or it can be decentralized
[51] so that several entities implement a scheduler. Each of them
has different policies and mechanisms. When the scheduler is de-
centralized, the other instances must coordinate through a common
protocol and sometimes use a central matchmaker.

2.3 Scheduler resources
The workloads are executed on top of the resources that the sched-
uler manages. Resources typically refer to physical machines usu-
ally located within a datacenter. These datacenters consist of multi-
ple clusters, each housing several hosts, with each host functioning
as a node within a rack. It is important to note that while our dis-
cussion primarily focuses on virtualized resources such as VMs or
containers running on hosts through a hypervisor, it is also possible
to manage bare metal resources. However, virtualized environments
are more prevalent and present a wider range of interesting phe-
nomena for modeling and analysis.

In this work, we model the resources of a host as the combina-
tion of CPU, memory RAM, and storage. CPUs can have different
frequencies and number of cores. Memory and storage can have
different sizes. We model resource consumption using a discrete
model, where the workload reports how many resource it requires
and for how long. The hypervisor consolidates the consumption of
the different workloads through a fair-sharing policy.

2.4 Programming abstraction
Schedulers offer a set of programming abstractions for users to in-
teract with. Programming abstractions are the API offered by sched-
ulers and are the language by which the user submits workloads
and modifies the workload’s requirements during the workload’s
life cycle. Programming abstractions are offered through a GUI, CLI,
or a protocol such as HTTP.

The API includes both the interactions of the scheduler with the
applications and the resources. In this work, we investigate API
extensions that allow the scheduler to interact with applications
and the resources allocated after the initial resource allocation.

Resource management systems, such as autoscalers, interact
with schedulers and other resource managers in a completely au-
tomated manner without any user intervention. We consider the
API between these different systems a part of the scheduler pro-
gramming abstraction. The API constrains the actions available to
these systems. Obtaining system data and performing actions not
supported by the API is difficult for the systems we analyze in this
work.

3 REFERENCE ARCHITECTURE FOR
SCHEDULER PROGRAMMING
ABSTRACTIONS

We propose a reference architecture to understand and describe
standard programming abstractions available in current schedulers.
With systematic categorization and organization, the reference ar-
chitecture will offer a framework for analyzing and comparing
existing schedulers and a comprehensive view of the range of com-
mon abstractions that a scheduler can implement. This helps us
answer the questionWhat are the programming abstractions com-
mon in current schedulers?.

Our process for designing the reference architecture has the
following steps:

(1) Stakeholder and use case identification
(2) Requirements analysis
(3) Model industrial schedulers
(4) Model emerging concepts from academia
(5) Unify industrial schedulers with emerging concepts

We describe our requirements in Section 3.1. We identify five
popular schedulers in the industry, and we analyze their APIs. Con-
sulting experts in the field, we select the following schedulers: Ku-
bernetes [3], SLURM [35], Spark [56], Condor [51], and Airflow [1].
We further analyze these schedulers in Section 4.

For emerging concepts from academia, we conduct a systematic
literature survey [33], sort the results by citations, and pick the
top 15 papers with new APIs different from what we identified
in industrial schedulers. We end up analyzing the following 15
academic schedulers: [9, 12, 15, 17, 18, 25, 31, 32, 38, 44, 48, 50, 53,
54, 59].

After analyzing industrial and emerging scheduler designs from
academia, we extract, filter, generalize, and unify them into a refer-
ence architecture.

3.1 Requirements
We identify the requirements that must be met by the reference
architecture. This has to be:

R1 Understandable. Different stakeholders should be able to
easily understand the different components that make up the
reference architecture, how they relate to each other, or their
high-level meaning. We enable this through the principles
in Section 3.2 and the description language in Section 3.3.

R2 Actionable. The design must take into account whether
users can use it to take concrete actions. We use the architec-
ture in Section 4 to identify missing abstractions in industrial
schedulers. We quantify the cost of missing abstractions in
Section 5.

R3 Pragmatic. The reference architecture concepts can be im-
plemented in code and evaluate different programming ab-
stractions comparatively. The reference architecture has
been realized in the OpenDC simulator and used for ex-
periments in Section 5.

R4 Comprehensive. Can represent all already known concepts
used in industrial schedulers and emerging concepts from
academia. We map five industrial schedulers to the reference
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architecture in comparison in Section 4. The reference archi-
tecture was built by analyzing 15 research prototypes from
the community.

3.2 Design principles
For the design of the scheduling programming abstractions refer-
ence architecture, we identify the following design principles.

P1 Separation of objects from actions. We distinguish be-
tween the actions that can be performed and the objects,
which represent the system’s state, that are used as input to
the actions. This separation facilitates comprehension (R1).

P2 Grouping of related actions. There may be several ac-
tions that are related to each other. Therefore, to facilitate
comprehension, related actions are grouped.

P3 Avoidance of concrete technologies in objects. We keep
the objects as high-level as possible to avoid strong coupling
to a specific technology.

3.3 Reference Architecture Design
Weanalyze industrial and emerging scheduler designs from academia
for scheduling abstractions. Then we extract, filter, generalize, and
unify them into a reference architecture. In this process, we follow
the requirements and design principles we set out in the previous
subsections. The reference architecture allows us to describe the
different abstractions provided by the schedulers we analyzed using
a common language. This common language allows enables us to
compare the schedulers’ APIs to each other in Section 4.

The reference architecture is depicted in Figure 3. The high-level
components of the reference architecture are actions and objects
that comprise the scheduler API. Object describes the current or
desired state of the system. Actions describe physical events (such
as leasing a VM) that are executed when certain conditions are
met. The conditions use objects in their specification. Each action
must have three types of conditions: WHAT, WHEN, and WHERE,
and for each condition, there can be one or more objects. This
way, programming abstractions can be understood through the
following syntactic structure: <action> <object> IN <object>
WHEN <object>, where the objects and actions are filled using the
reference architecture.

Listing 1: Example scheduler action.
P r o v i s i o n : Lease
UserResource < type : job , runt ime : 5 days >
IN Schedu l e rRe sour ce < type : vm ,

cpu : 2 . 4 Ghz , memory : 1 6Gb>
WHEN Event <day : 1 1 , month : 1 2 , year : 2023 >

Consider the scheduler interaction in Listing 1; the action is "Pro-
vision:Lease," indicating the provisioning and leasing of resources.
The objects involved are "UserResource" with specific character-
istics such as job type and a runtime of 5 days, and "SchedulerRe-
source" with attributes like VM type, CPU of 2.4GHz, and memory
of 16GB. The condition "IN" specifies that the "UserResource" is
allocated within the "SchedulerResource". Lastly, the "WHEN" con-
dition indicates an event occurring on December 31, 2022.

Tables 1 and 2 define and describe the actions and objects within
the reference architecture. These tables serve as a resource for

understanding the specific elements of the reference architecture
and their respective functionalities.

In addition to the visual representation of the reference archi-
tecture for scheduling programming abstractions shown in Figure
3, we have also defined a formally defined syntax which we use in
Listing 1. The syntax is based on the Extended Backus–Naur Form
(EBNF) and provides a structured and consistent way to express
conditions using actions and objects in the programming abstrac-
tions. Due to space constraints, we do not present the formal syntax
definition here but will add it as an appendix. The formally de-
fined syntax enables precise communication using the reference
architecture.

4 ANALYSIS OF INDUSTRIAL SCHEDULERS
We analyze the scheduler APIs of industrial schedulers by qualita-
tively mapping their features to the reference architecture: Kuber-
netes (v1.27) [3], SLURM (v23.02) [35], Spark (v3.4.0) [56], Condor
(v10.4.3) [51], and Airflow (v3.3.0) [1]. Through the mapping, we
respond to the question of What programming abstractions are sac-
rificed for simplicity? The mapping provides insights into their
alignment with the idealized model. This comparison helps iden-
tify missing abstractions compared to all the ones in the reference
architecture, highlighting potential shortcomings.

4.1 The mapping process
For each considered scheduler, we consult its official documentation,
source code, and articles we find online. Then, using these resources,
for each component of the reference architecture, we identify if
there is a complete, partial, or no match. The meaning of the match
is different for objects than for model actions. In the case of actions,
a complete match is when the scheduler offers the action. A partial
match is when the action is offered in a limited way; that is, the
action may only be offered at a specific moment in the lifecycle, e.g.,
it only allows to scale when the CPU utilization is more than 80%,
or when the parameters with which the action can be performed
are limited, e.g., a service can only be scaled by adding VMs of the
same type of resources. A no-match is when the scheduler does not
offer the action. In the case of objects, a full match means that the
scheduler restricts the object parameters, and the user can flexibly
specify whatever parameters they need. For example, the user can
add any metadata information. A partial match means the scheduler
allows the user to specify only a limited set of object parameters.
For example, the user can only specify CPU constraints, not any
other resource type. A no-match means that the scheduler does not
allow that object type.

4.2 Mapping results
Using the reference architecture, we analyze the shortcomings of
the selected group of five industrial schedulers. Currently, it is not
known when nor why you should use some schedulers and not
others. It is also unclear if any scheduler has a clear missing gap or
how to fill it. For that, it is necessary to analyze the scheduling APIs.
We map their APIs into the reference architecture and aggregate
the results in two tables. In Table 3, we map the actions, and in
Table 4, the objects. We specify whether each action and object is a
full, partial, or no match.
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Figure 3: Reference architecture for scheduling programming abstractions.
Table 1: Description of the actions that compose the reference architecture.

Action Sub-action Description

Provision

Lease/release Activation and assignment of a user resource to a scheduler resource.
Scale Addition or reduction of already provisioned user resources.
Migrate Migration of a user resource to a different scheduler resource.
Preempt Abortion of execution or assignment of a user resource, putting it back in the scheduler queue.
Recover Recover a task after failure, restart execution, or put it back into the scheduler queue.

Configure scheduler Configuration of the behavior of the scheduler.

Replicate

Access input data Access to data that user jobs take as input.
Access intermed. Access to data that user jobs generate during their runtime.
Access metadata Access to the information about the user data.
Replicate Replication of the user data.
Partition Partitioning of the user data so that a subset of the data is placed in different scheduler resources.
Recover Recovery of the user data after the failure of execution or the storage system.

Communicate Communication with the user resources, scheduler resources, or even the scheduler, such as setting a callback for
getting notified about scheduling events.

Table 2: Objects in the reference architecture.
Object Description

Event

Representation of objects in time or
instantiations of properties in objects.
Such as concrete date-times (00:00 of
31st of December 2022) or an instantiation
of a property like a metric reaching a numeric
value (CPU utilization is greater than 80%).

User resource

Representation of any kind of input from
the user. This includes execution units like
a job, task, etc., but also data as a file,
environment variable, etc.

Scheduler
resource

Representation of resources owned and
managed by the scheduler. Resources can
be virtual machines, containers, storage
systems, databases, etc.

Communication
process

Representation of the process of communication,
such as a signal, message, callback, etc.

The results indicate that industrial schedulers have several short-
comings. Several actions are under-implemented. There is a very
clear pattern, where most schedulers implement three actions:
lease / release, configure scheduler, access input data.
In most cases, all others are either partially or not implemented.
The biggest shortcoming is in manage data action and its objects,

Table 3: Full overview of programming abstraction actions
of schedulers mapped to the reference architecture. Legend:
●/◗/❍ = full/partial/no match; Ku = Kubernetes; Sl = SLURM;
Sp = Spark; Co = Condor; Ai = Airflow

Action Sub-Action Schedulers
Ku Sl Sp Co Ai

Provision

Lease / release ● ● ● ● ●

Scale ● ❍ ◗ ❍ ❍

Migrate ❍ ❍ ❍ ❍ ❍

Preempt ◗ ● ❍ ● ❍

Recover ◗ ◗ ● ◗ ◗

Configure scheduler ● ◗ ● ● ●

Manage
data

Access input ● ◗ ● ● ●

Access interm. ❍ ❍ ◗ ❍ ❍

Access metadata ❍ ❍ ❍ ❍ ❍

Replicate ❍ ❍ ● ❍ ❍

Partition ❍ ❍ ● ❍ ❍

Recover ◗ ❍ ● ● ❍

Communicate ◗ ● ◗ ◗ ◗

where most sub-actions and objects are not implemented. Overall,
the industrial schedulers examined in our study do not provide data
management abstractions to the user. This means that users have
less control over the data and, consequently, less chance to optimize
performance. For example, if the user has several unordered data
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Table 4: Full overview of programming abstraction objects
of schedulers mapped to the reference architecture. Legend:
●/◗/❍ = full/partial/no match; Ku = Kubernetes; Sl = SLURM;
Sp = Spark; Co = Condor; Ai = Airflow.

Action Object Schedulers
Ku Sl Sp Co Ai

Provision
user resource ● ◗ ◗ ◗ ◗

event ◗ ◗ ◗ ◗ ◗

sched. resource ● ● ◗ ● ●

Configure
scheduler

scheduler ◗ ◗ ● ● ●

event ◗ ◗ ❍ ❍ ❍

sched. resource ◗ ❍ ❍ ❍ ❍

Manage
data

user resource ◗ ◗ ● ◗ ●

event ❍ ❍ ❍ ❍ ❍

sched. resource ❍ ◗ ❍ ◗ ❍

Commu-
nicate

comm. process ◗ ◗ ◗ ◗ ●

event ◗ ◗ ◗ ❍ ◗

user resource ◗ ◗ ● ◗ ●

sched. resource ❍ ◗ ● ❍ ❍

scheduler ❍ ◗ ❍ ❍ ❍

items to process, consulting the metadata and obtaining informa-
tion about the placement and requests load of the storage systems
where the data is stored, could optimize how and when the data is
processed.

In all other cases, the communicate action is partially imple-
mented except in SLURM. Similarly, most communication objects
are partial matches. This might imply a lower performance since
it does not allow the user to inform the scheduler during runtime
about application-level insights, nor vice versa, the scheduler to
inform the user about scheduling-level insights. Moreover, partial
matches imply that actions and objects are limited to a particular
subset and do not allow the user to specify arbitrary inputs. For ex-
ample, the Condor API only provides communication actions with
user jobs, not the scheduler. Therefore, the user can dynamically
inform about application-level insights to their jobs but not to the
scheduler, reducing the scope of potential performance improve-
ments.
Key Takeaway: Many actions and objects have partial or no
matches, meaning their APIs are under-implemented. Consequently,
they reduce users’ ability and scope to optimize their applications’
performance. The main shortcomings are found in manage data
action and its objects but also in communicate actions and their
objects to a lesser extent. Sub-actions related to provisioning other
than lease, such as scale, migrate, and recover, are also not
well supported by schedulers.

5 EVALUATING THE PERFORMANCE COST OF
SIMPLE SCHEDULING ABSTRACTIONS

In this study, we address the limited programmability of industrial
schedulers and highlight the need for greater user programmabil-
ity to improve user-application performance. We identify under-
implemented programming abstractions in scheduler APIs in Sec-
tion 4. In this section, we design experiments to quantify the per-
formance cost of these missing abstractions. The experiments focus
on three specific use cases: 1) reservations, 2) migration requests,

and 3) metadata access. We analyze the shortcomings of various in-
dustrial schedulers in implementing these abstractions and propose
extensions to address them. This answers the question What is the
performance cost of the sacrificed abstractions? raised in Section 1.
A comprehensive overview of these experiments can be found in
Table 5, which outlines the API extensions, parameters, traces, and
metrics for each use-case.

5.1 Implementation, Input Setup, and
Open-Sourcing

Software: The reproducibility of the experiments is ensured through
the use of the OpenDC data center discrete event simulator [39],
which is deterministic. We performed multiple runs with different
seeds of randomness to capture variations in the results. For each
experiment run, we calculated the empirical cumulative distribution
function (ECDF) to analyze the distribution of the measured metrics.
This approach allowed us to assess the behavior and performance
of the proposed extensions across different scenarios and obtain
comprehensive insights.
Input data: Traces from private and public cloud environments,
Azure [13], Google [55], and Bitbrains [49] — a Dutch ICT provider
— were selected to provide realistic and diverse workload data
for evaluating the proposed extensions. By leveraging real-world
traces, our research captures the variability and complexity of cloud
workloads, ensuring the relevance and validity of our findings.
These traces are open source, and the simulator has parsers for
the respective formats. The Azure and Bitbrains traces were used
as they were provided, while the first 2.5 days were used from a
30-day Google trace. The characteristics of the different traces are
outlined in Table 6.
Simulated environment: The number of machines in the simulated
environment are different for different traces and utilization levels.
The environments have 35 machines for the Google trace, 102 ma-
chines fore the Azure trace, and 1039 machines for the Bitbrains
trace when simulating the workloads at 75% utilization. The ma-
chines are heterogeneous having 4 to 32 cores depending on the
configuration. The precise environment specifications for each ex-
periment are described in topology files located in the experiment’s
folder in the applications git repository.

5.2 Reservation
Goal: Schedulers utilize resources better if they know when tasks
arrive and their resource requirements. We investigate if a sched-
uler with an API that accepts this additional information performs
better for three different traces and by how much.

In the context of scheduling and resource allocation in datacen-
ters, there is a specific category of jobs that are long-running and
periodically submitted, which are provisioned into VMs ( 1 and 2
in Figure 4). These jobs exhibit predictable patterns, as they recur
regularly and have well-defined resource requirements. Examples
of such jobs include data processing pipelines, scientific simulations,
and batch processing tasks.

Since their resource requirements and execution patterns are
known in advance, schedulers could use this knowledge to allocate
resources more efficiently and reduce waiting times. However, in
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Table 5: Summary of evaluation experiments.

Name API extension Parameters Fixed parameters Traces Metrics
Reservation
Section 5.2

User provided start time
and resource estimates

Reservation ratio,
resource utilization

Scheduling policy
(EFT)

Azure, Bitbrains,
Google

Waiting time,
slowdown

Migration
Section 5.3

Container migration via
orchestrator callbacks

Migration type,
oversubscription

Resource utilization
(85%), FIFO policy

Azure, Bitbrains,
Google

Execution time,
packing efficieny

Metadata access
Section 5.4

Use storage subsystem
busyness to order tasks

Metadata-aware
task reorder policy

Resource utilization
(80%)

Google and
IBM combined

Buffer size,
total time

Table 6: Characteristics of the traces used in the experiments

Workload VMs/Tasks Duration [days] VM duration [days] CPU cores CPU capacity [GHz] Memory [GBs]
Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎

Bitbrains 1250 30 28 5 3.27 4.04 2.7 0.16 11.75 32.6
Azure 1829 30 2 6 2.48 2.28 2.5 0.0 5.8 10.16
Google 1000000 2.5 0.0375 0.083 1.0 0.0 1.68 2.08 0.17 0.2

practice, existing schedulers often do not effectively utilize the
predictability of these long-running and predictable jobs [54]. As a
result, these jobs may be subject to sub-optimal resource allocation
and longer waiting times than necessary.

We propose an extension to datacenter schedulers that enhances
scheduling long-running and predictable jobs by incorporating
reservation programmability. This extension enables schedulers to
be aware of these jobs’ recurring nature and resource requirements,
allowing for more optimized resource allocation and scheduling.

To enable reservations, we extend the system by modifying the
lease action, including two additional parameters: runtime esti-
mates and a specified provisioning time for future reservations.
When a user submits a reservation request, instead of immediately
provisioning it, the scheduler adds the request to a reservation
queue 3 alongside other pending reservations. During this time,
the scheduler applies algorithmic optimizations to improve future
provisioning 4 . In our experiment, we employ a simple Earliest Fin-
ish Time (EFT) scheduling policy [52] to optimize the reservation
queue by prioritizing tasks with earlier estimated finish times, en-
suring that resources are allocated efficiently and effectively. Tasks
without reservation are scheduled according to the FIFO policy.
Once the specified provisioning time arrives, the scheduler pro-
visions the reserved resources into a VM 5 , fulfilling the user’s
reservation request. In Listing 2, we provide an example of the
extension, showcasing the syntax for reservations.

Listing 2: API for reservations using syntax from Section 3.3,
with the extension highlighted in green.
P r o v i s i o n : Lease
UserResource < type : app , i d : 1 , runtime:1h>
IN Schedu l e rRe sour ce < type : vm , c o r e s : 8 ,

cpu− f r e q : 2 . 4 Ghz , memory : 3 2Gb>
WHEN Event<day:11, month:12, year:2023>

We take a scheduler that does not implement reservations as our
baseline and investigate the effects of incorporating reservation ca-
pabilities into this scheduler. We utilize real-world workload traces
from Google, Azure, and Bitbrains to evaluate the performance.
We sample a fraction (reservation ratio) of the trace to reserve and
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Figure 4: Reservations experiment system model.

assume we know the arrival time (from the original trace) of those
tasks in advance.

The experiment configurations involve resource utilization and
reservation ratio variations (the proportion of reserved resources
compared to the total available resources). The resource utilization
levels are set at 75%, 80%, and 85%, and the reservation ratios at 0, 0.5,
and 1.0 to observe the impact of reservation programmability. These
resource utilizations are common in datacenters with high resource
utilization [6]. Metrics collected in the experiment include waiting
time (the duration tasks spend in the queue before execution) and
slowdown (the decrease in task execution speed).

Figure 5 depicts the Azure trace’s waiting time and slowdown
under nine different configurations. Slowdown, calculated as the
ratio of execution time plus waiting time to execution time, rep-
resents the overall task performance. In the Azure trace data, we
observe a clear relationship between reservation ratios, waiting
times, and slowdowns. Specifically, when the system utilization
reaches 85%, the system with reservations has a 43% (35-hour)
shorter 50th percentile waiting time than the system without reser-
vations (ratio=0.0 means no reservations). In the same scenario,
reservations reduce slowdown by 70% (68 units) compared to not
using reservations. However, at a lower utilization of 80%, there
is an increase in waiting time of 2.5 hours (50th percentile) and a
12-unit (60th percentile) increase in slowdowns. In the other traces
examined, there is no significant impact on the waiting times and
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Figure 5: ECDFs of waiting time and slowdown per task of
the Azure trace using the reservation extension. We evaluate
the system at different utilization levels and with a different
fraction of the trace being reserved in advance (ratio). Ratio
0.0 implies no reservations.

slowdowns with varying reservation ratios. This could be due to
workload characteristics, resource utilization levels, or the configu-
ration of the scheduling system. Further investigation is needed to
determine the underlying reasons for the lack of impact.

The results are not as promising for the Google and Bitbrains
traces. The Azure trace differs from the other traces as it has a
multi-hour task duration. The Google trace has short tasks lasting
seconds, and the Bitbrains trace has long jobs lasting weeks. The
full analysis for the other traces is available in the technical report.
Key Takeaway: Reservations reduce slowdown by as much as 70%
for the Azure trace, but not as much for the other traces. The results
are dependent on the durations of the tasks in the trace.

5.3 Migration
Goal:We investigate if offloading migration, to mitigate interfer-
ence, to container orchestrators running on top of VMs leased
from a datacenter scheduler is better than the datacenter scheduler
itself performing VMmigration. We investigate this for three traces.

Datacenter operators oversubscribe their machines as tenants
often do not utilize all the allocated resources. Oversubscription
means allocating more resources to tenants than there are phys-
ically available. Oversubscription leads to interference between
tenants if tenants allocated to the same physical machine fully uti-
lize their allocated resources. In such cases, the datacenter operator
can migrate one or more tenants to less utilized physical machines
to reduce interference.

Migration has a cost proportional to the size of the VM mi-
grated [16, 37]. Therefore it is efficient to migrate only part of
a VM if possible. Nowadays, tenants use container orchestrators
(K1 in Figure 6), such as Kubernetes, making partial migration
possible. The orchestrator requests resources from the datacenter
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Figure 6: Migrations experiment system model.
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scheduler 1 . The DC scheduler allocates resources in the form of
VMs 2 . The orchestrator then starts application containers inside
the VM 3 .

We propose an extension to datacenter schedulers that enables
partial migration by making them aware of the tenants’ orches-
trators. The key to enabling partial migration is to enable bidirec-
tional communication between the datacenter scheduler and the
orchestrator. The orchestrator registers a remote callback with the
datacenter scheduler before it requests any VM allocations. The
datacenter scheduler uses this callback ( 4 in Figure 6) to request
the orchestrator to migrate 5 some containers when its monitor-
ing detects interference. In Listing 3, we provide an example of the
extension, showcasing the syntax for migrations.

Listing 3: API for migration using syntax from Section 3.3,
with the extension highlighted in green.
Communicate
Communicat ionProcess <type:callback,

url:orchestratorhost/callback>
IN UserResource < type : app , i d :1 >
WHEN Event <interference:10%>

As a baseline, we take a scheduler implementing VM migrations
and determine the impact of adding container migrations to that
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scheduler. We use three real-world workload traces from Google,
Azure, and Bitbrains for our evaluation.

For each trace, we evaluate the impact of migrations at three
oversubscription ratios: 3, 4, and 5. An oversubscription ratio of 3
means that each physical CPU was fully available to three tenants.
Oversubscription ratios ranging from 3 to 16 are common in data-
centers whose users have low utilization [34, 43]. We model the cost
of migration as the time it takes to migrate the RAM used by the
VM/container at a conservative rate of 512Mbps. The RAM based
cost model and the migration bandwidth are supported by existing
literature [37]. Our hypothesis is that migrating a container takes
less time than migrating a VM running multiple containers.

We simulate 5 Kubernetes clusters simultaneously using the
datacenter. We configure the datacenter topology such that the
traces run at 85% average utilization. The metrics we use are to-
tal workload execution time and packing efficiency. We calculate
packing efficiency by summing the CPU utilization of each vir-
tual machine (VM) and dividing it by the total number of VMs.
This metric provides insights into how effectively the resources
allocated to the VMs were utilized. A higher packing efficiency in-
dicates better utilization of resources, while a lower value suggests
potential inefficiencies or underutilization. By analyzing packing
efficiency, we can assess the effectiveness of the scheduling mech-
anisms in optimizing resource allocation and maximizing overall
system performance.

Figure 7 and 8 depict the packing efficiency and the total exe-
cution time (90th percentile) of the Azure trace under six different
configurations, respectively. In the Azure trace, the highest over-
subscription ratio of 5.0 achieved a remarkable 15% improvement
in packing compared to configurations without the API extension.
Additionally, using the API led to improved performance in terms of
total time per task. For example, with the highest oversubscription
ratio of 5.0, the 90th percentile (P90) of total time per task in the
Azure trace were reduced by 81% when container-level migrations
were employed.

In the remaining Google and Bitbrains traces, using the API re-
sulted in shorter total time per task, indicating higher performance.

The 99th percentile total time per task in the Google trace showed a
reduction of 73% (4.4 hours) with the highest oversubscription ratio
of 5.0. However, it is important to note that not all configurations
yield better performance with container-level migrations. However,
in the Bitbrains trace, no significant improvement in performance is
observed. The results indicate the minimal impact of container-level
migrations on performance in this particular trace.
Key Takeaway: Offloading migration to container orchestrators
benefited the Azure and the Google traces, not the Bitbrains trace.
The Bitbrains trace differs from other traces as it has an extremely
long task duration, with tasks running for weeks.

5.4 Metadata access
Goal:We investigate if providing datacenter schedulers access to
additional information about task data accesses and storage sub-
system busyness has a performance impact. We analyze the impact
of a trace from IBM object storage [21] combined with the compute
trace from Google.

Datacenters offer object storage services that enable users to
store and retrieve data efficiently. Services like AWS S3 provide
a scalable and reliable solution for storing large amounts of data.
In the context of data analysis workloads, users often deploy ap-
plications that require accessing multiple objects from the storage
( 1 and 2 in Figure 9). These workloads (e.g.: data analytics [4],
ML [19]) are often "bag of tasks" where tasks are executed inde-
pendently and the objects to read are known in advance. Such
workloads benefit from reordering their storage access based on
the prevailing resource utilization at the time of access.

Without access to fine-grained information about object place-
ment and load levels, users cannot optimize their data retrieval
process. As a result, the workload takes longer to complete. The
inefficiencies in object access lead to increased latency, reduced
throughput, and decreased overall system performance [40, 57].

We propose an extension that empowers users to access object
metadata to address this limitation. This extension allows users
to make informed decisions regarding the order in which they
retrieve data items. By introducing the accessMetadata action in
the scheduler’s programming model, users can query the metadata
for specific object IDs and obtain estimates of retrieval times. The
scheduler retrieves this information by monitoring the storage
servers ( 3 ). This capability enables users to strategically postpone
the retrieval of objects from congested storage servers, allowing
them to process those objects later when congestion levels have
subsided. In Listing 4, we provide an example of the extension,
showcasing the syntax for metadata access.

Listing 4: API for metadata access using syntax from Sec-
tion 3.3, with the extension highlighted in green.
ManageData :AccessMetadata
UserResource < type : o b j e c t , i d :2 >
IN Schedu l e rRe sou r ce < type : o b j e c t − s t o r age >
WHEN Event < da t e t ime : now>

We aim to determine howmuch performance existing schedulers
are losing out on by not implementing metadata access. As a base-
line, we take a scheduler providing an object storage service and
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determine the impact of adding metadata access to that scheduler.
Our evaluation is based on a combination of real-world workload
traces, specifically a trace from Google and an IBM object storage
trace [21]. We chose to focus on Google trace for this experiment
due to its availability of detailed information about workflows.

We use the interarrival time, duration, and resource usage of
tasks from the Google trace. For each task, we associate an object
identifier from the IBM trace. We read identifiers from the IBM
trace sequentially. This maintains the popularity distribution of
object identifiers and their temporal locality. We assume each task
reads from distributed storage at 1Gbps [8]. We simulate a 10 node
distributed object storage system, with objects accessed by their
identifiers.

We analyze the impact by activating and deactivating metadata
access while maintaining a fixed workload trace and storage service
utilization. The workload trace utilization is set at 80%. We capture
two key metrics to evaluate the system’s performance: buffer sizes
of the object storage service and total workflow times. The buffer
sizes provide insights into the waiting line and load balancing
across servers. Smaller buffer sizes indicate lower system load and

more efficient workload distribution across servers. Additionally,
we measure the total time for each workflow, which encompasses
both the waiting time and the execution time.

Figure 10 displays the normalized buffer sizes and total execu-
tion times of the trace. The results demonstrate that activating the
metadata access API leads to substantially reduced buffer sizes,
approximately 27% (70 GB), within the object storage service, re-
sulting in improved performance. Furthermore, metadata-aware
workflow execution substantially reduces total time per workflow,
with a notable 24% (26-hour) decrease in the median value. These
findings emphasize the critical role of metadata access in optimizing
object retrievals and enhancing overall performance.
Key Takeaway: The significant performance improvements ob-
served in reduced buffer sizes and shorter execution times highlight
the value of exposing storage metadata using an API.

6 THREATS TO VALIDITY
The reference architecture we proposed has two main limitations.

First, the reference architecture design is limited to the objects we
define. In our reference architecture, we identify only five distinct
objects and do not specify sub-objects for each. For example, our
Scheduler Resource object does not differentiate between an API
that offers VMs or Edge mobile devices. While this is a limitation,
we have deliberately chosen to keep our objects at a high level
of abstraction to future-proof our architecture. As the types of
resources available for scheduling are constantly changing, we
believe it is more important to differentiate objects by what they
represent in the highest level of abstraction than by their specific
content.

However, to fully leverage the power of our reference architec-
ture, it will be necessary to build more specific models that differen-
tiate between schedulers with different requirements. For example,
Spark-like schedulers have different scheduling requirements than
Kubernetes-like schedulers. These models must differentiate be-
tween objects based on their specific content rather than just their
highest level of abstraction.

Second, the simulation scenarios we use and the simulator itself
are not a replacement for real-world systems. However, the simu-
lator we use, OpenDC, has been validated for VM and container
scheduling for the Bitbrains and Azure traces [39]. The storage part
of the simulator and the Google trace have not yet been validated.
But we do use realistic models for migration [37] and storage ac-
cesses [8]. These models based on measurements from real systems
ensure that our results are indicative of real-world performance.

7 RELATEDWORK
Schopf’s multi-stage model of the grid scheduling process [30], the
Global Grid Forum [26], and the datacenter scheduler reference
architecture [5] offer conceptual models of the internal workings
of schedulers. Our work complements these models by specifically
addressing the external-facing aspects of scheduling, the program-
ming interface.

Conceptual models of APIs have been proposed for specific com-
puting environments, such as grid computing and cloud computing.
Foster et al. presented a reference architecture for grid comput-
ing [22], and the National Institute of Standards and Technology
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(NIST) introduced models for cloud computing [36]. While these
models provide valuable guidance for designing APIs in their re-
spective domains, they do not deal with the concrete API needs of
schedulers like Spark and Kubernetes, which have unique charac-
teristics and requirements.

Efforts have beenmade to develop schedulers that combinemulti-
ple scheduling abstractions into a single system, such as Ghost [29]
and ESCHER [7]. Ghost delegates OS kernel scheduling decisions
to users, granting them greater control over the scheduling process.
ESCHER allows users to express arbitrary scheduling constraints
as resource requirements, enabling fine-grained control over the
scheduling process. Apache Beam [23] and CWL [14] allow users
to specify a workflow and run it on multiple resource managers.
But they do not allow control over the scheduling mechanism apart
from simple labels.

8 CONCLUSION
In this work, we designed a reference architecture for datacen-
ter scheduler APIs (Section 3). Our reference architecture covers
APIs implemented in 5 industrial schedulers (Kubernetes, SLURM,
Spark, Condor, Airflow) and 15 academic schedulers. We use the
reference architecture to identify abstraction not implemented or
under-implemented in the five industrial schedulers (Section 4). We
find that the industrial schedulers do not implement abstractions
for data management, task migration, and autoscaling.

We evaluate the performance impact of missing abstractions
related to resource reservation, container migration, and storage
metadata access in Section 5. We find a 27% improvement in re-
source usage and a 24% reduction in median workflow runtime
when implementing metadata access, a 15% increase in utilization
and an 81% improvement in total execution time per task (90th
percentile) for container migrations, and a 43% reduction in waiting
times (50th percentile) for reservations.

For future work, we intend to provide a toolkit for users to exper-
iment with different designs using the OpenDC simulator. We also
plan to validate our simulations beyond the basic validation with
VMs, including validation with containers and storage services.

All our data and software artifacts are publicly available at
https://github.com/atlarge-research/quantifying-api-design. The
repository has been archived using Zenodo at: https://zenodo.org/
doi/10.5281/zenodo.10605424
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ABSTRACT
Machine Learning (ML)workloads generally contain a significant

amount of matrix computations; hence, hardware accelerators for
ML have been incorporating support for matrix accelerators. With
the popularity of GPUs as hardware accelerators for ML, specialized
matrix accelerators are embedded into GPUs (e.g., Tensor Cores
on NVIDIA GPUs) to significantly improve the performance and
energy efficiency of ML workloads. NVIDIA Tensor Cores and
other matrix accelerators have been designed to support General
Matrix-Matrix Multiplication (GEMM) for many data types. While
previous research has demonstrated impressive performance gains
with Tensor Cores, they primarily focused on Convolutional Neural
Networks (CNNs).

This paper explores Tensor Cores’ performance on various work-
loads, includingGraphConvolutional Networks (GCNs), onNVIDIA
H100 and A100 GPUs. In our experiments with NVIDIA GPUs,
CNNs can achieve 1.91× (TF32) and 2.42× (FP16) end-to-end perfor-
mance improvements with the use of Tensor Cores, whereas GCNs
struggle to surpass a 1.03× (FP16) boost. Some implementations
even experience slowdowns despite software transformation. Addi-
tionally, we explore the potential of Tensor Cores in non-GEMM-
like kernels, providing insights into how software techniques can
map diverse computation patterns onto Tensor Cores. Our investi-
gation encompasses several kernels and end-to-end applications,
aiming to comprehend the nuanced performance impact of Tensor
Cores. Furthermore, we are among the first to present third-party
evaluations of H100 GPU performance over the prior A100 GPU.

CCS CONCEPTS
• General and reference→ Performance;Measurement; Eval-
uation; Experimentation; • Computing methodologies→ Ma-
chine learning.
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Machine Learning; Matrix Accelerators; Performance Evaluation;
Workload Characterization; Measurement
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1 INTRODUCTION
At the heart of Artificial Intelligence (AI) and Machine Learning

(ML), General Matrix-Matrix Multiplications (GEMMs) are the most
important building blocks for many applications [4, 26, 81]. In 2017,
with the launch of Volta architecture [45], NVIDIA introduced
Tensor Cores in their GPUs to accelerate GEMM. Tensor Core
provides significant performance boost and energy efficiency when
performing GEMM operations, and is accessible either through low-
level assembly or various CUDA libraries [38]. Other manufacturers
followed by integrating matrix accelerators into their GPUs years
later [1, 24]. Recently developed hardware that targets AI and ML,
including FPGA and ASIC, also has matrix accelerators, such as in
Xilinx Versal FPGA [16] and Google TPU ASIC [25].

In this paper, the performance benefits of Tensor Cores are in-
vestigated across multiple workloads. Prior works on Tensor Cores
evaluate Convolutional Neural Networks (CNN) [57, 76] and GEMM
[14, 17]. However, the benefits of Tensor Cores in Graph Convolu-
tional Networks (GCN) [29], which is an important emerging ML
workload, have not been explored. We analyze the performance of
four configurations of the GCN model and several kernels includ-
ing element-wise operations. Another contribution of this paper
is the measurement-based evaluation of ML acceleration using the
NVIDIA H100 GPU. Apart from NVIDIA publications, there have
been very few third-party works evaluating H100 GPUs. This is
also one of the earliest third-party papers to measure and analyze
the performance of H100 compared to its predecessor, A100. While
performance evaluation of H100 appears in prior work [7], they do
not present Tensor Core performance.
The objectives of this study are the following:
• Investigate the performance of the CNN and GCN, both with and
without Tensor Cores, across two generations of NVIDIA GPUs,
A100 [48] and H100 [49], based on hardware measurement.

• Provide third-party performance evaluation of NVIDIA H100
GPU compared to the previous generation GPU, NVIDIA A100.

• Conduct roofline analysis of the workloads to understand their
characteristics and correlation with Tensor Cores performance.

• Develop GEMM-like and non-GEMM-like microbenchmark ker-
nels to understand the performance patterns of Tensor Cores.

• Analyze the floating-point instruction mix of workloads and
shed light on the types of lower precision instructions utilized,
the functional units where they are being executed (e.g., CUDA
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Cores, Tensor Cores), etc. across different networks and training
configurations (e.g., full-precision, mixed-precision).

• Investigate the impact of new data types, such as TF32 [8].
• Investigatewhether code optimizations like reshaping and padding
can make non-GEMM kernels utilize Tensor Cores (eg: Implicit
GEMV vs. Reshaped GEMV for FIR)

The major insights from this study are the following:
• Tensor Cores provides 1.3× to 2.9× improvements in CNNwhereas
only 1.03× in GCN. Among kernels, GEMM, GEMV, and Conv2D
get the benefits while Element-wise and FIR fail to get any im-
provements in spite of transformations.

• Four different CNNs yield an average of 1.93× improvement on
H100 versus the previous A100 GPU. Among the four GCN config-
urations experimented, two yield an impressive 8× improvement
on H100 compared to A100, whereas two of the GCN configura-
tions provide nearly no improvements.

• GCNs have 10× lower arithmetic intensity compared to CNNs,
and benefits from Tensor Cores are difficult to obtain.

• There are performance anomalies while using different CUDA
versions. For instance, the newest CUDA libraries gave improved
performance for manyworkloads, however, for some of the GCNs,
they yielded poorer performance than the older CUDA version.

• Non-GEMM-like kernels struggle to get any performance im-
provements from Tensor Cores, even with data transformations.
Reshaped FIR can use batching in order to reduce performance
overheads, whereas naive FIR is not even supported and cannot
run on Tensor Cores.

2 BACKGROUND AND PRIORWORK
2.1 Tensor Cores

Starting from Volta architecture (2017), NVIDIA GPUs contain
CUDA Cores and Tensor Cores as illustrated in Figure 1. CUDA
Cores are the default (traditional) compute units in GPUs, while
Tensor Cores were later added specifically for accelerating matrix
multiplications, which are abundant inmanymachine learning (ML)
workloads [4, 26, 81]. With libraries provided by NVIDIA, Tensor
Cores quickly became the workhorse for acceleratingMLworkloads
as popular machine learning frameworks, such as PyTorch and
TensorFlow, support Tensor Cores.

2.1.1 Architectural Overview. Figure 2 gives a high-level illustra-
tion of the matrix-multiply-accumulate (MMA) operations per-
formed by Tensor Cores on two 4×4 matrices to produce a 4 × 4
matrix. Essentially, Tensor Cores perform the arithmetic expression
𝐷 = 𝐴 × 𝐵 + 𝐶 where 𝐴, 𝐵,𝐶, 𝐷 are matrices. Larger dimension
matrices are possible using larger Tensor Cores instruction size and
hierarchical matrix multiplication [28].

The NVIDIA Tesla V100 with Volta architecture [45] contains
640 first-generation Tensor Cores across 80 SMs1. The Tensor Cores
in each SM can deliver 1024 FLOPs per cycle, resulting in up to
120 TFLOPs/s FP16 performance [9]. Only half-precision matrix
multiplication is supported in this generation. Thus, the A and B
matrices in Figure 2 are in FP16, while the resulting product matrix

1SM stands for Streaming Multiprocessor, which contains a collection of SIMD Units
referred to as CUDA Cores (e.g., FP64, FP32, INT32), instruction schedulers, registers,
shared memory, L1 cache, and texture cache (Figure 1). GPUs usually have multiple
numbers of SM to achieve even higher parallelism.
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Figure 1: CUDA Cores are the default compute units while Tensor
Cores are additions to accelerate matrix multiplications in GPUs
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Figure 2: Tensor Cores compute 𝐷 = 𝐴 × 𝐵 +𝐶
Table 1: Tensor Cores Evolution and Supported Precision
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1 Volta [45] V100S 80 5120 640 - - ✔ - - - - - ✔ ✔ ✔ - ✔ ✔
2 Turing [46] RTX 6000 72 4608 576 - - ✔ - - ✔ ✔ ✔ ● ✔ ✔ - ✔ ✔
3 Ampere [48] A100 108 6912 432 ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 Hopper [49] H100 132 16896 528 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 Ada [54] L40S 142 18176 568 - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ● ✔ ✔ ✔ ✔ ✔

✔: full-support; ●: support with reduced performance; -: not supported.

can be in either FP16 or FP32. The subsequent version of Tensor
Cores supports more data types as given in Table 1.

The second generation of Tensor Cores was introduced in 2019
with Turing architecture [46] focusing on accelerating the quan-
tized ML inference workload. It supports new data types INT8,
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INT4, and INT1, which are specifically useful for ML inference
workloads that can tolerate lower precision with minimum impact
on model accuracy [34] as well as binary neural networks [32].
Third-generation Tensor Cores, launched with Ampere architec-
ture [48], support new data types such as BFloat16 (BF16) [74] and
TensorFloat32 (TF32) [8] with additional support for accelerating
sparse matrix operations [68]. Moreover, new FP64 support opens
new possibilities for Tensor Cores to be used in HPC and scientific
applications [17]. The fourth-generation Tensor Cores, introduced
in the Hopper architecture [49] in 2022, double the throughput per
SM per cycle compared to its predecessor for all data formats [7]. A
new quarter precision data type (FP8), which supports both e4m3
(4 exponent bits, 3 mantissa bits) for more accuracy and e5m2 (5 ex-
ponent bits, 2 mantissa bits) for more dynamic range [42], is useful
for large language models. More FP64 shapes and new warp-group
level Tensor Cores instructions are introduced, supporting larger
instruction sizes. Fifth-generation Tensor Cores, introduced in the
Blackwell architecture in 2024, support FP6 and FP4 data types.

2.2 Mixed Precision Training
Mixed precision training [41] can help reduce the amount of

memory required to train the model, ease the bandwidth require-
ment (e.g., off-chip memory and inter-node network bandwidth),
and lower the computational power needed. It uses multiple pre-
cision formats; lower precision (e.g., FP16) is used in most of the
network during the training while single precision (e.g., FP32) is
used in the critical parts of the network (e.g., accumulation of gradi-
ents after each optimizer step) to maintain numerical stability and
accuracy. Some of the hardware has FP32 units that can execute
FP16 twice the rate of FP32, such as NVIDIA Pascal architecture
[44], which improves training performance. With many advantages
offered by mixed precision training, vendors try to find even more
efficient data formats to train AI and ML models without sacrificing
the performance of the models. Google introduced BF16, which re-
tains the dynamic range of FP32 in 16-bit format [74], while NVIDIA
introduced TF32, which retains the dynamic range of FP32 while
keeping the accuracy of FP16 in 19-bit format [8].

2.3 Prior Evaluation of Tensor Cores
Since its introduction in 2017, Tensor Cores have been investi-

gated in academic and industry research. Tensor Cores improve
the performance of ML workloads by using mixed precision while
maintaining model accuracy [39]. Memory-bound operations often
see around two times speed-up thanks to the reduced data size (e.g.,
FP16). In contrast, compute-bound operations benefit from Tensor
Cores depending on their arithmetic intensity [40]. Prior studies
show the use of Tensor Cores onNVIDIAV100GPU givesmore than
2× speed-up in training for ResNet50 [57], GNMT [51], Inception
v3, and Vgg16 models [76]. In addition, quantized inference gets up
to 5× higher throughput and lower latency by using Tensor Cores
inside NVIDIA Turing GPU [46] across many models, including
ResNet50 v2, MobileNet v2, and SSD MobileNet v2 [18, 73]. Other
models, including UNet Industrial Defect Segmentation, show a
slight performance drop [58]. Prior works also include arithmetic
accuracy studies for GEMM [2, 34, 59], scientific computation us-
ing double precision on third and fourth-generation Tensor Cores
[14, 17], and mapping GEMM-like application into Tensor Cores

[10], which include Fast Fourier Transform [13], reduction [43],
scientific simulations [11], and linear system solver [19]. However,
prior works mostly focused on convolution and GEMM-like work-
loads. Workloads such as GCNs and non-GEMM-like applications
have not been studied. Finally, a study is done to characterize Ten-
sor Cores latency, throughput, and numerical behavior to get the
low-level detail of Tensor Cores [67]. However, it does not show
how applications behave in different generations of Tensor Cores.

2.4 Programming Tensor Cores
With CUDA, programmers can develop applications that target

NVIDIA GPUs using high-level languages, such as C, C++, Fortran,
and Python. The high-level code is then compiled by a compiler (e.g.,
nvcc) to an intermediate assembly language called PTX (Parallel
Thread eXecution) [27], whose ISA is openly documented [56]. The
PTX instructions are then compiled to device-specific Streaming
Assembly (SASS) either through ahead-of-time compilation using
PTX assembler (e.g., ptxas) or just-in-time compilation by the
display driver [66].

While developing applications that only utilize CUDA Cores
can be done more easily using the high-level language of choice,
developing applications that specifically target Tensor Cores to
achieve higher performance is a different story. The instructions
that run on Tensor Cores perform matrix multiplication and
accumulation (MMA) [38] on a predefined dimension called in-
struction size. The programming model of Tensor Cores constructs
this operation at the warp2 level, which is different than the reg-
ular CUDA model which constructs the operation at the thread
level [39]. Multiple sizes and operands are supported using MMA,
including half-precision (hmma), integer (imma), binary (bmma), and
double-precision (dmma). These instructions is accessed via PTX
through inline assembly.

Since there is a limited number of instruction sizes for Tensor
Cores, tiling must be done for operations that involve arbitrary
dimensions of matrices. This consists of dividing the large matrices
hierarchically at the grid3 level into multiple thread block tiles, and
further decomposing them

into warp tiles with multiple thread tiles utilizing all memory
types in the hierarchy (e.g., global memory, shared memory, register
files) [28]. Moreover, fulfilling the data layout and memory align-
ment requirements of Tensor Cores may not always be straightfor-
ward, especially for applications that have irregular data structures
and computation patterns [15, 61, 75]. It is also challenging to han-
dle sub-byte operations, such as INT4 and INT1 [6]. Therefore,
programming Tensor Cores is an uphill task.

To overcome this issue, NVIDIA provides libraries that imple-
ment various functions that target Tensor Cores [3], and thus in-
stead of having to write in-line assembly for PTX, developers can
call the provided functions from their applications. Among the li-
braries include cuBLAS, cuSPARSE, cuTENSOR, cuDNN, and CUT-
LASS. CUTLASS is the only open-source library from the previous
list that provides C++ template for developing high-performance

2Warp is a group of 32 threads concurrently executing the same instructions in a
lock-step fashion. A collection of warp constitutes a thread block, which runs on an
SM. The scheduler inside the SMwill choose which warp runs based on the readiness of
operands and perform context-switching across warps to hide memory access latency.
3Grid is a collection of thread blocks executing a GPU kernel.
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Table 2: Hardware Configuration
Platform DGX-A100 XE9680

GPU
Model NVIDIA A100 NVIDIA H100

Form Factor SXM4 SXM5
Memory Size & Type 40 GB HBM2 80 GB HBM3
Memory Bandwidth 1,555 GBps 3,350 GBps
# CUDA/Tensor Cores 6912/432 16896/528
FP32 on CUDA Cores 19.5 TFLOP/s 67 TFLOP/s
FP16 on CUDA Cores 39 TFLOP/s 133.8 TFLOP/s
TF32 on Tensor Cores1 156/312 TFLOP/s 494.7/989.4 TFLOP/s
FP16 on Tensor Cores1 312/624 TFLOP/s 989.4/1978.9 TFLOP/s

CPU
Model (# Sockets) EPYC 7742 (2) Xeon 8470 (2)
Base/Turbo Clock 2.25/3.4 GHz 2.00/ 3.80 GHz

Total Cores / Threads 128 / 256 104 / 208
1 Dense/Sparse GEMM performance

matrix multiplications with support for Tensor Cores [70]. Other
libraries such as cuBLAS and cuDNN are closed-source and contain
multiple algorithms and implementations, including kernels from
CUTLASS, to perform linear algebra and neural network operations,
respectively. They use heuristics to choose the most optimized algo-
rithms for a given problem and target devices [33, 72]. Even though
libraries make developing applications that target Tensor Cores
easier, the developer must still take care of data layout and memory
alignment in order to correctly use Tensor Cores.

3 EXPERIMENTAL METHODOLOGY
3.1 Hardware and Software Setup

The experiments in this paper are conducted on two different
platforms, each with different generations of NVIDIA GPU, as
shown in Table 2. The NVIDIA A100 (Ampere) GPU is housed
in the NVIDIA DGX-A100 chassis and features third-generation
Tensor Cores while the NVIDIA H100 (Hopper) GPU is housed
in Dell PowerEdge XE9680 chassis and features fourth-generation
Tensor Cores with double the throughput of its predecessor. Both
GPUs have sparsity support in their Tensor Cores which is expected
to be useful for GCN that has some sparse matrix multiplications
(spMM) [23, 85]. For simplification, NVIDIA A100 and NVIDIA
H100 GPUs will be referred to as A100 and H100, respectively.

On the software side, the DGX-A100 is equipped with CUDA
Toolkit 11.8, alongwith Python 3.11.4 and PyTorch 2.0.1. Meanwhile,
the Dell PowerEdge XE9680 uses CUDA Toolkit 12.0, along with
Python 3.11.4 and PyTorch 2.0.1 built from the source.

3.2 Performance Measurement
The Nsight Compute (ncu) is used to characterize kernels of

each workload to gain access to their low-level detail. Kernel run-
time is measured by collecting gpu__time_duration metric with
cache and clock control disabled. For measuring kernel runtime in
microbenchmark, the kernel is run 100 times and the average is
taken. In addition, instruction count and DRAM transactions are
collected. The FLOPs number is derived from the instruction count
after multiplying with the weight (e.g., fma, fadd, and fmul have
weight of 2, 1, and 1, respectively). The weight of Tensor Cores
instruction is obtained based on instruction size.

The training performance for ML workloads is measured using
a wall clock. For CNN, the model is trained using their respective
dataset in 10 epochs with a default batch size of 128 for Image
Classification and 4 for Object Detection. On the other hand, the
GCN is trained in 1000 epochs because the model and dataset are

small. Wall clock time measurements for determining speed-up
use a large number of epochs while ncu profiling for roofline and
instruction-mix analysis use 2 and 5 epochs for CNNs and GCN,
respectively, to ensure acceptable running times with the profiler.

3.3 Profiling Tensor Cores
The legacy NVIDIA profiling tool nvprof [47] only provides

single metric that indicates whether tensor cores are being used
by a particular GPU kernel, which is accessible through tensor_
precision_fu_utilization metric. This legacy profiling tool is
no longer supported since Ampere. Meanwhile, its successor, the
NVIDIA NSight Compute (ncu) [53] provides access to more valu-
able metrics on Tensor Cores with support starting from Volta.

Prior to CUDA 12.2, ncu provides access to sm__inst_executed
_pipe_tensor_op_xmma to count the number of instructions being
executed by Tensor Cores. It also provides access to measure Tensor
Cores utilization through sm__pipe_tensor_cycles_active and
sm__pipe_tensor_op_xmma_cycles_active. Note that xmma can
be dmma, hmma, and imma. While the metrics are useful to indicate
the interaction of the applications with the Tensor Cores, more
efforts are needed to obtain more characterization metrics, such as
the total number of FLOPS being executed, which is important for
roofline analysis [78]. The instructions being executed on the Tensor
Cores may have different shapes, which contain a different number
of FLOPs per instruction. Sometimes, the kernel name suggests
the instruction size being used [64] (e.g., ampere_h16816gemm_...
means it uses hmma.16x8x16, which contains 4096 FLOPs per in-
struction), but it is difficult and is not a universal solution. Some
instructions are difficult to infer the number of FLOPs without
documentation, such as hfma2.mma that contain 4 FLOPs [31].

Finally, ncu shipped with CUDA 12.2 in June 2023 provides more
detailed information on how many FLOPs (or IOPs) are executed on
Tensor Cores. It provides access to the new metric sm__ops_path_
tensor_src_(in)_dst_(out) where (in) and (out) are input
data type and output data type. respectively. It can also be used
to identify sparse FLOPs and dense FLOPs. These metrics make
profiling applications that target Tensor Cores easier, especially
those that use wgmma.mma_async in Hopper.

3.4 Workload Configuration
To evaluate Tensor Cores’ performance, two groups of workloads

are prepared, consisting of end-to-end ML training and microbench-
mark as shown in Table 3 and 4, respectively.

3.4.1 Machine Learning Workloads. The CNN workloads consist
of four models with two different tasks, as shown in Table 3. The
ResNet50 [21] and EfficientNet [69] are CNN models for image
classification, which are trained using the ImageNet dataset [12].
In addition, Faster-RCNN [62] and RetinaNet [35] are CNN models
for Object Detection, which are trained using COCO dataset [36].

In addition to CNNs, which have been widely evaluated on GPUs,
we also use GCNs as an emerging ML workload for this study. The
GCN consists of only one model [29] with two different tasks: semi-
supervised node classification tasks, either transductive or inductive
[77]. For the transductive approach, PubMed [65] and Chameleon
[63] datasets are used, while for the inductive approach, Yelp [82]
and Reddit [20] datasets are used. Interested readers can obtain
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Table 3: Machine Learning Workload Configuration
Type Model Task Dataset
CNN ResNet50 Image Classification ImageNetCNN EfficientNet
CNN FasterRCNN Object Detection COCOCNN RetinaNet
GNN GCN Node Classification

Transductive
PubMed

GNN GCN Chameleon
GNN GCN Node Classification

Inductive
Reddit

GNN GCN Yelp

Table 4: Microbenchmark Kernels Configuration
Type ID Dimension Config

GEMM
{m,n,k}

512 {512,512,512} fp32
fp16.1688
fp16.16816

2K {2048,2048,2048}
8K {8192,8192,8192}
32K {32768,32768,32768}

GEMV
{m,1,k}

512 {512,1,512} fp32
fp16.1688
fp16.16816

2K {2048,1,2048}
8K {8192,1,8192}
32K {32768,1,32768}

Conv2D
{N,H,W,C};
{K,R,S};
{U,V}

A {64,1024,1024,32}; {16,32,32}; {1,1}

fp32
fp16

B {64,1024,1024,32}; {16,32,32}; {1,1}
C {256,512,512,32}; {16,32,32}; {1,1}
D {64,1024,1024,32}; {16,4,4}; {8,8}
E {32,512,512,256}; {16,32,32}; {1,1}
F {32,512,512,32}; {256,32,32}; {1,1}

FIR
{s,f}

8M4 {8388608, 4}

fp32.af
fp16.ig
fp16.rg

8M8 {8388608, 8}
32M8 {33554432, 8}
32M16 {33554432, 16}
128M16 {134217728, 16}
128M32 {134217728, 32}

ElWiseAdd
{v}

256K {262144}
fp32
fp16

4M {4194304}
64M {67108864}
1B {1073741824}

more details from the original paper [29], a review by Zhang et al.
[83, 84], and a summary by Heidar et al. [22],

PyTorch [60] is used as the framework to perform ML training in
this experiment. All of the CNNmodels are taken from TorchVision
[37] while the GCN model is taken from CogDL [5], a research
toolkit for deep learning graphs. This toolkit integrates the original
code from Kipf et al. [29] with built-in methods to load various
datasets, making it easier to do experiments. For the FP32 (full-
precision) training flow, PyTorch Automatic Mixed Precision (AMP)
is disabled to avoid Tensor Cores usage, while for the FP16 (mixed-
precision), AMP is enabled, allowing Tensor Cores usage.

3.4.2 Microbenchmark Kernels. The microbenchmark consists of
five kernels with configurations given in Table 4. The kernels are
developed using C++ and CUDA which target CUDA Cores or
Tensor Cores. The kernels have customizable precision, input di-
mensions, target execution units, and libraries. Except otherwise
noted, CUTLASS [70] is the library used for two reasons: 1) CUT-
LASS is open-source, which allows modification of template header
or low-level assembly; and 2) CUTLASS is deterministic in terms
of overall execution, which allows using application replay in ncu
for profiling while cuBLAS use heuristics to choose the best kernel
depending on problem size and device. The FP32 and F16 imple-
mentations target CUDA Cores and Tensor Cores, respectively.
• GEMM: General matrix-matrix multiply with dimensions {m,n,k}
denoting 𝐴𝑚×𝑛 × 𝐵𝑛×𝑘 = 𝐶𝑚×𝑘 where 𝐴, 𝐵,𝐶 are matrices.
GEMM is well-supported by CUTLASS, which has one of the
most efficient hierarchical GEMMs supporting CUDA Cores or
Tensor Cores. However, data layout inmemorymust be taken care

of carefully [28]. FP16 implementation uses two Tensor Cores in-
structions: hmma.16816 (fp16.16816) and hmma.1688 (fp16.1688).

• GEMV: General matrix-vector multiply with dimensions {m,1,k}
can be viewed as a special case of GEMM. It follows the same
implementation as GEMM.

• Conv2D: Two-dimension convolution is decomposed into im-
plicit GEMM [86] by CUTLASS on CUDA Cores or Tensor Cores.
The Conv2D kernel has multiple configurations with {N,H,W,C}
denotes batch size, height, width, and number of input channels,
respectively. In contrast, {K,R,S} denotes the number of chan-
nels, height, and width of the filter, respectively. The {U,V} are
horizontal and vertical stride, respectively.

• FIR: 1D Finite Impulse Response filtering which operates on
1D signal 𝑠 and 1D filter 𝑓 . The FP32 uses the ArrayFire library
(fp32.af) [79] while the FP16 implementation is not supported by
Tensor Cores by default. Although earlier studies have tried to
map FIR into Tensor Cores, they use 2D signals and filters [30].
Therefore, for the purpose of this experiment, two approaches to
map 1D FIR into Tensor Cores are proposed as follows:
– Implicit GEMV (fp16.ig): This approach is done by modifying
CUTLASS implicit GEMM into implicit GEMV. Due to memory
alignment requirements, many zero-padding needs to be added,
resulting in 64× more operations than is necessary.

– Reshaped GEMV (fp16.rg): Another approach is to construct
a matrix from a 1D signal, which will be multiplied by the
vector containing the filter. Suppose a filter 𝑓 = {𝑓0 𝑓1 𝑓2} is
applied into input signal 𝑠 = {𝑠0 𝑠1 𝑠2 𝑠3}. Then, a 4×3 matrix is
constructed with first row {0 0 𝑠0}, second row {0 𝑠0 𝑠1}, third
row {𝑠0 𝑠1 𝑠2}, and fourth row {𝑠1 𝑠2 𝑠3}. Then, a GEMV can be
performed between the signal matrix and the filter vector. This
approach has one drawback regarding data reuse and memory
usage where the same data appears multiple times (e.g., 𝑠0 in
the first row is the same data as 𝑠0 in the second row but stored
twice in the memory).

• ElWiseAdd: Element-wise vector addition operates on two vec-
tors of the same configurable lengths {𝑣}. The FP32 implementa-
tion (fp32) uses only C++, while the FP16 implementation (fp16)
is not supported in Tensor Cores. While cuBLAS supports vector
addition operation, which can be represented by 𝑎𝑥 + 𝑦 with
scaling factor 𝑎 = 1, at the time of writing, cuBLAS only supports
this operation in CUDA Cores for single precision and double
precision with no Tensor Cores support [50]. Therefore, to be
able to run vector addition in Tensor Cores, both vectors must be
transformed into matrices to follow the Tensor Cores operation
shown in Figure 2 with matrix 𝐵 being an identity matrix and
matrix 𝐴 and 𝐶 are the two input vectors. The multiplication
cannot be skipped as it is the basic operation of Tensor Cores (i.e.,
mma), resulting in expensive computation and memory access.

4 EVALUATION & DISCUSSION
4.1 What do Tensor Cores bring to the table

over CUDA Cores?
Tensor Cores provide a significant jump in compute throughput

for GEMM and GEMM-like kernels if specific precisions are used.
Figure 3 presents the speed-up achieved for CNN and GCN work-
loads (Table 3), and microbenchmark kernels (Table 4) on H100.
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Figure 3: The speed-up obtained by using Tensor Cores over CUDA Cores on H100 across CNN/GCN workloads, and microbenchmark kernels.
CNNs, Conv2D, and GEMM/GEMV are high performers with G, B, and U indicate Good, Bad, and Ugly, respectively.

4.1.1 CNN Workloads. Figure 3-a illustrates that going from FP32
onCUDACores to TF32 on Tensor Cores gives an average 1.91× speed-
up while going from FP32 on CUDA Cores to FP16 on Tensor Cores
gives an average 2.42× speed-up. To run FP32 full precision training
on CUDA Cores as the baseline, PyTorch Automatic Mixed Preci-
sion (AMP) is explicitly disabled. However, the underlying CUDA
libraries (e.g., cuBLAS, cuDNN) automatically demote FP32 to TF32
[8] to take advantage of Tensor Cores. Hence, an environment vari-
able NVIDIA_TF32_OVERRIDE=0 is set to tell CUDA libraries not
to use TF32 explicitly. As a result, there are three configurations
shown in Figure 3-a: full precision FP32 (blue), full precision TF32
(green), and mixed precision FP16 (purple).
4.1.2 GCN Workloads. Unlike CNN, GCN uses FP32 by default for
full precision training, most likely due to the CogDL [5] that does
not take advantage of TF32 on the underlying CUDA libraries. Fur-
thermore, as shown in Figure 3-b, it only sees an average speed-up
of 1.03× when going from FP32 on CUDA Cores to FP16 on Tensor
Cores. Further explanation using rooflines and matrix instruction
usage is provided in Section 4.2.4 and Section 4.3.2.

4.1.3 Microbenchmark Kernels. In summary, GEMM, GEMV, and
Conv2D kernels get the performance benefit while FIR and El-
WiseAdd experience performance degradation, as discussed below.
• GEMM: GEMM gets an average speed-up of 7.69× and 9.14× for
fp16.1688 and fp16.16816, respectively, as shown in Figure 3-c.
The highest speed-up is observed with GEMM_8K at 9.32× for
fp16.1688 and 11.89× for fp16.16816, before dropping to 7.25× and
7.20× , respectively, for GEMM_32K. The GEMM_32K has vastly
more elements (200M for GEMM_8K vs. 3.2B for GEMM_32K)
and more intermediate results, exacerbating the data movement
between on-chip and off-chip memory, which will become clear
when we perform roofline analysis in Section 4.2.5.

• GEMV: GEMV gets performance benefits from Tensor Cores,
although its average speed-up is lower than GEMM due to its
lower arithmetic intensity. The achieved average speed-up is
7.82× for fp16.1688 and 8.96× for fp16.16816 (Figure 3-c).

• Conv2D: Since Conv2D is decomposed into implicit GEMM, it
can take advantage of Tensor Cores; it achieves an average speed-
up of 6.99× (Figure 3-d). The highest speed-up of 12.42× comes
from Conv2D_E, whose reason will become clear in Section 4.2.5.

• FIR: Both FP16 implementations that target Tensor Cores show
significant performance degradation as shown in Figure 3-e; the
fp16.rg and fp16.ig only achieve an average of 0.30× and 0.01× per-
formance achieved by fp32.ar that runs on CUDA Cores, respec-
tively. The fp16.rg has redundant operations (Section 3.4.2), caus-
ing the performance drop for larger signal and filter dimensions.
The fp16.ig is even more slower than the fp16.rg because of the
64 times more operations it needs to perform due to the zero-
padding (Section 3.4.2). Even if there is a way to make these
additional operations useful (e.g., having batched inputs with the
same FIR filter or multiple independent FIR filters), it still cannot
compete with the fp32.ar for large signal size (dashed green bars).

• ElWiseAdd: Like the FIR, ElWiseAdd also sees performance
degradation, especially for larger dimensions, where it achieves
an average of 0.25× performance offered by CUDA Cores as
shown in Figure 3-f. While the matrix addition is fast, the mul-
tiplication with the identity matrix that cannot be skipped is
expensive, especially in larger dimensions (Section 3.4.2).

4.2 Is Compute the Bottleneck or Memory?
4.2.1 Overview of Roofline Model. We use roofline charts [78]
to visualize the achieved performance of applications or kernels
compared to the hardware’s compute capabilities and draw insights
on the arithmetic intensity of applications. Both axes of the model
are plotted in logarithmic scale: the y-axis represents the compute
throughput (e.g., floating-point operations per second) while the
x-axis represents the arithmetic intensity, which is the amount of
computing that can be done per byte of data (e.g., floating-point
operations per byte). The hardware roofline model, which can be
obtained theoretically (e.g., from manufacturer datasheet, such as
the data provided in Table 2) or empirically (e.g., using Empirical
Roofline Toolkit [80]), consists of peak compute throughput, drawn
as the roof, and the peak memory bandwidth (e.g., off-chip memory,
cache bandwidth), drawn as the slope. Using data obtained from
profiling tools (e.g., execution duration, the number of operations,
and the number of memory read and write), the position of each
application or kernel in the roofline chart can be determined, which
gives insight whether the application or kernel is compute- (i.e.,
closer to the roof) or memory-bound (i.e., closer to the slope) and
what optimization techniques should be performed.
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Figure 4: The roofline model for H100 (obtained using ERT), and the characterization of CNN/GCN workloads, and microbenchmark kernels.
GCN has less than 1K flops/byte while Conv2D goes above 100K flops/byte. Diamond shape indicates baseline without Tensor Cores and
triangles/circles indicate Tensor Cores versions.

4.2.2 H100 Roofline Model. Figure 4 shows the hardware roofline
model for H100, obtained using ERT [80]. There are two points to
highlight: 1) The roofs represent the peak compute throughput of
the CUDA Cores: 64.64 TFLOP/s for FP16 (FP16-CC), 64.12 TFLOP/s
for FP32 (FP32-CC), and 32.82 TFLOP/s for FP64 (FP64-CC) since,
at the time of writing, ERT does not support hmma nor hgmma to
measure the peak compute throughput of Tensor Cores (FP16-TC);
and 2) the ERT is only able to achieve 50% of the theoretical compute
throughput of FP16 on CUDA Cores (Table 2). The latter may be
caused by two reasons: 1) ERT may need to be updated to account
for new architecture, or 2) The CUDA Cores of Hopper may have
the same FP16 compute throughput as the FP32. This happens with
Ada Lovelace [54] (e.g., NVIDIA L40S [55]), which shares some of
the architecture with Hopper, although Hopper datasheet mentions
FP16 to be twice the rate of FP32 on CUDA Cores [49]. For the
bandwidth, ERT is able to achieve 2,832 GBps on the HBM3 DRAM
(84.5% of 3,350 GBps theoretical bandwidth for H100).

4.2.3 CNN Workloads. The use of TF32 during full precision train-
ing (Section 4.1.1) allows all models to achieve significantly higher
GFLOP/s, with some exceeding the FP32-CC roof, by leveraging
Tensor Cores (Figure 4-a). The performance improvements in using
TF32 compared to FP32 for full-precision training are two folds:
1) Convolution operations, which are abundant in CNN, can be
done on Tensor Cores, which have significantly higher compute
throughput than CUDA Cores; and 2) TF32 has lower 19-bit data
size compared to FP32 32-bit data size, which reduces the pressure
on the memory bandwidth. Furthermore, the use of FP16 on mixed
precision training by enabling PyTorch Automatic Mixed Precision
improves performance even further, which comes from the ability
of Tensor Cores to compute FP16 at twice the rate of TF32 and

slightly lower data size (16-bit FP16 vs. 19-bit TF32). Special men-
tion goes to FasterRCNN, shown in orange color, which gets the
most benefits (i.e., biggest change in FLOPs/byte) from reduced
memory bandwidth by switching from TF32 to FP16.
4.2.4 GCN Workloads. In general, all of the GCN workloads are
memory-bound, even after switching from full-precision training
(FP32) to mixed-precision training (FP16) as shown in Figure 4-b.
The use of Tensor Cores for mixed-precision training has very few
improvements in performance as discussed in Section 4.1.2; only
PubMed, shown in green, enjoys some improvements compared
to other GCN configurations in terms of arithmetic intensity and
achieved compute throughput. However, it does not translate to pos-
itive speed-up (Figure 3) due to extra operations needed when using
Tensor Cores (e.g., COO to CSR sparse matrix format conversion).
4.2.5 Microbenchmark Kernels. The roofline analysis for each ker-
nel of the microbenchmark is given as follows.
• GEMM: The GEMM kernels are shown in dark blue, light blue,
dark green, and light green colors in Figure 4-c. The dimension
of GEMM_512 (dark blue) is too small to take advantage of the
compute throughput offered by either CUDA Cores (diamond) or
Tensor Cores (triangle and circle). Meanwhile, the other GEMM
configurations (GEMM_2K, GEMM_8K, GEMM_32K) in FP32 (di-
amond) can almost saturate the FP32 compute throughput offered
by CUDA Cores (i.e., almost hitting the roof of FP32-CC). The
FP16 version of GEMM_8K and GEMM_32K (dark green trian-
gle, green triangle, dark green circle, and green circle) can push
through the roof of FP16-CC thanks to the use of Tensor Cores
until the memory bandwidth of HBM3DRAM becomes their limit.
The theoretical FP16 performance of the Tensor Cores in H100 is
989 TFLOP/s (Table 2), which most likely won’t be achieved by
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GEMM due to memory bandwidth limitation. The use of larger
hmma.16816 (fp16.16816), denoted by circle, gives higher compute
throughput compared to the hmma.1688 (fp16.1688), denoted by
triangle, while giving the same arithmetic intensity. Finally, it is
worth mentioning that the GEMM_2K has a significantly higher
FLOP/byte compared to other configurations. The dimension of
the matrices is small enough to fit into on-chip memory. The 12
Million (2048×2048×3) FP16 elements have a total size of around
24 MB while H100 has 33 MB of registers, 33 MB of combined L1
Cache and Shared Memory, and 50 MB of L2 cache.

• GEMV: The GEMV kernels are shown in orange, yellow, pur-
ple, and violet colors in Figure 4-c. GEMV has lower data reuse
compared to GEMM, and hence lower arithmetic intensity (i.e.,
located to the left of GEMM counterparts) and lower number
of operations, especially for lower dimensions GEMV_512 and
GEMV_2K (orange and yellow) whose FP32 versions (diamond)
cannot fully utilize the available CUDA Cores on H100. On the
other hand, the largest dimension (GEMV_32K) can almost hit
the FP32-CC roof. Moving to FP16 versions (triangle and circle),
only GEMV_8K and GEMV_32K can push through the roof of
FP16-CC until they hit the memory bandwidth slope. Like the
GEMM, the use of hmma.16816 (fp16.16816) gives higher compute
throughput compared to the hmma.1688 (fp16.16816) on GEMV.

• Conv2D: As mentioned earlier in Section 3.4.2, the 2D Convolu-
tion is decomposed into implicit GEMM. The 2D convolution has
more data reuse compared to GEMM, where the data reuse mostly
comes from the use of 2D filters, which are applied to many 2D
input signals. As shown in Figure 4-d, in general, both FP32 (di-
amond) and FP16 (circle) of Conv2D almost reach the roof of
FP32-CC and the theoretical roof of FP16-TC (drawn as a dashed
red line), respectively. The Conv2D_A (dark blue) and Conv2D_B
(light blue), which have sixteen 32×32 filters (Table 4), have the
most data reuse, leading to the highest arithmetic intensity (i.e.,
located to the right side of the roofline chart). The amount ofmem-
ory needed to store all of these filters in both FP32 and FP16 are
64 KB and 32 KB, respectively, which can be stored sufficiently in-
side the shared memory of H100 (256 KB of combined L1+Shared
memory per SM). On the other hand, Conv2D_C (dark green)
and Conv2D_D (light green) have the least data reuse due to the
smaller size of filters being used (Conv2D_C) and the larger con-
volution stride (Conv2D_D). Moving to FP16 with Tensor Cores
(circle), all Conv2D configurations push through the FP16-CC
roof. Special mention goes to Conv2D_E (orange) with its 256
input channels and smaller 512×512 input signals that allow for
more data reuse. It almost achieves the theoretical FP16 peak
performance of Tensor Cores, followed by Conv2D_F (yellow).

• FIR: Figure 4-e shows three clusters of workloads, which corre-
spond to three implementations of FIR as discussed in (Section
3.4.2): fp32.ar (diamond), fp16.rg (circle), and fp16.ig (triangle).
The FP32 version (fp32.ar) is already bandwidth-limited, with all
of them positioned near each other at the slope of HBM3 DRAM.
This also indicates that Tensor Cores cannot accelerate FIR as it
is already bandwidth limited, unlike GEMM, GEMV, and Conv2D.
The fp16.rg implementation has higher arithmetic intensity due
to the redundant operations as a result of how the signal’s data
is laid out to form a matrix as discussed in Section 3.4.2. On the
other hand, the fp16.ig tries to mimic the implicit GEMM that

Conv2D has, except it uses implicit GEMV. Nevertheless, both
approaches to map FIR to Tensor Cores (fp16.ig and fp16.rg) show
unfavorable results compared to the fp32.ar on CUDA Cores.

• ElWiseAdd: Figure 4-f shows the FP32 version (diamond) of
element-wise addition is already memory-bound with very low
arithmetic intensity, hitting the slope of HBM3 DRAM bandwidth.
On the other hand, the FP16 version (circle) has higher compute
throughput and arithmetic intensity, which solely comes from
the fact that the element-wise addition must be transformed to
matrix-multiply-accumulate operations to be able to use Ten-
sor Cores. Sadly, this does not improve performance since the
multiplication is expensive, especially for large matrix sizes.

4.3 What Percentage of Floating-Point
Instructions Offloaded to Tensor Cores?

Figure 5 shows the floating-point instruction/operation mix for
CNN, GCN, and microbenchmark kernels. Since Tensor Cores in-
struction performs multiple floating-point operations, the weighted
numbers are used (Section 3.2). The instruction/operation mix gives
insight into what instructions could be offloaded to Tensor Cores.

4.3.1 CNNWorkloads. As previously discussed in Section 4.2.3, the
underlying CUDA libraries demote the FP32 to TF32 for full preci-
sion training in order to use Tensor Cores. This is further confirmed
by the instruction mix shown in Figure 5 (top four sets) where
most floating-point instructions are TF32 running on Tensor Cores
with hmma.1688 instructions shown as yellow bar (e.g., GEMM
kernel sm80_xmma..._tf32f32...) and newer hgmma shown as
olive-green bar (e.g., GEMM kernel sm90_xmma..._tf32f32...).
Small percentage of operations are still executed by CUDA Cores
as shown by the green (FP16) and blue (FP32) bar, which come from
kernels that cannot be mapped into Tensor Cores (e.g., element-
wise). Moving to mixed precision training with FP16, the composi-
tion is largely the same with FP16 running on Tensor Cores with
hmma.1688 (light orange bar), hmma.16816 (dark orange bar), and
newer hgmma (dark brown bar) instructions. It is worth mentioning
that ncu shipped with CUDA 12.2 is used to calculate the number of
floating-point operations that hgmma instructions do as it is difficult
to infer this information from kernel name alone (Section 3.3).

4.3.2 GCN Workloads. Unlike CNN, the full precision training
on GCN uses FP32 on CUDA Cores as shown in Figure 5 (mid-
dle four sets of bars) where majority of the instructions are ffma.
Moving to mixed precision training with FP16, none of them use
the newer hgmma instructions on Tensor Cores; the majority use
hmma.1688 and hmma.16816 with Chameleon is observed to use
older wmma.161616 instructions. In addition, a small number of
FP32 and FP16 instructions are executed on CUDA Cores, particu-
larly for element-wise kernels, which are many in GCN workloads,
outweighing the speed-up provided by Tensor Cores.

4.3.3 Microbenchmark Kernels. Unlike CNN and GCN workloads,
the data type and instruction size used in the microbenchmark
kernels can be specified explicitly. The lowest four sets of bars
illustrate the microbenchmarks in Figure 5.
• GEMM, GEMV, and Conv2D: Both GEMM and GEMV have the
instructionmix corresponding to the data type and the instruction
size used: FP32 mostly uses ffma on CUDA Cores (blue bar)
while FP16 mostly uses either hmma.1688 (light orange bar) or

185



Accelerating ML Workloads using GPU Tensor Cores: The Good, the Bad, and the Ugly ICPE ’24, May 7–11, 2024, London, United Kingdom
C

U
D

A
 C

o
re

s

HMMA 1688

HMMA 16816

WMMA 161616

FP16

HFMA2.MMA

HGMMA

TF32

FP16

0% 20% 40% 60% 80% 100%

C
N

N
 I

m
a

g
e

 C
la

ss
ifi

ca
ti

o
n

 

HADD

HFMA

HMUL

FP16 TF32

HMMA 1688

HGMMA

FADD

FFMA

FMUL

FP32

T
e

n
so

r 
C

o
re

s

R
e

sN
e

t5
0

TF32

FP16

E
ffi

ci
e

n
tN

e
t

TF32

FP16

F
a

st
e

rR
C

N
N

TF32

FP16

R
e

ti
n

a
N

e
t

C
N

N
 O

b
je

ct
 D

e
te

ct
io

n

FP32

FP16

C
h

a
m

e
le

o
n

FP32

FP16P
u

b
M

e
d

G
C

N
 T

ra
n

sd
u

ct
iv

e

FP32

FP16R
e

d
d

it

FP32

FP16

Y
e

lpG
C

N
 I

n
d

u
ct

iv
e

FP32

FP16
1688

G
E

M
M

 a
n

d
 G

E
M

V

FP32

FP16C
o

n
v

2
D

M
ic

ro
b

e
n

ch
m

a
rk

 (
A

v
e

ra
g

e
 P

e
rc

e
n

ta
g

e
)

FP32

FP16

E
lW

is
e

A
d

d

FP16
16816

FP32

FP16
RGF

IR

FP16
IG

Figure 5: The floating-point instruction mix of CNNs, GCNs, and
microbenchmark kernels on H100 utilizing CUDA libraries (e.g.,
cuDNN, cuBLAS, CUTLASS). Note that full precision training in CNN
will, by default, use TF32 instead of FP32. Yellow/brown/orange/red
run in Tensor Cores and blue/green run in CUDA Cores.

hmma.16816 (dark orange bar) on Tensor Cores. Since Conv2D is
decomposed to implicit GEMM, it follows the behavior of GEMM.

• FIR: The fp32.ar implementation uses ffma and hfma that runs on
CUDA Cores. On the other hand, the fp16.rg implementation still
has themajority of the FP16 instructions executed in CUDACores
as hfma (green bar) while some of the instructions are executed in
Tensor Cores with hmma.16816 instructions. Finally, the fp16.ig
implementation spends the majority of the instructions on Tensor
Cores as hmma.16816. Only a small percentage of Tensor-Core-
bound instructions are useful since most of them are due to
padding and memory alignment.

• ElWiseAdd: The FP32 implementation uses fadd on CUDA
Cores while the FP16 implementation uses hmma.16816 on Ten-
sor Cores. Unfortunately, for FP16, most of the instructions are
spent on the expensive matrix-multiply operations, which are
not useful since the only useful operation is addition.

4.4 How much more performance does H100
provide over A100?

Table 2 shows the theoretical peak performance of H100 is 3.4× in
FP32 and FP16 on CUDA Cores and 3.2× in TF32 and FP16 on Ten-
sor Cores compared to A100. The H100 achieves these theoreti-
cal performance improvements by having 2.5× higher number of
CUDA Cores (16896 vs. 6912), doubling the Tensor Cores through-
put per SM per cycle, doubling the memory bandwidth (3.3 TB/s vs.
1.5 TB/s), pushing the TDP higher (700 W vs. 400 W), running at
higher sustained clock frequency (1980 MHz vs. 1410 MHz), and
having other new features that help with execution efficiency. This
section compares the achieved performance improvements of H100
over its predecessor, the A100, for the experimented CNNs, GCNs,
and microbenchmark kernels as shown in Figure 6.

4.4.1 CNN Workloads. The H100 achieves an average of 1.96×,
1.96×, and 1.88× speed-up for FP32 on CUDA Cores, TF32 on Tensor
Cores, and FP16 on Tensor Cores, respectively, across four CNN
workloads over A100 as shown in Figure 6-a.

4.4.2 GCN Workloads. Figure 6-b shows the speed-up achieved by
H100 over A100 on GCN. We observed a significantly high speedup
on GCN with Yelp and Reddit datasets. For GCN with PubMed
and Chameleon datasets, performance improvements on H100 over
A100 are insignificant, with an average speed-up of 1.12×. When
running GCN training on H100 with CUDA 12.0, the Chameleon
mixed precision training flow is broken while its full precision
shows double the time needed compared to A100. Reverting back to
CUDA 11.8 solves the issue. Interestingly, it is the other way around
for both Yelp and Reddit which enjoy significant improvements
when using CUDA 12.0 on H100 for two reasons: 1) sparse-matrix
multiplication (spmm [23]) kernel is being used, which is not found
when running on A100; 2) the use of newer hgmma instruction.

4.4.3 Microbenchmark Kernels. The microbenchmark kernels that
target Tensor Cores use either hmma.1688 and hmma.16816 instruc-
tions; none of them use the newer hgmma instructions supported by
H100, which may affect the attainable performance.
• GEMM, GEMV, and Conv2D: H100 achieves average speed-up
of 3.01×, and 2.36×, and 1.98× for GEMM with FP32 on CUDA
Cores, FP16 using hmma.16816 on Tensor Cores, and FP16 using
hmma.1688 on Tensor Cores, respectively over A100 (Figure 6-c).
The speed-up is lower for GEMV with an average of 2.74×, 2.00×,
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Figure 6: Significant speed-up is achieved by H100 over A100 for
most benchmarks. Red line indicates A100 performance (baseline).

and 1.65×, respectively, due to lower arithmetic intensity (Fig-
ure 6-d). Finally, H100 reaches an average speed-up of 2.45× and
2.20× on Conv2D for FP32 (CUDA Cores) and FP16 (Tensor Cores)
over A100, respectively (Figure 6-e).

• FIR and ElWiseAdd: While FIR (Figure 6-f) and ElWiseAdd
(Figure 6-e) do not benefit from Tensor Cores, H100 achieved an
average speed-up of 1.62×, 1.23×, 2.21×, 1.78×, and 2.37× for FIR
fp32.ar, FIR fp16.rg, FIR fp32.ig, ElWiseAdd FP32, and ElWiseAdd
FP16, respectively.

4.5 Discussion
4.5.1 Empirical Roofline Toolkit. The ERT [80] is a useful tool for
creating a roofline model of the hardware. However, it does not
have support to find the roof for Tensor Cores using either mma or
wgmma.mma_async. From the roofline analysis (Figure 4), Conv2D
is one of the likely kernels that can be used to measure the roof of
Tensor Cores performance, since it can almost reach the theoretical
peak throughput of Tensor Cores.
4.5.2 Profiling non-deterministic application. While it is recom-
mended to use application replay when profiling using ncu [52]
to avoid the overhead of kernel replay, profiling non-deterministic
workloads such as ML training flows [87] may need to use kernel
replay instead. Although we have followed steps to maintain re-
producibility and control randomness in PyTorch [71], ncu with
application replay is unable to consolidate profiling results due

to the mismatch in kernel names and kernel launch parameters,
which is an indication that the applications do not take the same
execution path every time it runs during the replay.
4.5.3 Reshaping Optimizations. Both FIR and ElWiseAdd will not
run on Tensor Cores without reshaping optimization to map them
into GEMM-like operations (Section 3.4.2). Unfortunately, reshap-
ing comes with costs due to memory alignment and padding, mak-
ing the performance benefit of Tensor Cores difficult to come by.
Finer control of Tensor Cores (e.g., the ability to skip the multi-
plication on MMA operations) may be beneficial for element-wise
operations that often follow GEMM/GEMV operations by fusing
both GEMM kernels and element-wise kernels to significantly re-
duce data movement and kernel switching overhead.
4.5.4 TensorFloat32. The TensorFloat32 (TF32) was introduced by
NVIDIA along with third-generation Tensor Cores (Section 2.1)
[8]. TF32 is a 19-bit data type with 8-bit exponent to retain the
dynamic range of FP32 and 10-bit mantissa to achieve the same
accuracy as FP16, which has been proven to be sufficient for ML
workloads. Since TF32 can run on Tensor Cores and gives signifi-
cant speed-up over FP32 on CUDA Cores, many frameworks that
rely on NVIDIA libraries allow the demotion of FP32 to TF32 (e.g.,
through option CUBLAS_TF32_TENSOR_OP_MATH on cuBLAS) if the
GPU supports TF32. While this may work fine for many ML work-
loads, it may cause numerical instability for applications where
accuracy is important, such as in HPC applications. Therefore, mak-
ing sure of precision to use is important (e.g., explicitly configure
CUDA libraries to keep using FP32 when needed).

5 CONCLUSION
Tensor Cores provide significant speed-up for applications that

have abundant GEMM operations. CNNs yield "Good" improve-
ments with Tensor Cores, exemplified by the average speedups of
1.91× and 2.42× with TF32 and FP16 training, respectively, com-
pared to FP32 training running on the CUDA Cores. Kernels like
GEMM, GEMV, and Conv2D also show "Good" advantage of Tensor
Cores with an impressive 8.4×, 8.39×, and 6.99× average speed-up,
respectively. The Conv2D kernel almost saturates the FP16 theo-
retical performance of Tensor Cores on H100. On the other hand,
FIR and ElWiseAdd kernels show performance degradation when
running on Tensor Cores despite code transformations, making
them "Ugly" kernels for Tensor Cores. Furthermore, GCN improve-
ment with Tensor Cores can be classified as "Bad" since they only
achieved 1.03× average speed-up and are sensitive to the changes
in library versions. Finally, H100 gives an impressive 2.33× average
speed-up across CNNs, GCNs, and microbenchmark kernels over
A100. These speed-ups are mostly due to the H100 having 2.5×more
CUDA Cores, double the throughput of Tensor Cores, and double
the memory bandwidth compared to the A100.
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ABSTRACT
First-come first-serve scheduling can result in substantial (up to
10%) of transiently idle nodes on supercomputers. Recognizing that
such unfilled nodes are well-suited for deep neural network (DNN)
training, due to the flexible nature of DNN training tasks, Liu et
al. proposed that the re-scaling DNN training tasks to fit gaps in
schedules be formulated as a mixed-integer linear programming
(MILP) problem, and demonstrated via simulation the potential
benefits of the approach. Here, we introduce MalleTrain, a system
that provides the first practical implementation of this approach
and that furthermore generalizes it by allowing it to be used even
for DNN training applications for which model information is un-
known before runtime. Key to this latter innovation is the use of
a lightweight online job profiling advisor (JPA) to collect critical
scalability information for DNN jobs—information that it then em-
ploys to optimize resource allocations dynamically, in real time. We
describe the MalleTrain architecture and present the results of a
detailed experimental evaluation on a supercomputer GPU clus-
ter and several representative DNN training workloads, including
neural architecture search and hyperparameter optimization. Our
results not only confirm the practical feasibility of leveraging idle
supercomputer nodes for DNN training but improve significantly
on prior results, improving training throughput by up to 22.3%
without requiring users to provide job scalability information.
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1 INTRODUCTION
Batch-scheduled high-performance computing (HPC) systems typi-
cally maintain a queue of runnable jobs, with the order in which
queued jobs are run being determined by resource scheduling poli-
cies established by administrators to meet higher-level goals. For
example, the largest supercomputers often implement policies to
encourage capability computing, wherein they prioritize large jobs
that cannot run elsewhere. Other criteria, such as job wait time
and recent usage by a user or group, may also be considered when
determining job priorities. But regardless of policy goals, the fact
that jobs are typically given exclusive access to a fixed number of
nodes while running means that nodes will be idle whenever the
number of free nodes is less than the number needed to run the
next job (as identified by policy).

Backfilling [27], amethod bywhich lower-priority, shorter, and/or
smaller jobs are run on idle resources ahead of higher-priority jobs
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as long as they do not delay the start time of the higher-priority
jobs, can reduce, but not eliminate, inefficiencies, which can be
substantial. For example, in 2012, a comprehensive analysis of a
12-month workload trace of the Kraken supercomputer showed
an average utilization of 94% [37]; a four-year study of the Blue
Waters system revealed that monthly utilization rarely exceeded
80%. Jones et al. [18]; and other studies have reported utilizations
of around 90% [9, 25, 29]. These numbers can represent thousands
of idle GPUs on large supercomputers.

One approach to enhancing utilization in such environments is
to devise new approaches for structuring applications in malleable
forms and for mapping these malleable applications to supercom-
puter resources. A malleable computation adapts its degree of paral-
lelism at runtime in response to external requests [15], for example
by using checkpointing for semi-automated stop/restart [34] or
specialized languages and libraries [6, 11–13]. If well managed,
malleable applications can improve system utilization and schedul-
ing efficiency and reduce average response times, compared with
unmalleable jobs. However, to realize these benefits, (a) malleable
jobs need to be able to adapt dynamically to changing resource
allocations and (b) job schedulers must be able to expand or shrink
their resources to improve system utilization, throughput, and/or
response times.

In practice, the rigid nature of both commonly used programming
models like MPI and many current schedulers makes writing and
running malleable applications a daunting task, which is why few
malleable applications exist.

One intriguing source of malleable applications is deep neural
network (DNN) training. DNNs are being employed widely in scien-
tific computing [8, 10, 19, 21, 24, 26], and DNN training is becoming
a major workload in today’s supercomputers. Furthermore, deep
learning frameworks such as AdaptDL [31], PyTorch TorchElas-
tic [28], and Elastic Horovod [33] enable scaling up and down the
number of workers dynamically during training at modest cost
without requiring a restart. A DNN training job is divided into
many smaller tasks (mini-steps) that can be fitted into node×time
gaps in a supercomputer computing infrastructure. In other words,
DNN training workloads can in principle be structured as malleable
computations. However, practical realization of this malleability
requires the ability to 1) determine, quickly and accurately, what
mini-steps should be configured for different batch queue states,
and 2) assign resources and computations to run those mini-steps.

Liu et al. recently showed how, given knowledge of scheduler
state, the task of identifying mini-steps can be formulated as a
deterministic mixed-integer linear programming–based resource
allocation problem [25]. However, while they showed via simulation
that this “FreeTrain” approach could construct effective schedules
for real scheduler traces, they did not address the second task just
listed, by providing a practical implementation of their proposed
approach. This is a significant obstacle to the effective realization of
malleable DNN training due to the need for several system compo-
nents to coordinate and interact coherently: idle resource manage-
ment, job progress monitoring, resource negotiation, and resource
allocation. These components as well as their coordination are not
readily available in today’s job schedulers that were designed for
unmalleable computing tasks.

A second deficiency of the FreeTrain approach is that it requires
users to provide accurate scaling information, such as measured
throughput when using different numbers of nodes for DNN train-
ing jobs. Providing this information is a substantial challenge be-
cause in many modern DNN training workflows, such as neural
architecture search (NAS) [23, 32, 39] and hyperparameter tuning
(HPO) [22], jobs are generated on the fly based on results produced
in previous iterations by methods such as reinforcement learn-
ing [39] and Bayesian optimization [14]. Thus, even experienced
DNN experts do not know all the model details beforehand, let
alone their scalability characteristics.

In the work reported here, we propose and demonstrate solu-
tions to the two obstacles to the practical realization of malleable
DNN training just noted. First, we present a malleable DNN training
system architecture, MalleTrain, which achieves the efficient co-
ordination of the required idle resource management, job progress
monitoring, resource negotiation, and resource allocation functions.
For instance, in order to make malleable scheduling decisions, the
Resource Allocator must first get information about unfillable nodes
from the batch scheduler (e.g., PBS [16] or Slurm [36]), profiling
information from a profiler, and current running and waiting DNN
jobs from the job monitor; then, it needs to control a DNN scaling
framework (e.g., Elastic Horovod) to execute the scheduling deci-
sions. Throughout this process, it must also avoid negative impacts
on jobs submitted to the main batch scheduler.

Second, we address the challenge of obtaining accurate scaling
information by introducing a lightweight job profiling advisor (JPA)
to obtain automatically the information required for making re-
source management decisions. JPA runs experiments whenever a
DNN training task starts, according to a schedule that minimizes
associated costs by taking advantage of the fact that removing a
node is faster than adding a node in distributed DNN training. By
thus obtaining accurate job information at modest cost, JPA permits
the MILP to make more accurate decisions, with significant benefits
in practice. We conducted extensive simulation evaluations using
workloads from production supercomputer clusters, alongside ex-
periments on a smaller cluster with synthetic logs derived from
real Summit cluster logs. Our findings indicate that the more ac-
curate information provided by JPA allows MalleTrain to achieve
performance improvements of up to 22.3% relative to FreeTrain.
In addition, it permits the scheduling of malleable DNN training
applications, such as NAS and HPO, for which no performance
information may be available.

This paper thus makes three important contributions. First, we
propose a system architecture for running malleable DNNs on
supercomputers, and implement MalleTrain according to this ar-
chitecture. Second, we propose a lightweight online profiler that
employs an inverse-order profiling method to obtain accurate scala-
bility information for dynamic DNN jobs. Third, we present results
from both simulations with supercomputer traces and real-world
executions on a cluster using synthetic traces that demonstrate the
efficiency of these methods in harnessing previously idle nodes for
DNN training—and thus the feasibility of using what may often
be 10% or more of previously unfillable supercomputer nodes for
large-scale DNN training.
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Figure 1: Illustration of dynamic fragment resources on a
portion of a cluster. At time 𝑡 , there are three idle nodes in
the MalleTrain resource pool.

2 BACKGROUND
We present background information on the methods used by cloud
providers to support malleability, fragmented resources in HPC,
FreeTrain, and HPC network topologies.

2.1 Cloud-Preemptable Instances
Cloud providers such as AWS [1], Google [2], and Azure [3] make
preemptable compute capacity available at a reduced cost via mech-
anisms such as AWS Spot Instances. For AWS, Spot Instances enable
strategic utilization of surplus capacity; for users, they provide an
opportunity to reduce their cloud expenses. To make use of such
resources, however, users must be flexibile in their application run-
time and tolerance for interruptions.

Spot Instances are particularly well suited for certain noncritical
tasks such as data analysis, batch processing, and background op-
erations. As noted, their costs are typically lower than for regular
instances; on the other hand, they do not provide a time guarantee,
introducing the possibility of unexpected interruption due to the
cloud provider reclaiming running instances. To mitigate the po-
tential impact of such interruptions, cloud providers often grant a
brief time window and prior notification to clients. This advance
notice enables clients to reconfigure their workload distribution,
effectively rebalancing the workload across available resources. By
reallocating tasks and resources in response to an impending recla-
mation, clients can minimize disruptions and maintain a good level
of user experience. Spot Instance resources in cloud environments
resemble the preemptible HPC nodes addressed by MalleTrain.

2.2 Fragment Resources on HPC
As explored in recent research [9, 25, 29], leadership supercomputer
clusters such as Mira, Theta, and Summit exhibit utilization rates
of around 90%. Considering the substantial scale of these leader-
ship supercomputer clusters, the unutilized resources become a
significant concern. To put this in perspective, 10% idle capacity
corresponds to 460 nodes on the 4608-node Summit and more than
1000 nodes on the 10,624-node Aurora.

Resource allocation within supercomputer clusters is typically
managed by main schedulers such as Slurm [36] or PBS [16]. These

schedulers administer multiple queues to prioritize resource assign-
ments for user requests. As depicted in Figure 1, inevitable fragmen-
tary resources emerge. These fragments may not always be back-
filled, and (a portion of them) may remain unassigned. However,
these seemingly negligible fragments are well suited for scalable
and/or fault-tolerant workloads. The nature of these unassigned
fragment resources resembles that of Spot VMs, as discussed in §2.1.
In subsequent sections we will refer to these fragment resources
within supercomputer clusters as preemptible nodes. Their alloca-
tion timing lacks guarantees, rendering them unsuitable for typical
fixed-size supercomputer workloads. Nonetheless, the paradigm of
malleable applications, exemplified by DNN training, aligns seam-
lessly with this computational context. This suitability is under-
scored by several key factors: (1) DNN training demands substantial
time and computational resources; (2) the distributed data-parallel
training paradigm is inherently scalable; (3) leading DNN training
frameworks, such as Horovod Elastic [33] and TorchElastic [28],
adeptly support elastic training; and (4) DNN training often involves
exhaustive searches for optimal neural network architectures and
hyperparameters, consuming extensive computational resources.

The objective of MalleTrain is to empower users to effectively
leverage the unfilled fragments in supercomputers. Some super-
computers have a preemptable queue (the jobs submitted to this
queue may be preempted anytime) explicitly to encourage the use
of the unfilled nodes. A preemptable queue can be designated for
MalleTrain to which the users will submit adaptable DNN training
jobs. MalleTrain will optimally manage the allocation of unfilled
nodes by dynamically expanding and shrinking these adaptable
DNN jobs. To incentivize the adoption of this preemptable queue,
benefits such as reduced charges, in terms of either monetary cost
or node-time consumption, can be extended to users.

Table 1: Queue types and their characteristics. Queue is the
queue type name on the Polaris cluster, the Min and Max
columns give minimum/maximum number of nodes, and
time, allowed per job request, and Priority is the priority for
jobs in the queue.

Nodes Time
Queue Min Max Min Max Priority
debug 1 2 5 min 1 hr debug

debug-scaling 1 10 5 min 1 hr debug
demand 1 56 5 min 1 hr High
prod 10 496 5 min 24 hr High

preemptable 1 10 5 min 72 hr Low

Table 1 displays the different queue types in the Argonne Lead-
ership Computing Facility (ALCF) Polaris cluster [4]. The low job
priority means that nodes allocated for the job in the preemptable
queue could be reclaimed.

2.3 FreeTrain
As noted earlier, FreeTrain [25] introduces an approach to dynam-
ically allocating idle resources in which nodes and running job
information are taken as inputs and user-defined metrics such as
throughput or scalability are adopted as optimization objectives. By
formulating the problem using MILP, FreeTrain is able to compute
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an optimal allocation of idle resources to DNN training jobs, subject
to constraints such as allowed job size, feasible resource allocation,
job scale information, and job migration overhead.

However, several practical challenges must be overcome before
this approach can be realized into a production environment:

(1) Expecting users to provide specific runtime job details
can be a significant burden to users. The MILP algorithm re-
quires users to supply precise job-specific information, such as
model training throughput and scalability, since these details serve
as essential inputs for the optimization process. This requirement
will significantly increase the burden on users.

(2) Job runtimes often correlate closely with specific hard-
ware capability and configurations. Thus, to attain accurate job
runtime information, users would have to prerun their jobs under
nearly identical system settings and hardware configurations. How-
ever, this approach would be prohibitively time-consuming and
resource-consuming for most supercomputer users.

(3) In some cases, heuristic algorithms rely on current
models to predict future executions, making it impractical
to preprofile all potential models. The majority of HPO/NAS
algorithms are heuristic [14, 23, 32, 39], which implies that the
models to be evaluated are not predetermined until the current
models have completed their execution. Thus, users will not be
able to provide accurate job runtime information, a situation that
will lead to an invalid resource allocation plan and will largely
downgrade the performance of the system.

To overcome these challenges, an intelligent online profiling
mechanism is needed. Such a mechanism should accurately col-
lect job runtime information while minimizing disruptions to the
regular execution of jobs.

MalleTrain also employs MILP to do the allocation optimiza-
tion but emphasizes practical deployment aspects in supercomputer
clusters. JPA can be integrated seamlessly into the workflow, or-
chestrating automatic profiling and obviating the need for manual
input. As a result, the profiling procedure becomes an inherent
facet of the process, efficiently alleviating the user from the need
to provide such details beforehand. This dynamic profiling process
operates in real time, eliminating the need to halt any ongoing
jobs. While the profiling phase may occasionally lead to suboptimal
cluster performance, we mitigate potential overhead through the
implementation of a carefully designed online profiling mechanism.
Thus our design is able to obtain accurate profiling information
without excessive operational costs.

2.4 Topology
The network topology in a supercomputer cluster plays an im-
portant role in facilitating efficient communication, seamless data
transfer, and effective management of network resources. Today,
the dragonfly [20] and fat-tree [7] topologies are widely utilized
in supercomputer clusters due to their ability to deliver high band-
width and low latency. These features make them adept at meeting
the demanding requirements of modern high-performance com-
puting environments. The Polaris cluster and upcoming Aurora
cluster in the ALCF both use the dragonfly network topology, and
the Summit cluster uses fat-tree. A major concern for fragmented
idle resources in a supercomputer is that such resources will often

Figure 2: Example of fragment resources distribution on Po-
laris (27th in the TOP500 supercomputer list on Nov. 2023).
Red stars mark fragmented idle resources scattered on the
cluster. Note: For clarity in presentation, the figure depicts a
majority of the cluster rather than its entirety.

be scattered and distant from each other, as shown in Figure 2. Each
color represents a job; the nodes with same color were allocated to
the same job. To fully utilize the inter connection bandwidth and re-
duce the latency, schedulers tend to assign the nodes into the same
group or make them close to each other. For fragmented resources,
however, usually the nodes are scattered into different topology
groups. This scattering will have two major impacts. First, long
distance usually means more hops are needed, which means the
connections could have a higher fluctuation and cause a downgrade
in the DNN training performance. Second, long distance could in-
crease the end-to-end latency and cause more network resource
contentions. We perform extensive evaluation and show that the
topology is not a critical bottleneck for the design of MalleTrain.

3 SYSTEM DESIGN AND REALIZATION
MalleTrain manages the residual resources of a supercomputer
cluster, in other words, those that at any particular moment have
not been allocated directly by the main scheduler. Two major chal-
lenges for MalleTrain arise in utilizing such residual resources: (1)
their availability varies dynamically, and (2) they are preemptible.
The MalleTrain design enables these resources to be utilized fully
for parallel DNN training. MalleTrain seamlessly integrates with
mainstream schedulers such as Slurm or PBS on supercomputer
clusters. It operates without impacting the main scheduler, exclu-
sively controlling the non-trivial, dynamic, residual resources that
the main scheduler cannot utilize.

3.1 System Architecture Overview
Figure 3 shows the MalleTrain architecture and its five primary
components, which we describe in the following:

Scavenger detects and collects idle nodes from the main job sched-
uler for MalleTrain. Two primary approaches could be employed:
an event-driven mechanism, whereby the main scheduler alerts
MalleTrain to idle nodes, or a proactive strategy, in which Scav-
enger periodically polls to find available unused (but preemptible
when the main scheduler needs them) resources. The latter ap-
proach, preferred for its autonomy, requires no additional action
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Figure 3: Schematic of the MalleTrain architecture. Scavenger adopts idle nodes, Resource Allocator determines a map of nodes
to jobs, Job Manager rescales jobs according to the map, Job Monitor tracks job progress, and Job Profiling Advisor manages the
online profiling process.

from the main scheduler, ensuring seamless and efficient use of idle
nodes by MalleTrain.

Resource Allocator maps nodes to DNN jobs in such a way as to
optimize a given metric such as throughput or scaling efficiency.
The allocation task can be formulated as a mathematical program-
ming problem. In this paper we adopt the formulation of Liu et al.
[25] for resource allocation. The Resource Allocator is event-driven,
with four types of events being considered: new nodes joining
MalleTrain, nodes being recalled by the batch scheduler (i.e., the
corresponding jobs are preempted), arrival of new MalleTrain jobs,
and MalleTrain jobs completing.

Job Manager manages all jobs and implements the jobs-to-nodes
mapping made by the Resource Allocator.

Job Monitor tracks job progress by consuming (current global
batch size, timestamp) records generated by DNN training jobs
via one line of MalleTrain-supplied code added to the training
loop. The Monitor module then computes the current throughput
as well as the cost incurred for each rescale operation and updates
that information in a job records table to be used by the Resource
Allocator.

Job Profiling Advisor manages the online profiling process, as
described in §3.3. The JPA is an independent component that starts
work before the job entering the Resource Allocator.

When nodes cannot be backfilled by the main scheduler, they are
redirected to the Scavenger for utilization. Jobs submitted by users
to MalleTrain await the availability of nodes. As nodes become
available, the jobs at the front of the queue commence execution.
The running jobs transmit progress updates to the Job Monitor via a
socket client. The system’s architecture ensures continuous report-
ing of both cluster node statuses and job execution information to
the Resource Allocator. The Allocator then employs MILP based on
the current job distribution and number of nodes in the Scavenger.

The MILP algorithm devises a strategic plan, which is represented
by a map and subsequently conveyed to the Job Manager. The Job
Manager then implements this plan to adjust resources accordingly.
The events described in §3.2 will trigger the Resource Allocator to
run MILP and generate a new adjustment plan.

Users are provided with the option to explicitly indicate whether
their job requires profiling. If so, the JPA consults with the Resource
Allocator to assess the availability of necessary node resources for
profiling. Should resources be insufficient, the jobs are returned to
the queue. Conversely, if adequate resources are available for pro-
filing, the job proceeds through the profiling process. This process
uniquely involves an inverse order of node numbers; further details
are given in §3.3. When the profiling process is done, the profiled
job information will be an input to the MILP to find the optimal
allocation.

3.2 Event-Driven Resource Adjustment

Figure 4: Event-driven resource allocation process.
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Our event-driven resource management architecture is shown
in Figure 4. There are four types of events:

NewNodes indicates that one ormore nodes have become available
to MalleTrain.

Preemption can be initiated at any time by the main scheduler
without any prior notification. The jobs being run by MalleTrain
on the preempted nodes are terminated and the nodes returned to
the main batch scheduler.

Job Completion. MalleTrain picks a maximum of the top (first
come, first serve, FCFS) jobs from its queue to prevent excessive
hunger of low-priority jobs (e.g., low-throughput jobs when sample
processed per second is the target to optimize). All the selected
jobs are launched by MalleTrain via spawning a process using
a subprocess module of Python in a nonblocking fashion. The
exit/completion of a job is thus notified from the Job Monitor mod-
ule of MalleTrain.

A New Jobs event can trigger resource allocation only when the
number of currently running jobs, 𝑁 𝑗𝑟𝑢𝑛 , is less than the jobs
number threshold allowed in MalleTrain, 𝑃 𝑗𝑚𝑎𝑥 . When more than
one job is submitted as a batch (e.g., grid search of a hyperparameter
search), 𝑃 𝑗𝑚𝑎𝑥 − 𝑁 𝑗𝑟𝑢𝑛 jobs will be added to the running list as a
batch to reduce the rescaling cost. When the number of arrving
jobs 𝑁 𝑗𝑎𝑟𝑟𝑖𝑣𝑒 is larger than 𝑃 𝑗𝑚𝑎𝑥 −𝑁 𝑗𝑟𝑢𝑛 , the 𝑁 𝑗𝑎𝑟𝑟𝑖𝑣𝑒 − (𝑃 𝑗𝑚𝑎𝑥 −
𝑁 𝑗𝑟𝑢𝑛) jobs will be put into the FCFS queue for future execution.

Table 2: Example jobs-to-nodes map, as determined by MILP.
Each row corresponds to a job, with scale given by the sum
of the cells in the row; each column corresponds to a node,
with at most one cell in the column with value 1 indicating
the job to which the node is allocated.

𝑁1 𝑁2 𝑁3 𝑁4 𝑁5 𝑁6 𝑁7 ... ... 𝑁𝑛

𝐽1 0 0 1 0 0 0 1 0 0 0
𝐽2 0 0 0 0 0 0 0 0 1 1
... 1 0 0 1 1 0 0 0 0 0
𝐽4 0 1 0 0 0 1 0 1 0 0

The node-job map shows the allocation plan, and Table 2 demon-
strates an example map of the allocation plan. The MILP optimizer
takes the input and gives a new node-job map to the Allocator to
do the reallocation. We give more details in §3.3.

3.3 Job Profiling Advisor
In contrast to traditional profiling methods that necessitate dedi-
cated resources, our online profiling process is integrated into the
training process. This approach ensures the uninterrupted opera-
tion of worker processes during profiling. The strategic design of
node adjustment sequences, as depicted in Figure 6, to avoid scale-
up operations, effectively minimizes additional overhead. Each job
is equipped with a lightweight reporter (socket client), responsible
for reporting job progress to the Job Monitor (socket server). This
approach facilitates the automatic aggregation by the Job Monitor
of the training process information that is then used for optimiza-
tion purposes. Consequently, the JPA is enabled to make precise
and timely adjustments, thereby maximizing resource utilization.
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Figure 5: Rescaling overhead costs on Polaris A100 GPU
nodes: (a) Time to scale up and down a single node, for differ-
ent models; (b) Time to scale up different numbers of nodes,
for ResNet-50 model.

We noted in §2.3 the necessity for online profiling in order to
permit accurateMILP solutions and to handle tasks for which profile
information is not available before their execution. Here we shift
focus to an in-depth examination of the design elements of JPA. In
our proposed design the profiling function runs concurrently with
jobs. Thus we want it to be:

Prompt, meaning that it processes profiling events rapidly so as to
ensure efficient utilization of profiling information, and furthermore
completes rapidly so as to minimize overhead and limit disruption
to other tasks;

Fair, meaning that its design incorporates principles of fairness,
and that in instances where job interruption is unavoidable, a Least
Recently Used (LRU) strategy is employed to ensure equitable dis-
tribution of interruptions; and

Efficient, meaning that it prioritizes minimal disruption to other
tasks, adhering to two key principles: (1) avoiding the interruption
of multiple jobs simultaneously and (2) preventing the complete
cessation of any single job.

Accurate MILP requires that we know, or can rapidly determine,
the time that will be required to run any training mini-task on any
possible number of nodes. While obtaining this information may
sound intractable, in practice the regular nature of DNN computa-
tions makes it feasible to obtain good estimates. As in FreeTrain, we
assume a fixed per-node minibatch size (when training, we employ
a learning rate scheduler to adjust learning rate according to the
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Figure 6: Inverse-order rescaling sequence. The solid curve
represents scale-up and the dashed curve scale-down. JPA
aims to minimize the number of scale-up operations in order
to reduce overhead.

global batch size [17, 38]). We then need simply to measure the time
per epoch for that minibatch size on different numbers of nodes,
from a specified minimum to a specified maximum.

A useful optimization when performing those measurements
derives from the observation that, as shown in Figure 5a, the cost
of scaling up is consistently multiple times greater than that of
scaling down. Furthermore, Figure 5b illustrates that the overhead
incurred during scale-up remains relatively constant regardless
of the number of nodes involved; even as the number of nodes
increases, the increase in scale-up time is marginal. Consequently,
in our profiling of the rescaling process, we should minimize the
need for scaling up and prioritize scaling down wherever feasible.
As an example, consider the two situations illustrated in Figure 6.
If the initial number of nodes is 1 and the objective is to profile
nodes 2, 3, 4, and 5, we may either: (a) scale up directly to 5 nodes
and then scale down to 1, thereby gathering scalability data for all
nodes using a single scale-up operation, or (b) incrementally scale
up from 1 to 5, which requires four separate scale-up operations.
The first approach is significantly more efficient than the first, since
it requires only one scale-up operation.

The JPA architecture (Figure 7) resembles that of MalleTrain
but with several distinctions: (1) JPA exclusively processes new job
events, since only these require profiling; in contrast, the trainer
instance accepts multiple events, as described in §3.2. (2) The node
adjustment in JPA is decided by our profiling algorithm instead of
by the MILP program. Users retain the discretion to decide whether
their jobs undergo profiling. Upon receiving a profiling request
from a user, a profiling event is triggered, which initiates a process
whereby the Resource Allocator assesses the availability of suffi-
cient resources for profiling. If resources are deemed adequate, a
profiling job is started, temporarily preempting nodes from other
jobs. Upon completion of profiling, the MILP process is engaged to
make adjustments based on the newly collected information. The
gathered scale information is then reported and recorded by the
job manager, contributing to future optimization efforts.

3.4 Cluster Configuration
MILP is an NP-hard problem and the cost of the MILP computation
required to determine a mapping of jobs to idle nodes scales rapidly
with the number of runnable jobs and available nodes. Thus, it can
be preferable to partition a supercomputer into disjoint subsets
and run multiple trainers in parallel, one per subset. This approach
restricts the maximum number of nodes to which any one job can
scale, but has the advantages of reducing delays due to training

and of permitting different trainers to optimize for different metrics
appropriate for different task types, such as computer vision models
and language models.

With multiple trainers, the question arises of whether it is ad-
visable from a performance perspective to run more than one on
a single node. Our preliminary investigation into the effects of
running multiple MILP processes concurrently on the same node
revealed that the processing time begins to increase only when
the number of concurrent trainers exceeds the number of cores,
as illustrated in Figure 8. This suggests that deploying multiple
trainers and running the associated MILP processes concurrently
on a single head node can diminish overheads without adversely
affecting the performance of standard jobs.

4 EVALUATION AND DISCUSSION
We conducted an extensive experimental evaluation to validate the
effectiveness and robustness of our framework with real logs of
supercomputer clusters. We also validated MalleTrain on a small
cluster in a real production environment.

4.1 Experiment Setup
We examined trace logs from two supercomputers listed in the
TOP500 as of November 2023: Summit, ranked 7th, and Polaris,
ranked 27th [5]. The Summit log spans 14 days from February 10 to
February 24, 2021, while the Polaris log covers a 7-month duration,
from January 1 to July 28, 2023.

Figure 9 depicts event traces from the Summit and Polaris super-
computers. We see that Polaris has more shorter gaps than Summit,
with indeed over 50% of its event gaps being shorter than 10 sec-
onds. A key factor contributing to this difference is Summit’s policy
favoring large jobs. Such jobs generally have longer durations, lead-
ing to fewer but more extended resource occupations. Conversely,
without a similar policy favoring large jobs, Polaris experiences
more frequent, shorter gaps between events due to the prevalence
of smaller jobs. However, because of the unavailability of idle node
data for the Polaris cluster, we focus on Summit trace data in our
log replay simulation evaluation. Figure 10, which shows idle nodes
on Summit over a two-week period, shows that the number of idle
nodes varies significantly over time.

While plugging MalleTrain into the batch scheduler of a real
supercomputer would permit accurate evaluation in a real system,
we would lose the ability to reproduce the same trace with different
strategies, including the baseline allocation policy, for comparative
research. Therefore, we instead generate representative traces and
replay them on the real system for our experimental evaluation. In
contrast to the simulation-based evaluation, experiments here do
not rely on any performance modeling: they run the DNN training
task on real supercomputer nodes.

A challenge for MalleTrain is to optimally utilize fragmented
node×time resources to meet a user-specified metric (e.g., through-
put in terms of samples processed per second, resource utiliza-
tion/scaling efficiency). We synthesize traces that are independent
and identically distributed with real traces from supercomputers.
Figure 11 compares node idle gap lengths from real Summit sched-
uler logs vs. our synthetic traces. We see that the distribution of
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synthetic traces is close to those of the real logs, confirming the
representativeness of our synthetic traces.

4.1.1 Workload. NASBench101 [35] is a neural architecture search
(NAS) benchmark dataset created to permit systematic, reproducible,
and accessible evaluation of NAS algorithms. It was introduced to
address the challenges associated with the high computational cost
of evaluating NAS algorithms, which traditionally require training
thousands of neural network architectures from scratch to find the
most efficient one for a given task. We conducted our experiment
within the search space of NASBench101, which comprises 423,624
computationally unique neural architectures. The image size for
our training is 224×224×3. We use randomly generated tensors
instead of the real dataset to remove the potential I/O impact on
our experiments. We note that our focus here is not on the accuracy
of the models but rather on assessing throughput and scalability.
Varieties of deep learning models that do the HPO tasks were also
evaluated in the same context as the NAS workload; the models
were randomly selected from models listed in Figure 14.
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Figure 9: Cumulative histograms of idle gap counts on Sum-
mit and Polaris, for short gaps (0–50 secs: left) and longer
gaps (0–3600 secs: right). Polaris has more shorter gaps (≤60
secs) while Summit has more gaps in the range from 60 to
600 secs.
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Figure 10: Idle nodes on Summit over two-week period.

4.1.2 Testbed. We conducted experiments on a 32-node cluster
in which each node is equipped with four A100 GPUs. The GPUs
are interconnected via NVLink within each node, and nodes are
connected via InfiniBand. The synthesized traces, as depicted in
Figure 11, were instrumental in simulating the preemptive actions
undertaken by the main scheduler.

4.2 Performance Evaluation
We conducted experiments to benchmark our system against the
FreeTrain framework for preemptible resource allocation on HPC
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Figure 11: Comparison histogram of fragment length be-
tween real logs and synthetic. Synthetic (10k) shows the sta-
tistics for 10k fragments, and Synthetic (1k) shows the sta-
tistics for 1k fragments. The synthetic traces keep the same
distribution as that of the real log.

clusters. Our evaluation comprised NAS and HPO training work-
loads. Notably, the NAS workload exhibited more variability in
training speed and scalability compared with HPO tasks.

Our primary metric for comparison was the overall training
throughput of the system. We ran both frameworks under iden-
tical workloads to ensure a fair comparison. For the NAS model
sampling process, we randomly selected models. To maintain con-
sistency, we set the same seed value for both frameworks, ensuring
that the sequence of model training remained identical across the
experiments. We conducted the simulation with the two-week log
and conducted the experiments for 12 hours with the synthetic
trace. The average throughput is shown in Figure 12 with the NAS
workload and HPOworkload. We see that MalleTrain outperforms
FreeTrain in various settings.

4.3 Topology Impact Analysis
The dynamic and randomly scattered nature of fragmented re-
sources across the cluster raises concerns about potential declines
in the overall performance of training jobs. To address these con-
cerns, we conducted experiments on the Polaris cluster with the
dragonfly network topology. Our study involved comparing the
performance of nodes confined within a single dragonfly group
versus those distributed across multiple dragonfly groups. Figure 13
shows that the physical distribution of nodes, whether scattered or
closely situated, has minimal impact on NAS/HPO DNN training
speed. Figure 14 indicates robust scalability of models even at the
32-node level, each node equipped with 4 NVIDIA A100 GPUs,
encompassing a total of 128 A100 GPUs.

The underlying reasons for these observations are multifaceted.
First, leadership-class supercomputer clusters are typically outfitted
with high-performance network devices. For instance, Polaris is
equipped with the HPE Slingshot 11 interconnect, offering up to 200
Gb/s point-to-point bandwidth. Second, the networking infrastruc-
ture in these clusters is often highly overprovisioned, mitigating
network contention among applications running on different nodes.
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Figure 12: FreeTrain vs. MalleTrain performance for the NAS
and HPO applications, as measured both with real logs on a
simulator and synthetic logs on a real cluster.
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Figure 13: We analyzed training performance for sample
MalleTrain jobs under four different scenarios: Same Group,
Empty (where all nodes are located within the same Dragon-
fly group and the cabinet is empty), Same Group, Busy (where
all nodes are within the same Dragonfly group but are collo-
cated with other jobs), Different Group, Empty (where nodes
are distributed across two Dragonfly groups with the two
cabinets empty), and Different Group, Busy (where nodes
are distributed across two Dragonfly groups and collocated
with other jobs). The results demonstrate consistent training
speeds for bothmodels across all scenarios. The error bars for
the Different Group, Busy scenario reveal higher variances
in training speed, indicating fluctuations occur primarily in
this scenario. However, the average training speed remains
consistent despite these fluctuations.
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Third, modern distributed deep learning frameworks, such as Py-
Torch [28] and Horovod [33], effectively overlap computing and
communication tasks. This overlapping functionality reduces the
network’s impact on training speed, thereby diminishing the sensi-
tivity to network conditions.

5 RELATEDWORK
We have already referred to the pioneering work of Liu et al. on
FreeTrain [25], while noting also that certain assumptions and strict
requirements make it fall short in the real production environment.
FreeTrain heavily relies on users to provide accurate runtime in-
formation from training jobs, which increases the burden to the
users, making it impractical for use. Indeed, in some widely used
heuristic NAS/HPO algorithms, FreeTrain has to guess a config-
uration or provide information solely based on user experience;
the inaccurate or out-of-date information might largely downgrade
the overall performance of the MILP optimization algorithm. In
contrast, MalleTrain integrates automatic profiling components
into the process and doing the profiling automatically.

Pollux [30] is a resource-adaptive DNN training and schedul-
ing framework designed to efficiently rearrange distributed deep
learning processes, particularly in dynamic-resource environments
such as shared clusters and cloud infrastructures. This framework
employs Kubernetes for efficient scheduling, rescaling, and recon-
figuring of job batch sizes and learning rates, thus maximizing
training performance and optimizing resource utilization. Pollux
operates on a fixed-size cluster, however, whereas MalleTrain can
handle dynamically varying cluster sizes.

6 CONCLUSION
We have introduced MalleTrain, a system that we demonstrate can
employ idle fragmented nodes on batch-scheduled HPC systems
for large-scale DNN training. MalleTrain defines a workable archi-
tecture for efficient use of such idle nodes, and via its job profiling
advisor, which efficiently gathers accurate job execution data at
runtime with minimal interference to ongoing tasks, enables idle
nodes to be employed efficiently even for dynamic workloads such
as neural architecture search and hyperparameter optimization.

Detailed performance studies involving both simulations and ex-
periments validate the effectiveness of the approach and show that
MalleTrain achieves >20% more training throughput than was
reported, on the basis of simulation studies alone, for a precursor
system. MalleTrain thus opens up the feasibility of both improving
the utilization of large HPC systems and increasing the resources
delivered to DNN applications. Moreover, the methodologies devel-
oped in this study have potential applications beyond their current
scope. They could be adapted, for example, to infrastructure man-
agement tasks, such as scheduling in Kubernetes clusters and other
cloud computing platforms.
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ABSTRACT
In recent years, large language models (LLMs) have become perva-
sive in our day-to-day lives, with enterprises utilizing their services
for a wide range of NLP-based applications. The exponential growth
in the size of LLMs poses a significant challenge for efficiently uti-
lizing these models for inference tasks, which require a substantial
amount of memory and compute. Enterprises often possess multiple
resources (workers, nodes, servers) with unused (leftover) capacity,
providing an opportunity to address this challenge by distributing
large models across these resources.

Recent work such as Petals, provides a platform for distribut-
ing LLM models in a cluster of resources. Petals require that users
use their discretion to distribute blocks on a given cluster, con-
sequently leading to a non-optimal placement of blocks. In this
paper, we propose LLaMPS - a large language model placement
system that aims to optimize the placement of transformer blocks
on the available enterprise resources, by utilizing the leftover capac-
ity of the worker nodes. Our approach considers leftover memory
capacity along with available CPU cores, when distributing trans-
former blocks optimally across worker nodes. Furthermore, we
enhance the scalability of the system by maximizing the number
of clients that can be served concurrently. We validate the efficacy
of our approach by conducting extensive experiments using open-
source large language models - BLOOM (1b, 3b, and 7b parameters),
Falcon, and LLaMA. Our experiments demonstrate that LLaMPS
facilitates optimal placement of transformer blocks by utilizing
leftover resources, thus enabling enterprise-level deployment of
large language models.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence.

KEYWORDS
LLMs, Leftover capacity, Distributed inference, Optimal block place-
ment
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1 INTRODUCTION
Large Language Models (LLMs) have become pervasive, finding
widespread applications in businesses, such as natural language pro-
cessing [11] and recommender systems [9] [15] for inference tasks.
LLMs [14] [10] have been instrumental in enabling decision-making
and facilitating various aspects of day-to-day business operations
in enterprises. With the continuous evolution of LLMs, a notable
challenge that has emerged is their increasing size. As LLMs grow in
scale [5], they require a substantial amount of memory and compute
resources for effective deployment. These requirements may pose
a constraint in enterprises having limited infrastructure, impeding
their ability to fully leverage the potential of LLMs for inference
tasks.

Many businesses deploy LLM-powered chatbots [16] [4] for cus-
tomer support. These chatbots require substantial memory and
computational resources for handling natural language queries effi-
ciently. Recommender systems [13] powered by LLMs, like those
used by streaming services, need to process vast amounts of user
data and perform complex language-based recommendations, de-
manding considerable computational resources. Besides LLMs have
been steadily increasing in size over time to improve their perfor-
mance, and this growth has led to greater resource requirements.
Larger models generally require more memory and computational
power for efficient inference. As businesses grow and their work-
loads increase, theymay find it challenging to scale their inferencing
infrastructure to meet the demand. This can lead to performance
bottlenecks and delays.

To address these challenges enterprises do have multiple options
such as leveraging cloud-based LLM services to help mitigate some
of the infrastructure and resource constraints. Cloud providers offer
pre-configured LLM models and scalable infrastructure, which may
not necessarily be a cost-effective solution.

Enterprises however have a latent opportunity comprising of
multiple worker (server) nodes having leftover capacity in terms of
memory and processing cores. We believe this capacity can be ef-
fectively utilized to deploy LLMs in a distributed manner. There are
some efforts in the literature such as Deepspeed [18], Petals [6] etc
that enable the distribution of transformer blocks across multiple
workers. DeepSpeed enables distributed fine-tuning and inference
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of transformer blocks by on the underlying GPU cluster, by utiliz-
ing maximum possible resources. Petals [5] is one such effort that
enables the distribution of the transformer blocks across multiple
workers for fine-tuning or inference. Petals utilize leftover capacity
from the workers in a cluster to seamlessly enable the distribu-
tion of transformer blocks across worker nodes. However, Petals
requires that users use their discretion to distribute blocks on a
given cluster, consequently leading to a non-optimal placement of
blocks. This may also lead to sub-optimal system performance in
terms of inference latency.

In this paper, we address the above-mentioned challenges by
proposing a system that enables optimal placement of transformer
blocks in a given cluster. Our contributions are as follows:
• We propose an Optimal block Placement Algorithm (OPA),
used in LLaMPS s.t., multiple models may be served on a
single server, while optimally utilizing the leftover capacity
of workers in the cluster.
• We evaluate the efficacy of LLaMPS on an enterprise CPU-
cluster on multiple variants of open source transformer-
based large languagemodels, namely BLOOM [23], LLaMA [21]
and Falcon [20].

The rest of the paper is structured as follows. Section 2 provides a
background for our proposed work. We present the LLaMPS system
in Section 3. Our experiment setup is discussed in Section 4. We
present results, ablation studies, and related work in Sections 5, 6
and 7. We conclude with directions for future work in Section 8.

2 BACKGROUND

Figure 1: Inference

The resource constraints imposed by the massive scale of trans-
former models render them unsuitable for deployment on a single
server. Consequently, this has been an active area of research for
exploring solutions to harness the potential of these models in a
distributed manner. One approach to address the resource challenge
is to leverage distributed frameworks that enable the allocation of
transformer blocks across multiple servers. These frameworks aim
to maximize the computational resources available for distribution,
thus achieving low-latency inference. However, this strategy, while
effective in reducing response times, can lead to sub-optimal uti-
lization of resources. An alternative school of thought advocates

for making efficient use of the leftover capacity of servers, ensuring
that no computational power goes to waste. One such framework
is Petals, which capitalizes on the untapped resources of servers.

As shown in Figure 1 a typical enterprise may have servers s1,
s2, and s3, each with different degrees of leftover capacity. Trans-
former model blocks are distributed across these servers. Server
1 hosts Blocks 0-9, Server 2 handles Blocks 10-15, and Server 3
manages Blocks 16-23. During an inference cycle, the input is ini-
tially tokenized at the client node (Steps 1 and 2), and the tokenized
input is then relayed to server 1. The input traverses the allocated
transformer blocks on server 1, and the intermediate output is se-
quentially passed to server 2, and so on, until it has traversed all the
blocks of the transformer (Steps 3a, 3b, 3c). Finally, the output from
the last server in the sequence is transmitted back to the client,
where the required output is generated.

Petals, although making effective use of available block capaci-
ties, do not inherently guarantee an optimal distribution of these
blocks across servers. In response to this limitation, we introduce
an Optimal Placement Algorithm (OPA) within the LLaMPS frame-
work, offering an enhanced method for strategically allocating
blocks across servers. OPA’s primary objective is to accommodate
multiple models efficiently on a single server while exploiting any
residual server capacity. The LLaMPS system can be seamlessly inte-
grated with various open-source distributed frameworks, providing
flexibility and compatibility. In this paper, we assess the perfor-
mance of the Optimal Placement Algorithm within the LLaMPS
framework when applied to the open-source Petals framework. To
conduct our evaluation, we established a controlled lab environ-
ment within an enterprise setting, featuring a cluster composed
of four CPU servers with heterogeneous capacities. Since Petals
supports three different Large Language Models (LLMs), namely
LLaMa, BLOOM, and Falcon; our analysis encompasses all three
LLMs, offering a comprehensive assessment of the algorithm’s effi-
cacy across a range of scenarios.

3 LLAMPS
In this section, we present our system LLaMPS. As shown in Fig-
ure 2, the LLaMPS system takes the size of the transformer model
as input. This input is crucial for accurately calculating the total
memory requirement for accommodating the model on the avail-
able resources. LLaMPS leverages the residual resource capacity
available within an enterprise cluster pool. We quantify this leftover
capacity in terms of memory and number of cores (i.e., compute ca-
pacity). LLaMPS then runs the Optimal Placement Algorithm (OPA)
to determine the optimal distribution of transformer blocks across
nodes in the enterprise resource cluster. The optimal placement
algorithm is designed to maximize the overall leftover capacity
within the resource cluster to enable multiple clients to be served
concurrently. Once the plan is ready, the transformer model is au-
tomatically chunked into blocks and the blocks are distributed to
the identified servers. The application is then ready to start the
process of inference. In contrast, Petals [5] distributed framework
requires the user to decide the exact distribution of blocks across
the available servers. This distribution may lead to a sub-optimal
utilization of the enterprise resources. The Optimal Placement Algo-
rithm of LLaMPS ensures that the leftover capacity of the enterprise
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Figure 2: Architecture of LLaMPS

cluster is optimally utilized, subsequently serving multiple clients
and enabling multiple models to be supported on individual worker
resources in the enterprise cluster.

The Optimal Placement Algorithm is outlined in algorithm 1.
As depicted in the Optimal Placement Algorithm 1, LLaMPS de-

Algorithm 1 OPA - Optimal Placement Algorithm
Require: • 𝑇𝐵𝑠 - Size of transformer model block
• 𝑃𝑜 - Petals Framework Overhead
• 𝑆 - Cluster of enterprise workers
• 𝐴𝑀𝑆 - Available memory for each worker
• 𝐴𝐶𝑆 - Available cores for each worker
• 𝑁𝑏 (𝑆) - Number of blocks on a worker

Ensure: Optimal block placement on servers
1: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
2: 𝐿𝑀 (𝑆𝑖 ) ← (𝐴𝑀𝑆𝑖 − 𝑃𝑜 ) ⊲ Left over memory capacity
3: 𝐴𝐶 (𝑆𝑖 ) ← Available cores of worker
4: end for
5: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
6: Assign preference scores for memory and cores
7: 𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ] ← Normalized matrix of scores
8: 𝑊𝑚𝑖

←Weighted memory score using𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ]
9: 𝑊𝑐𝑖 ←Weighted core score using𝑀 [𝑆𝑐𝑜𝑟𝑒𝑠𝑖 ]
10: [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ] ← (𝑊𝑚 × 𝐿𝑀 (𝑆𝑖 )) + (𝑊𝑐𝑖 ×𝐴𝐶 (𝑆𝑖 ))
11: end for
12: 𝑆 [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ]𝑠𝑜𝑟𝑡𝑒𝑑 ← List of sorted servers based on scores
13: Assign blocks to each server from 𝑆 [𝑊𝑆𝑐𝑜𝑟𝑒𝑖 ]𝑠𝑜𝑟𝑡𝑒𝑑 list s.t.

𝑁𝑏 (𝑆𝑖 ) ← 𝐿𝑀 (𝑆𝑖 )/𝑇𝐵𝑠
14: Distribute blocks on each server for inference

termines the available memory and cores on each worker in the
enterprise cluster. Next, OPA calculates the leftover memory capac-
ity of each worker (Step 2). Since we use the open-source Petals
framework for the distribution of the transformer block, OPA needs
to deduct the memory overhead imposed by Petals on the worker
node. OPA is a generic approach that enables optimal distribution
of transformer blocks on an enterprise cluster, hence the underlying
distributed framework can be replaced by any other framework. It is

expected that the memory overhead imposed by the framework will
be deducted from the available memory at a worker node. Once the
available memory and cores at each worker are determined, OPA
then follows the Analytical Hierarchy Process (AHP) technique [12]
- a popular approach for systematically determining weights based
on the preferences of decision-makers. AHP helps in structuring the
decision-making process and deriving relative weights through pair-
wise comparisons. Weights are based on preference scores. Since
we compare OPA with GMA which is a memory-based approach,
we have assigned higher preference to memory. In LLaMPS we have
two objectives - memory and cores. Decision-makers assign a pref-
erence score to indicate how much one objective (memory) is more
important than another (cores) (Step 6). After collecting preference
scores, we normalize them to form a consistent comparison matrix
(Step 7). Then, the weighted average of each objective is calculated
based on the normalized comparison matrix (Step 8,9). The final
weighted scores for each worker node are determined as shown
in Step 10. Once the scores for all worker nodes are determined,
the list of worker nodes is sorted in descending order based on
the scores (Step 12). OPA then determines the number of blocks
to be loaded on each server, by dividing the leftover memory at
each worker by the size of each transformer block (Step 13). The
blocks are then loaded on each server and the Petals framework is
leveraged to perform downstream tasks.

Algorithm 2 GMA - Greedy Memory Algorithm
Require: • 𝑇𝐵𝑠 - Size of transformer model block
• 𝑃𝑜 - Petals Framework Overhead
• 𝑆 - Cluster of enterprise workers
• 𝐴𝑀𝑆 - Available memory for each worker
• 𝑁𝑏 (𝑆) - Number of blocks on a worker

Ensure: Optimal block placement on servers
1: for each worker in the cluster 𝑆𝑖 ⊆ 𝑆 do
2: 𝐿𝑀 (𝑆𝑖 ) ← (𝐴𝑀𝑆𝑖 − 𝑃𝑜 ) ⊲ Left over memory capacity
3: end for
4: [𝐿𝑀 (𝑆𝑖 )]𝑠𝑜𝑟𝑡𝑒𝑑 ← List of sorted servers by leftover memory
5: Assign blocks to each server from [𝐿𝑀 (𝑆𝑖 )]𝑠𝑜𝑟𝑡𝑒𝑑 list s.t.

𝑁𝑏 (𝑆𝑖 ) ← 𝐿𝑀 (𝑆𝑖 )/𝑇𝐵𝑠
6: Distribute blocks on each server for inference
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Table 1: Regression Model Comparison: Predicting Petals’ Memory Overhead

Model MSE R-Squared Petals’ Memory Overhead Equation
Linear Regression 263.7 0.773 1.88 · Number of Blocks + 0.60 ·Model parameters − 15.05
LGBM Regression 722.25 0.394 73443.43 · Number of Blocks + 148798.14 ·Model parameters

Polynomial Regression 6.74 0.994 0.03 · Number of Blocks ·Model parameters + 0.65 · (Model parameters)2 + 0.14
Decision Tree Regression 19.75 0.998 Decision Tree

Algorithm 2 depicts GMA - Greedy Memory Algorithm. The
GMA determines the leftover memory capacity (Step 2). A user is
more likely to use a greedy memory approach to select resources
for block placement. Hence we have used GMA as the baseline
algorithm in our experiments. However, GMA does not guarantee
optimal block placement while OPA does. Then it sorts the list of
servers in the descending order of memory capacity (Step 5). The
blocks are then assigned to the servers in the sorted order of the
list based on the leftover memory capacity of each worker (Step 5).
GMA does not take into consideration the cores when assigning
blocks which may lead to a sub-optimal placement of blocks on the
servers, subsequently affecting system performance adversely. We
present detailed experiments and ablation studies to compare the
OPA algorithm of LLaMPS with GMA.

4 EXPERIMENT SETUP
We designed multiple experiments to validate the efficacy of the
optimal placement algorithm of LLaMPS. We aimed to place trans-
former blocks in an enterprise cluster while optimally utilizing
the leftover capacity of the workers in the cluster. We believe that
the optimal placement of blocks enables serving a maximum num-
ber of possible clients simultaneously within an enterprise. We
now present some details of our experiment setup. Our experiment
setup comprises multiple large language models, and worker nodes
having heterogeneous configurations within an enterprise cluster.

4.1 Large Language Models
Our experiments are conducted on 3 different open-source models,
namely BLOOM [23], LLaMA [21] and Falcon [20]. BLOOM is a
multi-lingual large language model that has the ability to gener-
ate text in 46 natural languages and 13 programming languages.
The BLOOM model comes in multiple variants. In this paper, we
have conducted our experiments on 3 variants - namely 560 mil-
lion, 3 billion, and 7 billion parameter versions of BLOOM. The
multiple variants enable us to deeply evaluate the efficacy of our
proposed system. Another model we have used to evaluate LLaMPS
is LLaMA (Large Language Model Meta AI), which is a family of
LLMs released by Meta AI [8]. LLaMA has multiple variants and
we conduct our experiments on the 70 billion version of the LLaMA
model. Additionally, we also conduct experiments on Falcon [20]
which is a generative large language model. Falcon comes in multi-
ple variants and we evaluate LLaMPS on the 40 billion version of
Falcon. Through our experiments on multiple variants of multiple
open-source models in the literature, we reinforce the efficacy of
our proposed system LLaMPS.

4.2 Heterogeneous Enterprise Cluster
We create a set-up in our enterprise lab, utilizing leftover capacities
of servers utilized by members of the labs. We pick 5 CPU-based
servers and the configuration of these servers is depicted in Table 2.
All servers have heterogeneous configurations in terms of operation
system, OS version, cores, and memory, which is a typical real-
world setup in any enterprise. We leverage this leftover capacity to
optimally distribute blocks of large language models such that the
number of users can be maximized. Table 2 provides details of the
different servers and also distinguishes between the "Client" and
four different servers ("Server 1," "Server 2,","Server 3" and "Server
4") and their respective configurations.

4.3 Distributed Framework Overhead
The LLaMPS system functions on the Petals distributed framework,
utilizing its services for various tasks, including the creation and
initialization of the Distributed Hash Table (DHT) and the loading
of transformer blocks. The overhead and impact of these factors on
OPA’s performance within LLaMPS led us to conduct a series of
experiments for a systematic analysis. In this investigation, Petals
serves as the open-source foundation for LLaMPS, supporting block
distribution and other DHT-related operations. It is important to
note that although LLaMPS currently leverages Petals, it is not lim-
ited to using this particular framework and can seamlessly integrate
with any alternative distributed framework for execution.

To predict the memory overhead linked to Petals (Petals’ Mem-
ory Overhead), we formulated an equation with two variables: the
number of blocks and number of model parameters. This predictive
model proves to be valuable in the Block Placement algorithm.

Table 1 displays the outcomes of four regression models—Linear
Regression, LGBM Regression, Polynomial Regression, and Deci-
sion Tree Regression—applied to 150 data points. Our experiments
reveal that the Decision Tree Regression model outperforms the
other three, demonstrating an R-squared value of 0.998 and an MSE
of 19.75. Consequently, we employed the Decision Tree Regression
model for predicting Petals’ Memory Overhead. Choosing simpler
machine learning models other than DDN and LLMs is a more
cost-effective and resource-efficient approach.

Three factors within the distributed framework contribute to the
overall overhead: the overhead determined by the Decision Tree
Regressor model, and the Attention cache’s size. The size of the
attention cache is calculated as twice the model’s hidden size multi-
plied by 4096 times the tensor size (4 bytes for CPU). Together, these
factors collectively constitute the Petals Framework Overhead,
quantified as:

Petals Memory Overhead + Attention Cache size (1)
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Table 2: Server Configuration Information

Server OS Version Kernel Total Memory(GB) Cores
Client Ubuntu 18.04.6 5.4.0 62.8 48
Server 1 Ubuntu 18.04.6 5.4.0 252 56
Server 2 Ubuntu 22.04.3 5.19.0 992 88
Server 3 CentOS 7 3.10.0 504 56
Server 4 CentOS 7.8 3.10.0 256 56

LLaMPS system uses this formula to calculate Petals Framework
Overhead for block placement.

5 EXPERIMENTS
We performed various experiments on GMA and OPA by varying
the model parameters, servers, clients, cores, batch size, and token
length.

Given below are the details of various parameters used in exper-
iments.

• Model): The experiments were conducted using the "bloom-
560m," "bloom-3b," "bloom-7b1," "falcon-40b," and "llama-70b"
models.
• Block Distribution: The "Block_distribution" varied be-
tween "[24]" for "bloom-560m" and "[30]" for "bloom-3b" and
"bloom-7b1." In the "falcon-40b" and "llama-70b" models, the
block distribution was specified as "(32,28)" and "(35,25,20)"
respectively.
• Memory: The "Memory" column indicates the memory con-
figurations used for each experiment. For example, "[12, 14,
14, 14]" in "bloom-560m" refers to the memory allocated on
a single server.
• Cores: The "Cores" column specifies the number of cores
allocated to each server. It varied for different models and
experiments.
• Selected Servers: This column lists the selected servers for
each experiment. It may include server configurations and
the number of servers, like "[14,2]" or "(35,25,20)".
• Clients: C1, C2, and C4 represent a number of clients being
1, 2, and 4.
• Block Execution Time C1, C2, C4: The "Block Execution
Time" columns represent the execution time for different
clients (C1, C2, C4) under both the "GMA " and "OPA" ap-
proaches.
• Batch Size: Batch size refers to the quantity of input data
grouped together. In the context of text generation with a
transformer model, a batch size of 1 corresponds to generat-
ing text based on a single input sentence. Conversely, a batch
size of ’n’ involves generating text for ’n’ input sentences
concurrently, sending all ’n’ sentences to the transformer
simultaneously.
• Token: The "number of tokens" refers to the quantity of
output tokens produced by a transformermodel. For instance,
in text generation using a transformer model, having 100
tokens means generating a sequence of 100 words.

5.1 Varying the cores -> pick best the core
Assigning servers based on a combination of memory and cores
is a basic premise of OPA in LLaMPS. In our experiments across
various versions of the Bloom model (Figure 3), a notable observa-
tion emerged: the optimal performance was achieved at 8 cores, i.e.,
additional cores beyond 8 did not give any significant performance
improvement. To validate our observations, we systematically con-
ducted experiments with varying configurations, namely 2, 4, 8, 16,
32, and 56 cores. As shown in Figure 3, beyond the 8-core thresh-
old, the block execution stabilized, revealing a clear knee point in
the performance curve. Our results are consistent across multiple
flavors of the BLOOM model and also support multiple concurrent
clients.

5.2 Model fits on a single server
Table 3 depicts experiments conducted for varying flavors of BLOOM,
LLaMA, and the Falcon models. We compare our approach with
the GMA for the choice of servers selected for block distribution.
We measure the block execution time in each case for single and
concurrent clients. We experimented with OPA block placement
algorithms on a single server, adjusting client loads across 1, 2, and
4 concurrent clients. These trials were conducted on three distinct
models. Notably, when we refer to ’1 server,’ it implies that all
transformer blocks are positioned on a single server, while ’1 client’
signifies a lone user sending input queries to the server. Conversely,
’2 concurrent clients’ and ’4 concurrent clients’ denote two and four
concurrent users sending input queries to the server. The servers
are named as S1, S2, S3 and S4. There server tuple is represented as
S(available memory in GBs, Available cores). Our aim is to ensure
the optimal distribution of transformer blocks such that the number
of clients served is maximized.

(1) For the Bloom-560m model, we utilized four servers—S1,
S2, S3,and S4—with heterogeneous memory and core specifi-
cations. GMA opted for S2 to distribute all 24 blocks, whereas
OPA selected server S4. Comparing block execution times
using a batch size of 16 and token size of 10, inference us-
ing GMA took 3.09 seconds for 1 client, 4.87 seconds for 2
concurrent clients, and 9.73 seconds for 4 concurrent clients.
Conversely, inference using OPA resulted in execution times
of 2.02 seconds for 1 client, 3.01 seconds for 2 concurrent
clients, and 4.56 seconds for 4 concurrent clients. Notably,
the block execution times for OPAwith 1, 2, and 4 concurrent
clients were lower than GMA with a single client. Therefore,
OPA exhibited better performance for 1 and 2 concurrent
clients compared to GMA for 1 client, while OPA across
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Figure 3: Knee Point on varying Cores

1, 2, and 4 concurrent clients outperformed GMA with 2
concurrent clients.

(2) For the Bloom-3bmodel, similar to the Bloom-560mmodel,
four servers (S1, S2, S3, and S4) were utilized, each with
distinct memory and core configurations. GMA selected S2
to distribute all 30 blocks, whereas OPA utilized the S4 server.
The block execution times using GMA were 17.01 seconds
for 1 client, 28.43 seconds for 2 concurrent clients, and 59.46
seconds for 4 concurrent clients. However, with OPA, the
execution times were notably lower: 7.12 seconds for 1 client,
10.12 seconds for 2 concurrent clients, and 20.15 seconds
for 4 concurrent clients. Once again, OPA exhibited better
performance for 1 and 2 concurrent clients compared to
GMA for 1 client, while outperforming the GMA across 1, 2,
and 4 concurrent clients.

(3) Lastly, for theBloom-7bmodel, with the same set of servers
(S1, S2, S3, and S4) and their corresponding memory and core
specifications, GMA opted for S2 to distribute all 30 blocks,
whereas OPA selected the use of the S4 server. The block
execution times using the GMA were 45.02 seconds for 1
client, 83.21 seconds for 2 concurrent clients, and 179.01
seconds for 4 concurrent clients. However, employing OPA
resulted in significantly lower execution times: 20.1 seconds
for 1 client, 34.5 seconds for 2 concurrent clients, and 67.44
seconds for 4 concurrent clients. Similar to the previous
models, OPA demonstrated superior performance for 1 and
2 concurrent clients compared to GMA for 1 client, and
across 1, 2, and 4 concurrent clients compared to GMA with
2 concurrent clients.

We were unable to conduct experiments with Falcon and LLaMA
models as the leftover capacity of any single server was insufficient
to load all the blocks of Falcon and LLaMA. In the next set of
experiments, we focus on scenarios where the leftover capacity
of servers is insufficient even to load the smallest version of the
BLOOM model.

5.3 Models fits on 2 servers
As shown in Table3 we experimented with OPA block placement
algorithms across two servers, varying client loads with 1, 2, and 4
concurrent clients. These trials encompassed two different models,
including three versions of the Bloom model, and the Falcon model.
The leftover capacity was insufficient to fit LLaMA on any two
given servers and hence LLaMA was not a part of this experiment.
When a single server couldn’t accommodate all transformer blocks,
we utilized two servers. Additionally, with a batch size of 16 and a
fixed token length of 10, the OPA algorithm indicated an increase in
block execution time as the number of concurrent clients increased,
specifically with 2 concurrent clients.

In Table 3

(1) We allocated blocks of the Bloom 560m model using both
GMA and OPA methods across servers S1, S2, S3, and S4. S1
has 13.5 GB memory with 8 cores, S2 has 12 GB memory
with 2 cores, while S3 and S4 possess 12 GB memory with
4 and 8 cores, respectively. The GMA picked S1 (14 blocks)
and S2 (10 blocks), while OPA selected S1 and S4. Block
execution times with the GMAwere 3.73 seconds for 1 client,
4.49 seconds for 2 concurrent clients, and 8.82 seconds for
4 concurrent clients. In contrast, OPA resulted in notably
lower execution times: 2.75 seconds for 1 client, 2.88 seconds
for 2 concurrent clients, and 3.11 seconds for 4 concurrent
clients. Similar to prior models, OPA demonstrated superior
performance for 1 and 2 concurrent clients compared to the
GMA for 1 client, and across 1, 2, and 4 concurrent clients
compared to the GMA with 1 client.

(2) For the Bloom 3b model, we distributed its blocks using both
GMA and OPA methods across servers S1, S2, S3, and S4. S1
offers 17.5 GB memory with 8 cores, S2 has 16 GB memory
with 2 cores, while S3 and S4 possess 16 GB memory with 4
and 8 cores, respectively. The GMA selected S1 (16 blocks)
and S2 (14 blocks), while OPA chose S1 and S4. Block exe-
cution times with the GMA were 18.11 seconds for 1 client,
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Table 3: OPA vs GMA on 1,2,3 servers

Bloom 560m - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(12,2), S2(14,2), S3(14,4), S4(14,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [24] 3.89 4.87 9.73
OPA 16 10 (S4) [24] 2.02 3.01 4.56

Servers: (GB,cores) [S1(13.5,8), S2(12,2), S3(12,4), S4(12,8)]
GMA 16 10 (S1,S2) [14,10] 3.73 4.49 8.82
OPA 16 10 (S1,S4) [14,10] 2.43 2.59 3.65

Servers: (GB,cores) [S1(12.15,8), S2(11.65,8), S3(11.15,2), S4(11.15,4), S5(11.15,8)]
GMA 16 10 (S1,S2,S3) [12,8,4] 2.75 3.01 3.65
OPA 16 10 (S1,S2,S5) [12,8,4] 2.68 2.88 3.11

Bloom 3b - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(23,8), S2(23.5,2), S3(23.5,4), S4(23.5,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [30] 17.01 28.43 59.46
OPA 16 10 (S4) [30] 7.12 10.12 20.15

Servers: (GB,cores) [S1(17.5,8), S2(16.7,2), S3(16.7,4), S4(16.7,8)]
GMA 16 10 (S1,S2) [16,14] 18.11 28.62 54.44
OPA 16 10 (S1,S4) [16,14] 8.6 9.97 19.13

Servers: (GB,cores) [S1(16.7,8), S2(15,2), S3(13.3,2), S4(13.3,4), S5(13.3,8)]
GMA 16 10 (S1,S2,S3) [14,10,6] 10.93 12.09 14.11
OPA 16 10 (S1,S2,S5) [14,10,6] 10.28 11.23 13.91

Bloom 7b1 - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(42,8), S2(44,2), S3(44,4), S4(44,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S2) [30] 45.02 83.21 179.01
OPA 16 10 (S4) [30] 20.1 34.5 67.44

Servers: (GB,cores) [S1(31,8), S2(30,2), S3(30,4), S4(30,8)
GMA 16 10 (S1,S2) [16,14] 46.78 70.12 160.12
OPA 16 10 (S1,S4) [16,14] 23.08 24.98 42.01

Servers:( GB,cores) [S1(30,8), S2(26,8), S3(22,2), S4(22,4),S5(22,8)]
GMA 16 10 (S1,S2,S3) [14,10,6] 27.79 29.12 38.35
OPA 16 10 (S1,S2,S5) [14,10,6] 22.12 23.59 36.12

Falcon-40b - (batch size=16, tokens=10)
Servers:( GB,cores) [S1(98.3,8), S2(88,2), S3(88,4), S4(88,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S1,S2) [32,28] 491.2 536.12 840.02
OPA 16 10 (S1,S4) [32,28] 211.37 305.12 682.01

Servers: (GB,cores) [S1(93.2,2), S2(67.5,8), S3(42,2), S4(42,4), S5(42,8)]
GMA 16 10 (S1,S2,S3) [30,20,10] 260.12 266.72 352.12
OPA 16 10 (S1,S2,S5) [30,20,10] 258.19 263.89 345.26

Llama2-70b - (batch size=16, tokens=10)
Servers: (GB,cores) [S1(155,8), S2(113.5,2), S3(83.5,2), S4(83.5,4),S5(83.5,8)]

Approach batch size token length Selected Servers Block Distrbn 1 client 2 clients 4 clients
GMA 16 10 (S1,S2,S3) [35,25,20] 396.11 408.12 798.12
OPA 16 10 (S1,S2,S5) [35,25,20] 279.13 304.11 588.76

28.63 seconds for 2 concurrent clients, and 54.44 seconds for
4 concurrent clients. However, OPA resulted in significantly
lower execution times: 8.6 seconds for 1 client, 9.97 seconds
for 2 concurrent clients, and 19.13 seconds for 4 concurrent
clients. Similar to previous models, OPA exhibited superior

performance for 1 and 2 concurrent clients compared to the
GMA for 1 client, and across 1, 2, and 4 concurrent clients
compared to the GMA with 2 concurrent clients.

(3) In the case of the Bloom 7b1 model, we utilized both GMA
and OPA methods to distribute its blocks across servers S1,
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S2, S3, and S4. S1 has 31 GB memory with 8 cores, S2 has
30 GB memory with 2 cores, while S3 and S4 have 30 GB
memory with 4 and 8 cores, respectively. The GMA opted
for S1 (16 blocks) and S2 (14 blocks), whereas OPA chose
S1 and S4. Block execution times with the GMA Approach
were 46.78 seconds for 1 client, 70.12 seconds for 2 concurrent
clients, and 160.12 seconds for 4 concurrent clients. However,
OPA resulted in notably lower execution times: 23.1 seconds
for 1 client, 24.98 seconds for 2 concurrent clients, and 42.01
seconds for 4 concurrent clients. As with previous models,
OPA showcased better performance for 1 and 2 concurrent
clients compared to the GMA for 1 client, and across 1, 2,
and 4 concurrent clients compared to the GMA with 1 client.

(4) For the Falcon model, we employed both GMA and OPA
methods to distribute all 60 blocks across servers S1, S2, S3,
and S4. S1 offers 98.3 GB memory with 8 cores, S2 has 88.2
GB memory with 2 cores, while S3 and S4 possess 88.2 GB
memory with 4 and 8 cores, respectively. The GMA selected
S1 (14 blocks) and S2 (10 blocks), whereas OPA chose S1 and
S4. Notably, for Client 1, GMA exhibited a block execution
time of 491.2 seconds, while OPA showed 211.37 seconds
for Client 1 and 305.5 seconds for Client 2, signifying an
improvement over Client 1 using GMA. This observed trend
remained consistent across other models as well.

5.4 Model fits on 3 servers
Next, we experimented with OPA block placement algorithms
across three servers, varying the client loads between 1, 2, and
4 concurrent clients. These trials encompassed three different mod-
els, including three versions of the Bloom model, the Falcon model,
and the LLama 2 model. When a leftover capacity of a single or two
servers was insufficient to accommodate all transformer blocks we
designed this experiment using 3 servers. Notably, when employing
the OPA algorithm with 2 concurrent clients, the block execution
time increased with a higher number of concurrent clients, all the
while maintaining a batch size of 16 and a fixed token length of 10.

In the context of the Falcon model presented in Table 3, we
distributed blocks using both GMA and OPAmethods across servers
S1, S2, S3, S4, and S5. These servers possess varying memory and
core configurations, with GMA selecting S1, S2, and S3, while OPA
opted for S1, S2, and S5. Specifically, for Client 1 in GMA, the block
execution time recorded was 260.12 seconds. However, utilizing
OPA, the block execution time was 258.19 seconds for Client 1 and
263.89 seconds for Client 2, demonstrating comparable performance
to that of Client 1 in GMA.

(1) bloom 560m: Utilizing both GMA and OPA techniques, we
allocated all 24 blocks among servers S1, S2, S3, S4, and S5.
S1 has 12.15 GB memory and 8 cores, S2 holds 11.65 GB
memory with 8 cores, while S3, S4, and S5 share 11.15 GB
memory but differ in core count—2, 4, and 8 cores respec-
tively. GMA selected S1, S2, and S3, whereas OPA favored
S1 (12 blocks), S2 (8 blocks), and S5 (4 blocks). Under the
GMA, block execution times for 1 client were 2.75 seconds,
2 concurrent clients took 3.01 seconds, and 4 concurrent
clients demanded 3.65 seconds. Meanwhile, employing OPA
resulted in execution times of 2.68 seconds for 1 client, 2.88

seconds for 2 concurrent clients, and 3.11 seconds for 4 con-
current clients. OPA showcased superior performance across
1, 2, and 4 concurrent clients in contrast to the GMA.

(2) bloom 3b: All 30 blocks were allocated across servers S1, S2,
S3, S4, and S5 using both GMA and OPA methodologies. S1
possesses 16.7 GB memory and 8 cores, S2 holds 15 GB mem-
ory with 8 cores, while S3, S4, and S5 share 13.3 GB memory,
differing in core count—2, 4, and 8 cores respectively. GMA
favored S1, S2, and S3, while OPA distributed 14 blocks to
S1, 10 blocks to S2, and 6 blocks to S5. Block execution times
under GMA for 1 client were 10.93 seconds, 12.09 seconds
for 2 concurrent clients, and 14.11 seconds for 4 concurrent
clients. With OPA, execution times were 10.28 seconds for 1
client, 11.23 seconds for 2 concurrent clients, and 13.91 sec-
onds for 4 concurrent clients. OPA demonstrated superior
performance across 1, 2, and 4 concurrent clients compared
to the Greedy Approach.

(3) bloom 7b1: Distributing all 30 blocks across servers S1, S2, S3,
S4, and S5 was achieved using GMA and OPA methods. S1
boasts 30 GB memory and 8 cores, S2 holds 26 GB memory
with 8 cores, while S3, S4, and S5 share 22 GB memory but
differ in core count—2, 4, and 8 cores respectively. GMA
selected S1, S2, and S3, whereas OPA allocated 14 blocks to
S1, 10 blocks to S2, and 6 blocks to S5. Using GMA, block
execution times were 27.79 seconds for 1 client, 29.12 seconds
for 2 concurrent clients, and 38.35 seconds for 4 concurrent
clients. Meanwhile, OPA showed execution times of 22.12
seconds for 1 client, 23.59 seconds for 2 concurrent clients,
and 36.12 seconds for 4 concurrent clients. OPA showcased
superior performance across 1, 2, and 4 concurrent clients
compared to the GMA.

(4) Falcon model: All 60 blocks were distributed across servers
S1, S2, S3, S4, and S5 using GMA and OPA methodologies. S1
possesses 92.2 GB memory and 8 cores, S2 has 67.7 GB mem-
ory with 8 cores, while S3, S4, and S5 share 42 GB memory,
differing in core count—2, 4, and 8 cores respectively. GMA
selected S1, S2, and S3, whereas OPA opted for S1, S2, and S5.
Under GMA, block execution times were 260.12 seconds for
1 client, 266.72 seconds for 2 concurrent clients, and 352.12
seconds for 4 concurrent clients. OPA demonstrated execu-
tion times of 258.19 seconds for 1 client, 263.89 seconds for
2 concurrent clients, and 345.26 seconds for 4 concurrent
clients. OPA showcased superior performance across 1, 2,
and 4 concurrent clients compared to the GMA Approach.

(5) LLama 2 model: Employing both GMA and OPA methods,
we distributed all 80 blocks among servers S1, S2, S3, S4, and
S5. S1 boasts 155 GB memory and 8 cores, S2 holds 113.5
GB memory with 8 cores, while S3, S4, and S5 share 83.5 GB
memory, differing in core count—2, 4, and 8 cores respec-
tively. S1, S2, and S3, while OPA favored S1 (35 blocks), S2
(25 blocks), and S5 (20 blocks). Block execution times under
GMA for 1 client were 396.11 seconds, 408.12 seconds for
2 concurrent clients, and 798.12 seconds for 4 concurrent
clients. Meanwhile, employing OPA resulted in execution
times of 279.13 seconds for 1 client, 404.11 seconds for 2 con-
current clients, and 588.76 seconds for 4 concurrent clients.

208



Leftovers for LLaMA ICPE ’24, May 7–11, 2024, London, United Kingdom

Figure 4: Block execution time for 1, 2, 4 concurrent clients

OPA demonstrated superior performance across 1, 2, and 4
concurrent clients compared to the GMA.

As observed from the results in Table 3, OPA outperforms GMA
in almost all the cases, with a lower block execution time as com-
pared to GMA. These results are consistent across different models.
BLOOM, Falcon and LLaMA 2 with varying parameters and number
of clients.

6 ABLATION STUDIES
In this section we discuss ablation studies to better understand and
analyze the performance of OPA in LLaMPS. Figure 4 illustrates
the behavior of OPA upon increasing the number of output tokens
while keeping the batch size fixed. When the cores are limited to 2,
the block execution time shows a steep increase as the number of
output tokens increases. This is expected behavior as the compute
increases, and so does the block execution time. This is particularly
observedwith an increase in concurrency (clients 2 and 4) and hence
increase in a number of client requests. Upon adding more cores (4
and 8) we observe that the overall block execution time shows a
decreasing trend as more compute becomes available. This trend
remains consistent across the BLOOM 3b model, thus corroborating
the efficacy of the OPA approach.

Previously, in Figure 3, we discussed the knee-point of the curve
by varying the number of cores. These graphs illustrate that with
increasing batch size, adding cores is beneficial till a certain point
(i.e. 8 cores). Beyond 8 cores, we do not observe a significant im-
provement as some tasks performed during inference may not be
parallelizable beyond 8 degrees. For example, in Bloom 560m with
a batch size of 1, batch execution time is less than 20 seconds, for a
batch size of 4, it is slightly over 20 seconds, and for a batch size of
16, it is less than 40 seconds.With the increase in cores, concurrency
is more efficiently handled and this pattern holds for the Bloom 3b
model as well.

Thus, OPA shows expected behavior across varying parameters
(cores, batch sizes, number of output tokens) and the trend in the

results is consistent across models with varying parameters. The
efficacy of these results has also been validated on a heterogeneous
cpu-based cluster setup in an enterprise.

7 RELATEDWORK
In recent years, the deployment of large language models has seen
widespread adoption owing to their versatile applications in real-
world scenarios, predominantly in the field of natural language
processing (NLP). As these models increase in size and complex-
ity, their computational demands have necessitated distributed
computing solutions, given their impracticality to fit on a single
machine. Models such as OPT-175B[25], BLOOM-176B [23], and
LLama-70b[22] demand substantial accelerator memory, exceed-
ing 350 GB for inference. The computational requirements impose
a barrier, necessitating multiple high-end GPUs for downstream
tasks.

There have been efforts to distribute transformer blocks across
multiple servers. Deepspeed [3] [17][18] is a distributed inference
solution that supports large transformer-based language models.
It enables parallel inference and achieves tensor parallelism by
leveraging multiple GPUs. Deepspeed utilizes maximum available
resources on multiple servers, enhancing overall performance and
scalability.

Another approach by Deepspeed [3][17][18], namely Deepspeed
Zero inference[19] involves "offloading" model parameters to more
economical memory sources like RAM or SSD and subsequently ex-
ecuting them on the GPU layer by layer. While this strategy enables
the deployment of LLMs on a single GPU, it introduces inherent
trade-offs, such as increased latency due to the time-consuming
offloading of layers. Additionally, the large size of layers and the
substantial transfer overhead between the GPU and CPU further
contribute to these challenges.

FastServe [24] is a system for distributed inference serving of
LLMs. The system is built on NVIDIA FasterTransformer and ex-
ploits the autoregressive pattern of LLM inference to enable pre-
emption at the granularity of each output token. FastServe utilizes

209



ICPE ’24, May 7–11, 2024, London, United Kingdom Ravi Kumar Singh, Likhith Bandamudi, Shruti Kunde, Mayank Mishra, and Rekha Singhal

high-end GPUs and similar to DeepSpeed leverages maximum re-
sources available to minimize the job (JCT) completion time.

Another avenue to enhance LLM accessibility involves lever-
aging public inference APIs for example deploying the LLM on
Sagemaker [1] which is AWS [2] service later accessed model us-
ing API. However, the pricing structure of these APIs can render
certain research projects prohibitively expensive. This economic
constraint poses a limitation on the widespread use of LLMs for
various research endeavors and potential applications.

Petals [7] works as a decentralized framework designed for fast
inference of transformer-based models. It splits any given model
into several blocks that are hosted on different servers. These
servers can be spread out across continents, and anybody can con-
nect their own GPU! In turn, users can connect to this network as
a client and apply a chosen model to their data.

In our context, our paper introduces a novel perspective, focusing
on the inference of large language models within enterprise setups.
We seek to leverage the residual (leftover) capacity present on
servers, harnessing untapped resources for efficientmodel inference.
Our work explores the optimization of block assignment, which
stays unexplored in related literature at this point. Through this
exploration, we aim to push the boundaries of efficiency in large
language model inference, ultimately maximizing the number of
clients that can be accommodated, and thereby ensuring distributed
inference of LLMs in a cost-effective manner for enterprises by
utilizing leftover capacity.

8 CONCLUSIONS AND FUTUREWORK
Our paper introduces LLaMPS, a Large Language Model Placement
System designed to address the challenge of efficiently deploying
large language models (LLMs) within enterprise setups LLaMPS.
Our approach focuses on the placement of transformer blocks, op-
timizing the utilization of enterprise resources by utilizing leftover
capacity in worker nodes in an enterprise setup. The Optimal Place-
ment Algorithm (OPA) maximizes the number of clients that can
be served concurrently by optimally placing transformer blocks on
residual resources. Through extensive experimentation with open-
source large language models such as BLOOM (with 1b, 3b, and 7b
parameters) Falcon and LLaMA, our results consistently demon-
strate the efficacy of LLaMPS in facilitating optimal transformer
block placement. By leveraging leftover resources, LLaMPS paves
the way for enterprise-level deployment of large language mod-
els. LLaMPS can also maintain sustainability by optimally utilizing
leftover capacity of machines within an enterprise; consequently
saving the cost of buying extra machines/resources to host the
entire LLM model. As a part of future work, we plan to investigate
the feasibility of a system that dynamically identifies and utilizes
leftover capacities across cloud instances. LLaMPS can be used in
Retrieval Augmented Generation (RAG) applications for doing the
inference or other downstream tasks using LLMs when latency is
not critical.
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ABSTRACT
Transformer-based language models such as BERT and its variants
are primarily developed with compute-heavy servers in mind.
Despite the great performance of BERT models across various NLP
tasks, their large size and numerous parameters pose substantial
obstacles to offline computation on embedded systems. Lighter
replacements of such language models (e.g., DistilBERT and
TinyBERT) often sacrifice accuracy, particularly for complex NLP
tasks. Until now, it is still unclear (a) whether the state-of-the-art
language models, viz., BERT and its variants are deployable
on embedded systems with a limited processor, memory, and
battery power and (b) if they do, what are the “right” set of
configurations and parameters to choose for a given NLP task. This
paper presents a performance study of transformer language models
under different hardware configurations and accuracy requirements
and derives empirical observations about these resource/accuracy
trade-offs. In particular, we study how the most commonly used
BERT-based language models (viz., BERT, RoBERTa, DistilBERT,
and TinyBERT) perform on embedded systems. We tested them
on four off-the-shelf embedded platforms (Raspberry Pi, Jetson,
UP2, and UDOO) with 2 GB and 4 GB memory (i.e., a total of
eight hardware configurations) and four datasets (i.e., HuRIC,
GoEmotion, CoNLL, WNUT17) running various NLP tasks. Our
study finds that executing complex NLP tasks (such as “sentiment”
classification) on embedded systems is feasible even without any
GPUs (e.g., Raspberry Pi with 2 GB of RAM). Our findings can
help designers understand the deployability and performance of
transformer language models, especially those based on BERT
architectures.
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1 INTRODUCTION
The natural language processing (NLP) domain and the emergence
of large language models rapidly transform how we interact with
technology. With the proliferation of IoT-specific applications,
the demand for voice-controlled services that can perform tasks
by responding to spoken commands is growing. Use cases of
NLP applications, especially those that need embedded and
mobile systems, include home automation, healthcare, industrial
control, and automotive infotainment. To design a dialogue-based
interaction system for a target device, we need models that are
feasible to (a) run on the hardware and (b) meet the desired level
of accuracy. Although some services such as digital assistants (e.g.,
Alexa, Siri, Cortana) may leverage cloud resources for processing
human voices, there exist applications (e.g., offline home/industrial
robots, automotive infotainment, battlefield/military equipment)
that may not have network connectivity, thus require to synthesize
NLP tasks on the embedded device itself. The challenge is
understanding the feasibility of running a large language model on
resource-limited devices.

Transformer-based architectures [1], especially BERT-based
models [2], have established themselves as popular state-of-the-art
baselines for many NLP tasks, including Intent Classification (IC),
Sentiment Classification (SC), and Named Entity Recognition (NER).
However, a well-known criticism of BERT-based architectures
is that they are data-hungry and consume a lot of memory
and energy; therefore, deploying them in embedded systems is
challenging. In fact, due to their excessive size (431 MB) and
parameters (110 M), deploying a pre-trained BERT model (called
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𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ) in resource-constrained embedded devices is often
impractical, especially at the production level with certainminimum
accuracy/performance requirements. Lighter versions of BERT
(e.g., DistilBERT [3] and TinyBERT [4]) often result in accuracy
losses. The degree of degradation in performance depends on the
difficulty of the task, especially since those models often cannot
perform well on complex NLP tasks, including emerging entity [5]
or mixed emotion detection [6]. Therefore, designers must make an
inevitable trade-off between an accurate model and one that can run
smoothly in a resource-constrained environment. Unfortunately,
developers often have little idea about this trade-off and have
to spend a lot of time conducting trial-and-error experiments
to find a suitable architecture that is feasible for the target
(resource-constrained) hardware and meets a desired level of
accuracy.

From a developer’s perspective, it is still unclear what is the
“right” BERT-based architecture to use for a given NLP task that
can strike a suitable trade-off between the resources available and the
minimum accuracy desired by the user. Due to the staggering size of
the 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model, we experiment with different “distilled” BERT
models (e.g., DistilBERT and TinyBERT) for IC, SC, and NER tasks.
However, existing ready-to-use distilled models perform poorly
on some SC and NER datasets (Sec. 4). Hence, there is a need to
explore other models that can better optimize the efficiency/accuracy
trade-offs.

This research performs an exploratory study of BERT-based
models1 under different resource constraints and accuracy budgets to
derive empirical data about these resource/accuracy trade-offs. We
aim to answer the following questions: (a) how can we determine
the suitable BERT architecture that runs on a target hardware and
meets user-defined performance requirements (accuracy, inference
time)? (b) what are the trade-offs between accuracy and model
size as we perform optimizations (such as pruning) to run them
on limited embedded device memory? and (c) what are the
implications of performing pruning on accuracy and corresponding
resource usage, including memory, inference time, and energy
consumption? In answer to those questions, we observe the
overhead of running various BERT architectures on four different
hardware (viz., Raspberry Pi [9], Jetson Nano [10], UP2 [11], and
UDOO [12]). Our experiments suggest that some BERT models
(specifically those that are “distilled”) failed to achieve desired
performance goals (e.g., F1 score) for various NLP tasks. Further,
although pruning can reduce model size, it does not significantly
help in energy efficiency.
Contributions. Our study fills the gap between simulation-
based studies and real-world scenarios, as no prior work has
deployed these models on embedded platforms. The findings of
this work can help designers choose alternative BERT-based archi-
tectures under given resource constraints, thus saving development
time and hassle. To ensure reproducibility, our implementation and
related documentation is publicly available [13].

We made the following contributions in this paper.

1Note: there exist other large language models, such as GPT [7] from OpenAI and
LaMDA [8] from Google. However, they are even more resource-hungry than BERT
(thus less suitable for embedded deployment), and some are close-sourced. Hence, our
initial study limits on BERT-based architectures.

• Our study systematically investigates the performance of
BERT-based languagemodels on four off-the-shelf embedded
platforms (Raspberry Pi, Jetson, UP2, and UDOO) with two
different memory variants (2 GB and 4 GB RAMs). We
analyzed the trade-offs between complexity and accuracy
across multiple NLP tasks. (Sec. 3-Sec. 4).

• We explore the feasibility of deploying complex NLP
tasks on embedded systems and analyze them under three
metrics: (a) inference time, (b) memory usage, and (c)
energy consumption. We developed a lookup table through
empirical observations that will be useful for system
designers to decide suitable model configurations for the
target platform (Sec. 4).

Our key findings. The observations from executing the NLP
tasks on our test platforms are as follows: (a) simpler NLP tasks
such as IC can result in a relatively high (90%+) F1 score; (b) the
time required to perform inference proportional to the size of the
trained model and trimming them result in some accuracy loss (e.g.,
60% of reduction in model size could reduce the accuracy by 50%);
(c) the energy consumption on our test hardware remains relatively
consistent, whether we prune the model or not; and (d) while GPUs
play a role in decreasing inference time, the unavailability of GPUs
can be compensated by faster CPUs.

We now start with the problem statement and present selected
datasets (Sec. 2). Section 3 describes our experiment setup before
we discuss our findings in Sec. 4.

2 PROBLEM STATEMENT & DATASETS
We aim to study how language models can be optimally deployed
to accomplish dialog processing in embedded devices. The core
technical challenge of any dialog system is to accurately understand
and interpret user “utterances” and perform the right “action”
accordingly. At a fundamental level, user utterance understanding
relies on the following three basic NLP tasks2: (a) Intent classification
(IC)— to understand the need of the user, (b) Sentiment Classification
(SC) — to understand user emotions, and (c) Named-entity
Recognition (NER) — to extract related entities such as persons
or objects.

Figure 1 presents the workflow of the dialogue-based systems
considered in this work. The user initiates the interaction by
providing a spoken command to the voice-controlled device
(marker 1○ in Fig. 1). The device employs existing automatic
speech recognition techniques [14, 15] to convert the user’s speech
into texts as most language models take textual input ( 2○). The
system then runs an “intent classifier” (Sec. 2.1.1) and analyzes the
extracted text to determine the user’s intention ( 3○). The classifier
identifies the relevant user intentions for the given command
( 4○). For instance, the intents for the given command “Can you
please go to my study room and turn off the lights?” could be
identified as “Motion” and “Change operational state,” as it instructed
the device to move from its current position. Simultaneously, a
“sentiment classifier”(Sec. 2.1.2) is employed to extract the user
sentiment ( 5○). In this case, the extracted sentiment is “Neutral”

2Section 2.1 formally presents these three NLP tasks.
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Figure 1: Utterance processing steps of a voice-controlled embedded device.

as the command does not express any emotion ( 6○). Sentiment
classification helps the voice-controlled device grasp the emotional
context behind user utterances, enabling it to respond appropriately.
In addition, the dialog system utilizes a “named entity recognizer”
(Sec. 2.1.3) to identify specific “entities” ( 7○- 8○). NER is crucial
for accurately identifying user-specified entities like locations and
objects, ensuring precise execution of commands in this scenario.
For example, the entities, in this case, are “study room” (location)
and “lights” (object). Once the user’s intention and relevant entities
are identified ( 9○), the control application running on the embedded
device carries out the specified task and sends a response back to
the user. In this paper, we focus on understanding how the language
models perform on embedded platforms for IC, SC, and NER tasks
(e.g., steps 3○- 8○).

2.1 NLP Tasks under Consideration
Recall from our earlier discussion that intent/sentiment classifi-
cation and named-entity recognition are fundamental NLP tasks
for any voice-controlled interactive system, chatbots, and virtual
assistants. We now formally introduce IC, SC, and NER tasks.

2.1.1 Intent Classification. To produce an accurate response,
reduce backtracking, and minimize user frustration, Intent
Classification (IC) is needed to identify which subsequent action a
robot needs to perform depending on the user’s utterance. A formal
definition of IC can be given as follows:

Definition 1. Given a collection of user utterances 𝑈 =

{𝑢1, 𝑢2, ..., 𝑢𝑛}, and a set of intent labels 𝐼𝑥 = {𝑖1, 𝑖2, ..., 𝑖𝑚}, classify
each utterance 𝑢 𝑗 𝜖 𝑈 with one to more intents labels from 𝐼𝑥 .

Importantly, a user might have more than one intent while
speaking to a robot and understanding the implicit or explicit intent
expressed in a statement is essential to capturing the user’s needs.
For example, consider the following command: “Can you please
go to my study room and turn off the lights?” The command wants

the robot to turn off the lights in the study room; the relevant
intent here is “Change Operational State”. However, the statement
also expressed another intent related to “Motion”, as the command
requires the robot to change location. Without identifying all the
underlying intents, the system cannot perform the right next step.
Hence, recognizing and understanding all types of intents stated
in an utterance is crucial for accomplishing the eventual goal.

2.1.2 Sentiment Classification. Sentiment analysis is regarded as
an important task for accurate user modeling in natural dialog-
based interactions, where user utterances are usually classified into
multiple emotion/sentiment labels. A formal definition can be given
as follows:

Definition 2. Given a collection of user utterances 𝑈 =

{𝑢1, 𝑢2, ..., 𝑢𝑛}, and a set of sentiment labels 𝑆𝑥 = {𝑠1, 𝑠2, ..., 𝑠𝑚},
classify each expression 𝑢 𝑗 𝜖 𝑈 with one to more sentiment labels
from 𝑆𝑥 .

For example, the following user utterance, “OMG, yep!!! That
is the final answer. Thank you so much!” will be classified with
sentiment labels “gratitude” and, “approval”. Similarly, statements
such as “This caught me off guard for real. I’m actually off my bed
laughing” will be labeled as “surprise” and “amusement.”

2.1.3 Named-entity Recognition. Named entity recognition (NER)
— often referred to as entity chunking, extraction, or identification
— is a sub-task of information extraction that seeks to locate
and classify named entities mentioned in unstructured text. An
entity can be expressed by a single word or a series of words that
consistently refer to the same thing. Each detected entity is further
classified into a predetermined category. The formal definition of
the NER task can be given as follows:

Definition 3. Given a collection of statements/texts 𝑆 =

{𝑠1, 𝑠2, ..., 𝑠𝑛}, and a set of entity labels 𝐸𝑥 = {𝑒1, 𝑒2, ..., 𝑒𝑚}, all the
words/tokens in the text will be classified with an entity label 𝑒𝑖 𝜖 𝐸𝑥 .
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NER can be framed as a sequence labelling task that is performed
in two steps, first, detecting the entities from the text, and
second, classifying them into different categories. A named entity
recognizer model classifies each word/phrase representing an entity
into one of the four types: (a) persons (PER), (b) objects (OBJ), (c)
locations (LOC), and (d) miscellaneous names (MISC).

2.2 Datasets
Our study includes the following datasets: (a) HuRIC (for IC), (b)
GoEmotion (for SC), and (c) CoNLL and WNUT17 (for NER), as we
present below.

2.2.1 Intent Classification: HuRIC. For IC, we use Human Robot
Interaction Corpus (HuRIC) [16], which is the state-of-the-art
single-class classification dataset. The basic idea of HuRIC is to
build a reusable corpus for human-robot interaction in natural
language for a specific application domain, i.e., house service robots.
HuRIC includes a wide range of user utterances given to a robot
representing different situations in a house environment. The
motivation behind selecting HuRIC for our intent classification
task stems from our specific interest in utilizing a dataset that
captures human-robot conversations. The HuRIC dataset allows
us to train and evaluate intent classification models on realistic
dialogues between humans and robots in real-world scenarios.
Table 1 presents some statistics of HuRIC.

Statistic Count
Number of examples 729

Number of intent labels 11
Size of training dataset 583

Size of test dataset 146

Table 1: Statistics of HuRIC dataset.

2.2.2 Sentiment Classification: GoEmotion. We use GoEmotion [6]
dataset from Google AI for the SC task. GoEmotion is a
human-annotated dataset of 58,000 Reddit comments extracted
from popular English-language subreddits and labeled with 27
emotion categories. As the largest fully annotated English language
fine-grained emotion dataset to date, the GoEmotion taxonomy
was designed with both psychology and data applicability in mind
Table 2 presents some statistics of GoEmotion. We chose the
GoEmotion dataset for SC task to ensure rigorous testing of our
models. With its comprehensive emotion coverage and nuanced
labeling, GoEmotion serves as a challenging yet realistic benchmark
for evaluating sentiment detection performance.

2.2.3 Named-entity Recognition: CoNLL & WNUT17. For NER we
consider two datasets, viz., CoNLL [17] and WNUT17 [5].

CoNLL. CoNLL-2003 [17] was released as a part of CoNLL-2003
shared task: language-independent named entity recognition. The
English corpus from this shared task consists of Reuters news stories
between August 1996 and August 1997, each annotated with the
entities associated with them. The data set consists of a training
file, a development file, and a test file. The details of CoNLL-2003
are presented in Table 3.

Statistic Count
Number of labels 27 + Neutral

Maximum sequence length in overall datasets 30
Size of training dataset 43,410

Size of test dataset 5,427
Size of validation dataset 5,426

Table 2: Statistics of GoEmotion dataset.

Statistic Articles Sentences Tokens
Training set 946 14,987 203,621

Development set 216 3,466 51,362
Test set 231 3,684 46,435

Table 3: Statistics of CoNLL dataset.

WNUT17. While the CoNLL corpus is based on news stories, we
wanted to select a dataset that contains user utterances such as
those available on HuRIC. Unfortunately, we could not find such a
NER dataset but discovered a very similar corpus (WNUT2017 [5])
that contains user-generated text. The WNUT2017 dataset’s shared
task focuses on identifying unusual, previously-unseen entities in
the context of emerging discussions. Identifying entities in noisy
text is really challenging, even for human annotators, due to novel
entities and surface forms. In this dataset, user comments were
mined from different social media platforms because they are large,
and samples can be mined along different dimensions, such as texts
from/about geo-specific areas, about home aid, and particular topics
and events. Table 4 summarizes the dataset properties.

Statistic Count
Number of examples 5690

Number of labels 6
Size of training dataset 3394

Size of test dataset 1287
Size of validation dataset 1009

Table 4: Statistics of WNUT17 dataset.

3 EXPERIMENTAL SETUP
We now summarize BERT architectures and configurations used in
our experiments (Sec. 3.1 and Sec. 3.2).We selected four off-the-shelf
platforms from different chip vendors (Intel, AMD, ARM, NVIDIA)
to understand the feasibility of using NLP tasks on a variety of
architectures (Sec. 3.3). To measure the performance of each task
(IC, SC, NER), we use three popular metrics (i.e., Precision, Recall,
and 𝐹1 score). Section 3.4 lists the design questions explored in
our investigation. The blueprints of our implementation, including
related code/documentation, is publicly available for community
use [13].
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BERT RoBERTa DistilBERT TinyBERT
Number of Layers 12 12 6 4
Attention Heads 12 12 12 12
Hidden Layer Size 768 768 768 312
Feed-Forward Layer Size 3072 3072 3072 1200
Vocabulary Size 30522 30522 30522 30522

Table 5: Attributes of the BERT variants used in our study.

3.1 Off-the-Shelf BERT Variants
We use a pre-trained base variant of BERT [18], RoBERTa [19],
DistilBERT [3], TinyBERT [4] model from Huggingface3 and
finetune the models on respective datasets (i.e., HuRIC, GoEmotion,
CoNLL, and WNUT17). Table 5 listed the parameters of the BERT
variants and Table 6 presents the hyper-parameter used in our
experiments.

Hyperparameter NER IC/SC
Number of epochs 3 3
Batch size 64 64
Learning rate [𝑒−6, 𝑒−4] [𝑒−6, 𝑒−4]
Weight decay [0.01, 0.3] [0.01, 0.3]
Optimizer Adam Adam
Adam epsilon 1𝑒−8 1𝑒−8
Max sequence length 64 128

Table 6: Hyperparameter values for finetuning BERT on
IC/SC and NER tasks.

3.2 Pruning and Custom Configurations
We also experiment with custom, smaller BERT configurations.
Due to the resource constraints (e.g., memory and energy limits) of
embedded devices, it is necessary to explore different variants of
BERT-based models that can be optimized to run on the device. We
can reduce the model size on two fronts: (a) by reducing the layer
size and (b) by pruning various attributes.

In our study, we experiment with different layer combinations of
BERT models and test their performance on different hardware
configurations, which are presented in Table 12, and 13. With
two layers of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 (instead of 12), the model size reduces
significantly, but so does the accuracy (in terms of 𝐹1 score).
Still, these models give better accuracy than the distilled models
on complex NLP tasks. Also, where 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model with 12
layers cannot run on a resource-constrained device, using a lesser
number of layers enable a model to execute on tiny devices with
good accuracy compared to the distilled methods (DistilBERT and
TinyBERT).

For further shrinking of the model, pruning can be applied to
weights, neurons, layers, channels, and attention heads, depending
on the heuristic used. In this paper, we focus on pruning attention
heads, which plays an important role in the model’s performance

3https://huggingface.co/.

and contributes a large number of parameters. Although multi-
headed attention is a driving force behind many recent state-of-
the-art models, Michel et al. [20] finds that even if models have
been trained using multiple heads, in practice, a large percentage
of attention heads can be removed without significantly impacting
performance. In fact, in some layers, attention heads can even be
reduced to a single head.

Based on this fact, we experiment with reducing the size
of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 by dynamically pruning the attention heads. Each
attention head provides a distribution of attention for the given
input sequence. For each attention head, we calculate the head
importance by calculating the entropy of each head. After that, we
mask all the attention heads with the lowest entropy. This process is
repeated for each layer of the encoder. After masking the heads, we
calculate the overall 𝐹1 score of the masked model and determine
the drop in 𝐹1 score compared to the original unpruned model. If
the drop is less than a predefined threshold, we prune the masked
attention heads. We repeat the process until the drop in 𝐹1 score
reaches the predefined threshold. This pruning procedure reduces
the model size significantly while maintaining the desired model
performance.

3.3 Evaluation Platforms
We evaluate the BERT models on heterogeneous setup, viz., x86
(Intel and AMD) and ARM platforms, including devices with or
without GPU. In particular, we used the following four different
embedded platforms: (a) Raspberry Pi 4 Model B [9], (b) Jetson
Nano [10], (c) UP2 [11], and (d) UDOO Bolt [12]. Table 7 lists the
hardware configurations used in our setup. Among them, only
Jetson board equipped with GPU (128 NVIDIA CUDA cores). We
used 2 GB and 4 GB memory configurations for each of the four
boards. The SoC (System on Chip) of ARM-based boards (Raspberry
Pi and Jetson) configured with soldered memory — hence, we
used two different boards for each with 2 GB and 4 GB RAM
configurations. The x86-based boards (i.e., UP2 and UDOO) are
modular, so we used the same board but two different DDR4 RAMs
(2 GB and 4 GB). Hence, our evaluation setup consists of eight
different hardware configurations running on four ARM and two x86
boards. For energy measurements during the inference steps, we
used UM25C energy meter [21]. We performed all experiments on
Linux kernel 5.15.0. The NLP models were developed using PyTorch
library (version 1.13).

3.4 Design Challenges & Research Questions
We conducted extensive experiments to investigate the following
research questions (RQs).

• RQ1.Given specific user-defined constraints, such as system
resources (processor, memory) and performance budgets
(accuracy, inference time), what is the optimal (if any) BERT-
based architecture satisfying those constraints?

• RQ 2. What is the accuracy vs. model-size trade-off as we
prune the models?

• RQ 3.What are the trade-offs of accuracy and corresponding
resource usage (e.g., memory, inference-time, energy
consumptions) as we perform pruning?

• RQ 4. Does GPU aid in inference time?
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Embedded Platform Architecture CPU GPU Memory

Raspberry Pi ARM Quad-core Cortex-A72 é 2 GB and 4 GB

Jetson Nano ARM Quad-core Cortex-A57 128-core NVIDIA Maxwell 2 GB and 4 GB

UP2 x86 Dual-core Intel Celeron N6210 é 2 GB and 4 GB

UDOO Bolt x86 Quad-core AMD Ryzen V1605B é 2 GB and 4 GB

Table 7: Embedded platforms used in our evaluations: (a) Raspberry Pi [9], (b) Jetson Nano [10], (c) UP2 [11], and (d) UDOO
Bolt [12]. We used 2 GB and 4 GB memory configurations for each board.

• RQ 5. What are the energy consumption differences among
various architectures (x86 and ARM)? Does the presence of
GPUs impact energy usage?

4 RESULTS
In this section, we report our results for the three basic NLP
tasks, i.e., IC, SC, and NER for both existing (e.g., BERT, RoBERTa,
DistilBERT, and TinyBERT) and custom BERT architectures.

4.1 Experience with Existing BERT Variants
Intent Classification (IC). Recall from our earlier discussion

(Sec. 2.2.1) that we used the HuRIC dataset for IC. Table 8 presents
our findings after running IC tasks using the HuRIC dataset on
different hardware. We observed that all the models performed
similarly on this dataset, achieving more than 90% 𝐹1 Score.

Multi-label Sentiment Classification (SC). We next analyze the
performance of multi-label SC tasks on Raspberry Pi, Jetson,
UP2, and UDOO board. As mentioned in Sec. 2.2.2, we used
GoEmotion [6] dataset for this task. GoEmotion includes direct
user-to-user conversation text and labels them with many user
emotions. Table 9 summarizes the performance of all the models
for this task. Interestingly, for this task, DistilBERT and TinyBERT
failed drastically, as they achieved a very low 𝐹1 Score. The failure
of distilled models can be attributed to the difficulty of the task.
Multi-label SC requires each utterance to be classified with more
than one sentiment. Therefore, this dataset is not a straightforward
positive-negative sentiment detection.

Named-entity Recognition (NER). As we mention in Sec. 2.2.3, we
use two different datasets to test the NER task. Table 10 summarizes
the performance over both the NER datasets and shows that for the
CoNLL dataset. In this setup, all models performed comparatively
the same. However, the performance of distilled models dropped
sharply for the WNUT17 dataset (which focuses on identifying
unusual, previously-unseen entities). This drop tends to be due to

the difficulty of analyzing this task, as NER evaluates the ability
to detect and classify novel, emerging, singleton-named entities in
noisy inputs.

In summary, our findings are as follows.

• All models achieved decent F1 scores (>90%) for IC task.
• DistilBERT and TinyBERT struggled with the multi-label SC
task as none achieved an F1 score of more than 15%.

• All BERTmodels excelled in the NER task on the CoNLL dataset
and accurately recognized named entities (resulting in >90% F1
scores).

• Distilled models showed a performance decline for the NER
task on the WNUT17 dataset with the F1 score dropping to less
than 5%, indicating difficulty with dataset intricacies.

4.2 Exploration with Custom Architectures
Based on our experiment results (Tables 8–10), we further explore
different alternative BERT-based architectures by reducing the
layers and pruning the attention heads from the original 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒
model. For this exploration, we primarily focus on the challenging
tasks, i.e., multi-label SC and NER where off-the-shelf models (e.g.,
DistilBERT and TinyBERT) failed to perform.

Table 11–Table 13 present our exploration findings.4 We discuss
our observations in Sec. 4.2.3 and provide answers to the research
questions posed in Sec. 3.4. Before we proceed with the discussion,
we present a brief overview of the attributes and metrics used in
our evaluation.

4.2.1 Model Attributes. In the evaluation, we vary the following
model attributes.
• 𝐹1 Threshold (\ ): The \ -cells represents what percentage of the
𝐹1 score (with respect to 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ) is retained by the models. In
our experiment, we varied \ between 50% to 90% and reported

4Note:We omit the results for IC on custom BERT architectures as existing models
suffice to perform this task.
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Intent Classification Task (Dataset: HuRIC)
BERT RoBERTa DistilBERT TinyBERT

Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1
0.943 0.985 0.961 0.975 0.952 0.962 0.951 0.903 0.927 0.912 0.897 0.902

Table 8: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the IC task.

Multi-label Sentiment Detection Task (Dataset: GoEmotion)
BERT RoBERTa DistilBERT TinyBERT

Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1
0.77 0.37 0.490 0.731 0.452 0.567 0.174 0.121 0.134 0.060 0.030 0.031

Table 9: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the SC task.

Named-entity Recognition Task
Dataset: CoNLL

BERT RoBERTa DistilBERT TinyBERT
Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1

0.891 0.963 0.926 0.882 0.955 0.917 0.906 0.967 0.935 0.872 0.958 0.911
Dataset: WNUT17

BERT RoBERTa DistilBERT TinyBERT
Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1 Precision Recall 𝑭1

0.671 0.295 0.410 0.537 0.315 0.397 0.316 0.014 0.028 0.0 0.0 0.0

Table 10: Performance of BERT, RoBERTa, DistilBERT, and TinyBERT for the NER task.

Task Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 \80 \90

IC

Layer
MS

Params
Pruning

2 4 6 8
144.3 N/A N/A N/A
35.1
68%

2 4 6 8
148.3 N/A N/A N/A
37.1
66%

2 4 6 8
N/A 195.6 N/A 282.2

48.9 70.5
56% 36%

2 4 6 8
154.2 198.7 246 N/A
38.6 49.7 61.5
65% 55% 44%

2 4 6 8
N/A 211.3 268 303.5

52.8 67 75.9
52% 39% 31%

NER

Layer
MS

Params
Pruning

2 4 6 8
136.4 N/A N/A N/A
34.1
67%

2 4 6 8
147.4 N/A N/A N/A
36.9
65%

2 4 6 8
N/A 185.2 233.3 N/A

46.3 58.3
57% 45%

2 4 6 8
N/A 201 249.8 268

46.3 62.4 67
45% 57% 38%

2 4 6 8
N/A N/A 260.8 289.2

65.2 72.3
39% 32%

Table 11: Performance of SC and NER tasks for the GoEmotion and WNUT17 datasets on various configurations. In metrics
column, MS= Model Size (MB), Params= Parameters (Million).

the model details in respective columns. For example, \ set to
80% implies the \80 column.

• Platform: Indicates thememory capacity of the different hardware
we used in our exploration.

• Layer : Represents the number of layers retained.
• Model Size: The size of the saved model after training. We stored
the saved model on the disk which is then loaded on the memory
for inference.

• Parameters: This metric indicates the total number of parameters
in the saved model. We obtained the model parameters using the
model.parameters() method in PyTorch [22].

• Pruning: Pruning percentage represents the reduction in size
from the 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model. For example, a pruning percentage of
70% implies that the pruned model is 70% smaller than 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 .

4.2.2 Performance Metrics. We consider the three metrics to
benchmark the NLP models: (a) inference time, (b) memory usage,
and (c) energy consumption, as we present below.

• Memory Consumption: Maximum memory usage (in megabytes)
of the corresponding NLP task running on different boards during
the inference time. We used Python memory_profiler for each
input to get the memory usage.

• Inference Time: Depending on the specific task, the 95th percentile
time required for the model to infer the appropriate Intent,
Sentiment or Entity from a given command.

• Energy Consumption: The average energy consumed (in watts) by
the different hardware during the inference of a given command.
We measured both the rest time (i.e., when the system is idle) and
inference time energy consumption.
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Plat. Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 \80 \90

Pi
2 GB

Layer
EC
MC
IT

2 4 6 8
4.24 N/A N/A N/A
394.3
0.52

2 4 6 8
4.28 N/A N/A N/A
391.5
0.51

2 4 6 8
N/A 4.32 N/A 4.37

440.4 563
1.1 2.17

2 4 6 8
4.35 4.3 4.48 N/A
401.9 446.2 497.3
0.54 1.01 1.69

2 4 6 8
N/A 3.91 4.45 4.34

462.9 521.5 559.4
1.3 1.81 2.35

Pi
4 GB

Layer
EC
MC
IT

2 4 6 8
4.91 N/A N/A N/A
397.5
0.44

2 4 6 8
5.05 N/A N/A N/A
401
0.44

2 4 6 8
N/A 4.67 N/A 5.09

446.3 569.2
0.82 1.5

2 4 6 8
4.98 4.72 4.8 N/A
404.2 453.2 507.7
0.5 0.81 1.21

N/A 4 6 8
4.77 4.78 4.95
464.6 528.8 563.4
1.00 1.46 1.55

Jetson
2 GB

Layer
EC
MC
IT

2 4 6 8
5.87 N/A N/A N/A
299.2
0.29

2 4 6 8
5.96 N/A N/A N/A
320.1
0.26

2 4 6 8
N/A 6.01 N/A 6.28

345.4 478.5
0.49 0.88

2 4 6 8
5.87 6.14 6.26 N/A
329.7 352.6 415
0.30 0.51 0.68

2 4 6 8
N/A 6.13 6.22 6.24

367.5 429.8 463.9
0.56 .797 1.02

Jetson
4 GB

Layer
EC
MC
IT

2 4 6 8
6.27 N/A N/A N/A
355.5
0.27

2 4 6 8
6.25 N/A N/A N/A
359.7
0.27

2 4 6 8
N/A 6.21 N/A 6.43

410.1 532.9
0.45 0.86

2 4 6 8
6.27 6.31 6.36 N/A
366 408.8 459.4
0.30 0.46 0.66

2 4 6 8
N/A 6.39 6.4 6.47

423 488.4 524
0.50 0.76 0.87

UP2
2 GB

Layer
EC
MC
IT

2 4 6 8
10.897 N/A N/A N/A
670.9
0.12

2 4 6 8
10.9 N/A N/A N/A
708.6
0.12

2 4 6 8
N/A 10.94 N/A 10.79

606.8 741.7
0.21 0.39

2 4 6 8
10.96 11.05 10.78 N/A
696.8 693 742.6
0.13 0.21 0.30

2 4 6 8
N/A 10.81 10.73 10.76

741.1 707.4 782.1
0.23 0.31 0.42

UP2
4 GB

Layer
EC
MC
IT

2 4 6 8
10.17 N/A N/A N/A
738.3
0.12

2 4 6 8
11.05 N/A N/A N/A
653.2
0.12

2 4 6 8
N/A 10.04 N/A 11.51

715.7 870
0.21 0.40

2 4 6 8
10.99 11.20 11.38 N/A
736.8 753.4 792.9
0.13 0.22 0.30

2 4 6 8
N/A 11.01 11.38 11.16

736.2 798.3 875.3
0.24 0.30 0.41

UDOO
2 GB

Layer
EC
MC
IT

2 4 6 8
23.08 N/A N/A N/A
379.3
0.06

2 4 6 8
23.12 N/A N/A N/A
424.6
0.06

2 4 6 8
N/A 23.43 N/A 23.64

361.5 422
0.10 0.12

2 4 6 8
23.28 23.38 23.62 N/A
377.9 348.1 461
0.06 0.09 0.13

2 4 6 8
N/A 23.57 23.56 23.46

360.9 468.2 453.1
0.10 0.14 0.17

UDOO
4 GB

Layer
EC
MC
IT

2 4 6 8
23.076 N/A N/A N/A
450.1
0.07

2 4 6 8
23.12 N/A N/A N/A
445.4
0.07

2 4 6 8
N/A 22.78 N/A 23.18

487.3 596.8
0.11 0.16

2 4 6 8
22.98 23.05 22.99 N/A
443.8 505.9 547.8
0.08 0.11 0.15

2 4 6 8
N/A 23.13 22.96 23.15

505.7 544.7 601.9
0.12 0.16 0.16

Table 12: Performance of SC task for the GoEmotion dataset on various configurations. In metrics column, EC=Energy
Consumption (W), MC= Memory (MB), and IT= Inference Time (s). The gray cells highlight the best-case scenario for each 𝐹1
threshold (\ ).

4.2.3 Observations. We now discuss our major observations and
address the research questions introduced in Sec. 3.4.

Selecting “suitable” model subject to given constraints [RQ
1]. We can address this specific research question by inspecting
Table 12 and 13. Note that Table 12 and 13 provide information on
the model size, performance, parameters, and pruning for the SC
and NER tasks, respectively. Let us assume a system designer is
looking for suitable NER models for a 2 GB embedded platform that
maintains approximately 70% of BERT’s accuracy (\70). In this case,
we can (a) scan through the NER performance metrics (i.e., Table
13), and (b) observe from Pi 2 GB Platform row and \70 column
that a six-layered and pruned (45% reduced) BERT model can run
on a Pi 2 GB platform and attain 70% of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ’s original 𝐹1
score. Hence, our exploration (and similar experiments along this
line) can aid the designers to select appropriate models with desired
performance guarantees.

Accuracy andmodel-size trade-offs for pruned architectures
[RQ 2]. Table 12 and Table 13 further provide insights on the
pruning vs. 𝐹1 score trade-off. For example, in Table 12, the Pi 2 GB
Platform row shows a set of models that can run on that system. The
same row and \80 (80% 𝐹1 score threshold) column show that even
pruning 55% of a 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model with four layers can retain 80% of

original 𝐹1 score of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 , while the model size can be reduced
to 198.7 MB from 441.55 MB. Tables 12 and 13 indicate that although
pruning has only a minor impact on memory consumption, it does
not have a significant effect on energy consumption. Furthermore,
our analysis of Table 12 suggests that inference time is directly
proportional to the size of the model, implying that decreasing the
model size leads to a decrease in inference time.

Accuracy vs. system resource trade-offs for pruned
architectures [RQ 3]. If a user has precise requirements for
inference time and memory consumption for a given hardware,
one can scan Table 12 and 13 to pick the optimum model that meets
those requirements. For instance, if we want to find NER models
that can make inferences in less than 0.56 seconds on Raspberry Pi
that has 4 GB of memory, the corresponding Platform row Pi (4 GB)
in Table 13, shows us the model parameters that can satisfy this
requirement(e.g., two-layered, four-layered). Since both of them are
feasible for the chosen platform, designers can choose any of them
based on the required application performance. As an example, if
we pick a two-layered BERT model, the accuracy is 60%, and the
memory consumption is 698.3 MB. In contrast, if we select the
four-layered BERT model, it can achieve 80% accuracy, with a cost
of higher memory consumption of 699.1 MB. Hence, at the expense
of slightly higher memory consumption, it is possible to get 20%
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Plat. Metrics 𝑭 1 Score Threshold (𝜽 )
𝜽 50 𝜽 60 𝜽 70 \80 \90

Pi
2 GB

Layer
EC
MC
IT

2 4 6 8
4.28 N/A N/A N/A
676.3
0.55

2 4 6 8
4.36 N/A N/A N/A
709
0.55

2 4 6 8
N/A 4.3 4.51 N/A

721.3 678.4
1.08 0.61

2 4 6 8
N/A 3.95 4.35 4.51

736.8 700.3 678.4
1.19 0.61 0.61

2 4 6 8
N/A N/A 4.38 4.53

704.7 692.2
0.56 0.65

Pi
4 GB

Layer
EC
MC
IT

2 4 6 8
4.48 N/A N/A N/A
675
0.49

2 4 6 8
4.53 N/A N/A N/A
698.3
0.516

2 4 6 8
N/A 4.62 4.63 N/A

683.6 698.9
0.57 0.57

2 4 6 8
N/A 4.59 4.85 4.82

699.1 706 686
0.55 0.57 0.63

2 4 6 8
N/A N/A 4.9 4.88

706.6 709
0.60 0.65

Jetson
2 GB

Layer
EC
MC
IT

2 4 6 8
5.74 N/A N/A N/A
314.6
0.29

2 4 6 8
5.8 N/A N/A N/A
348.2
0.29

2 4 6 8
N/A 5.96 5.7 N/A

388.7 357.7
0.45 0.29

2 4 6 8
N/A 6.05 5.77 5.7

392.4 359 362.7
0.50 0.31 0.29

2 4 6 8
N/A N/A 5.8 5.71

362.3 368.9
0.33 0.29

Jetson
4 GB

Layer
EC
MC
IT

2 4 6 8
5.74 N/A N/A N/A
368.3
0.29

2 4 6 8
5.76 N/A N/A N/A
365.8
0.27

2 4 6 8
N/A 6.23 5.95 N/A

418.5 368.7
0.497 0.29

2 4 6 8
N/A 6.04 6.12 6.04

424.4 365.5 361.7
0.45 0.33 0.29

2 4 6 8
N/A N/A 6.05 6.08

363.5 366.6
0.32 0.30

UP2
2 GB

Layer
EC
MC
IT

2 4 6 8
11.108 N/A N/A N/A
512.5
0.13

2 4 6 8
11.2 N/A N/A N/A
597.6
0.12

2 4 6 8
N/A 11.18 11.44 N/A

652.9 574
0.19 0.18

2 4 6 8
N/A 11.21 10.77 10.72

650.8 601.8 603.5
0.20 0.12 0.12

2 4 6 8
N/A N/A 10.63 10.7

591.3 591.1
0.12 0.13

UP2
4 GB

Layer
EC
MC
IT

2 4 6 8
10.99 N/A N/A N/A
599.8
0.12

2 4 6 8
11.21 N/A N/A N/A
601.8
0.11

2 4 6 8
N/A 11.36 11.33 N/A

651.4 658.1
0.19 0.20

2 4 6 8
N/A 11.32 11.40 11.35

653.7 652.7 657.7
0.19 0.19 0.22

2 4 6 8
N/A N/A 11.16 11.3

657.7 652.9
0.22 0.21

UDOO
2 GB

Layer
EC
MC
IT

2 4 6 8
24.02 N/A N/A N/A
437.8
0.07

2 4 6 8
24.08 N/A N/A N/A
438.6
0.05

2 4 6 8
N/A 24.09 24.07 N/A

491.2 490.8
0.09 0.09

2 4 6 8
N/A 24.14 24.06 24.02

490.9 490.5 503.4
0.09 0.09 0.09

2 4 6 8
N/A N/A 24.11 24.07

490.3 492.4
0.09 0.08

UDOO
4 GB

Layer
EC
MC
IT

2 4 6 8
22.79
445.6
0.06

2 4 6 8
22.86
443
0.05

2 4 6 8
23.07 23.57
500.1 496.4
0.08 0.09

2 4 6 8
23.09 23.49 23.39
497.5 499.5 510.1
0.09 0.08 0.09

2 4 6 8
23.58 23.50
495.2 499.8
0.08 0.08

Table 13: Performance of NER task for the WNUT17 dataset on various configurations. In metrics column, MS= Model Size
(MB), Params= Parameters (Million), EC=Energy Consumption (Watt), MC= Memory (MB), and IT= Inference Time (s). The gray
cells highlight the best-case scenario for each 𝐹1 threshold (\ ).

more accuracy. Such a lookup-based approach allows the designers
to perform a desired cost-benefit analysis.

The case for GPUs [RQ 4]. Intuitively, GPUs aid in any learning-
enabled tasks. We used one GPU-enabled hardware (Jetson Nano)
in our design space exploration. As Table 12 and Table 13 illustrate
Jetson reduces inference time compared to the Raspberry Pi board
(no GPU). However, GPUs alone cannot provide faster inference.
For instance, x86 boards (UP2 and UDOO) do not have GPUs but
are equipped with a faster processor, and hence result in better
inference times (i.e., took less time to process the queries). Systems
with better hardware (CPU/GPU/memory) can output inference
decisions faster, which may increase power consumption, as we
discuss next.

Energy consumption on various architectures and model
configurations [RQ 5]. Since many embedded platforms used
for NLP tasks (e.g., voice-controlled robots, voice assistants, IoT
devices) are battery-operated, energy consumption for inferring
user commands is a crucial parameter. Hence, we also analyze the
energy usage of the NLP tasks. For any selected BERT model, one
can find the system energy consumption from Table 12 and 13,
for two different tasks, respectively. As the table shows, (for a
given hardware) during the inference of a given command, energy
consumption does not vary significantly for various models.

Pi 2 GB
Pi 4 GB

Jetson 2 GB

Jetson 4 GB
UP2  2 GB

UP2  4 GB

UDOO 2 GB

UDOO 4 GB
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Figure 2: Energy consumption during rest mode and
inference period. ARM devices use less energy compared
to x86 systems.

To understand the energy usage of the various NLP tasks on
our test platforms, we also measured the energy consumption of
each board during rest mode and inference period (see Fig. 2).
We obtained the rest mode energy usage by idling the device
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for 10 minutes and took the average value. For inference energy
consumption, we testedwith 40 SC and 40 NER queries and repeated
each of them 100 times (i.e., a total of 2 × 40 × 100 = 8000 samples.
We report the maximum (lighter gray) bar and minimum (darker
gray) energy consumption values of the 8000 trials.

As Fig. 2 shows, the inference energy consumption increases by a
factor of 1.73 to 4.89 times compared to the rest mode energy usage.
Besides, ARM architectures (Raspberry Pi and Jetson) consume
less energy than the x86 architectures (UP2 and UDOO). Another
interesting observation is that even though Jetson boards use GPU,
they are more power efficient for performing NLP tasks compared
to some CPU-only x86 systems. Our experiments show that the
AMD Ryzen platform (UDOO) performs poorly in terms of energy
usage. However, as Table 12 and Table 13 indicate, UDOO boards
output faster inference time (since they have relatively faster CPU
than the others). Hence, there exists a trade-off between inference
time and energy usage.

4.2.4 Summary of Findings. Our key findings for custom BERT
architectures are listed below.

Model Size & Pruning.
• Pruning helps in reduction in size (upto 67%) while maintaining
at least 50% of 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 ’s F1 score.

• The time required for inference is directly related to the size
of the model, i.e., a smaller model size results in a reduction in
inference time.

• Pruning of attention heads does not reduce memory usage.
• Pruning attention heads does not improve energy consumption
significantly.

System Artifacts.
• Faster x86 (Intel and AMD) platforms outperform ARM SoCs
(e.g., Pi and Jetson boards) wrt. inference time, but their energy
consumption is significantly higher (e.g., at least 2.60 times)
than ARM counterparts.

• GPUs aid in performance (e.g., inference times are approx. 2-
times faster in Jetson than Raspberry Pi) but GPUs alone in
Jetson boards cannot outperform a relatively faster CPU (i.e.,
those used in UP2 and UDOO boards).

• Powerful processor can decrease inference time (as expected)
but comes with a cost (increased power consumption: 2.60-5.90
times higher).

5 DISCUSSION
We explore different custom architectures of BERT-based language
models and test their deployment feasibility in low-power em-
bedded devices. We conducted extensive performance evaluations
on four embedded platforms from various vendors with varying
computing capabilities to cover a wide range of application
scenarios. We show that it is not always feasible to shrink the
size of “finetuned” 𝐵𝐸𝑅𝑇𝐵𝑎𝑠𝑒 model that can satisfy specific
user-defined accuracy/performance budgets. We also report which
models are deployable to resource-constrained devices with given
user requirements. We believe our empirical findings will help
the developers quickly narrow down the plausible BERT-based
architecture for target applications, thus saving development

time and effort. While we tested the NLP models on four
embedded platforms (a total of 8 hardware configurations) in
a Linux environment, they can be ported to other systems,
such as smartphones/tablets running different OSes (such as
Android). Thus our empirical study is applicable in broader
human-centric application domains, including chatbots [23–25],
virtual assistants [26, 27], and language translation [28, 29].

Our study is limited to BERT-based models for four existing
datasets (i.e., may not generalize to other language models and
datasets). However, our evaluation framework is modular and
can be retrofitted to other architectures/datasets without loss
of generality. While shrinking models have made it possible to
deploy them on resource-constrained embedded devices, their
performance on new datasets or tasks is often limited. One potential
solution to mitigate this issue is to utilize continual learning
techniques [30, 31], as they allow models to continuously learn and
evolve based on increasing data input while retaining previously
acquired knowledge. Our future work will explore the feasibility of
employing continual learning for embedded devices.

One of the challenges to figuring out the optimal BERT-based
architecture is the lack of application-specific (viz., voice-controlled
robots for home automation) datasets. Existing datasets either (a)
do not have enough examples for training deep learning models or
(b) do not provide complex, practical queries to test the robustness
of a given model. Building suitable datasets for IoT-specific
human-centric applications such as voice-control home/industrial
automation is an interesting open research problem.

6 RELATED WORK
We discuss related research on two fronts: (a) BERT-based models
and their efficient variants and (b) using NLP on embedded devices.

6.1 BERT-based Models and their Variants
The performance of BERT comes at a high computation and
memory cost, which makes on-device inference really challenging.
To mitigate this issue, researchers have proposed knowledge
distillation approaches from the original BERT model, for example,
(a) “finetune” the BERT model to improve task-specific knowledge
distillation [32, 33], (b) use Bi-LSTM models [34] for knowledge
distillation from BERT, (c) leverage single-task models to teach
a multi-task model [35], (d) distillation of knowledge from an
ensemble of BERT into a single BERT [36], (e) TinyBERT [4] uses a
layer-wise distillation strategy for BERT in both the pre-training
and fine-tuning stages, and (f) DistilBERT [3] halves the depth of
the BERT model through knowledge distillation in the pre-training
stage and an optional fine-tuning stage. On a different direction, the
Patient Knowledge Distillation approach [37] compresses an original
largemodel (“teacher”) into an equally-effective lightweight shallow
network (“student”). Other BERT models (e.g., SqueezeBERT [38],
MobileBERT [39], Q8BERT [40], ALBERT [41]) can also reduce
resource consumption than the vanilla BERT. EdgeBERT [42], an
algorithm-hardware co-design approach, performs latency-aware
energy optimizations for multi-task NLP problems. However, unlike
ours, EdgeBERT (a) does not apply attention heads pruning, and
(b) does not report scores on downstream NLP tasks on real-world
embedded systems.
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6.2 NLP for Embedded Platforms
Researchers have explored NLP techniques to facilitate natural
communication between humans and embedded devices, especially
in the context of voice-controlled cognitive robots. For example,
Megalingam et al. [43] presents a voice recognition tool that
compares the user’s input commands with the stored data. Zhang
et al. [44] propose a ROS-based robot that analyzes commands
using an offline grammar recognition library. Megalingam et al. [45]
propose a cost-efficient speech processing module running on ROS
that can provide natural language responses to the user. There also
exists ROS-integrated independent speech recognition packages [46,
47] as well as Arduino-based [48] and custom [49] voice-control
robot platforms. House et al. [50] a voice-controlled robotic arm
(named VoiceBot) for individuals with motor impairments [51].
However, most of these works focused on rule-based approaches,
and we note that transformer architectures are still under-explored
in terms of their practical deployment challenges in real-world
embedded and robotic devices, which is the focus of this study.

6.3 Uniqueness of Our Work
While existing work can reduce the size of BERT models through
distillation and pruning, from a system design perspective, it is
still difficult and tedious for a developer to find out the “right”
BERT-based architecture to use in an embedded platform. To date, it
is also unclear which lighter version of BERTwould find the optimal
balance between the resources available in an embedded device
(e.g., CPU, GPU, memory) and the minimum accuracy desired. We
used four off-the-shelf platforms widely used by developers for
various IoT and embedded applications and benchmarked state-of-
the-art BERT architectures. Our empirical evaluation and design
space exploration on heterogeneous platforms (e.g., x86 and ARM,
with or without GPU) can help the system and machine learning
engineers to pick suitable architectures depending on target system
configuration and performance constraints (e.g., accuracy, 𝐹1 score).
To the best of our knowledge, this work is one of the first efforts to
study the feasibility of deploying BERT-based models in real-world
resource-constrained embedded platforms.

7 CONCLUSION
This paper presents an empirical study of BERT-based neural
architectures in terms of the feasibility of deploying them on
resource-constrained systems, which have become ubiquitous
nowadays. Our performance evaluation results will assist
developers of multiple ubiquitous computing domains, such
as voice-controlled home and industrial automation, precision
agriculture, and medical robots to determine the deployability
of NLP models in their target platform. By using our benchmark
data, designers of ubiquitous systems will now be able to select
the “right” hardware, architecture, and parameters depending on
the resource constraints and performance requirements. This will
also save time on the developer’s end, as they can make informed
choices regarding which BERT-based architecture to use during
development based on their NLP application scenario and the
available hardware.
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ABSTRACT
Recent years have witnessed the growth of Edge AI, a transforma-
tive paradigm that integrates neural networks with edge computing,
bringing computational intelligence closer to end users. However,
this innovation is not without its challenges, especially in environ-
ments with limited computing, network, and memory constraints,
where resource-hungry AI models often need to be partitioned
for distributed execution. This issue becomes even more acute in
scenarios where post-deployment updates are infeasible or costly,
posing a need to accurately reason about the interplay between re-
source constraints and Quality-of-Service (QoS) in Edge AI systems,
so as to optimally design and operate them.

In this keynote talk, I will focus on these challenges, discussing
QoS management and deployment problems arising in Edge AI
systems. I will review mechanisms such as early exits and DNN par-
titioning that are distinctive of this problem space, explaining how
they could be accounted for and leveraged in system performance
and reliability tuning. I will then illustrate how design decisions and
the definition of novel runtime control algorithms can be guided
by approaches based on both traditional analytical models and
emerging data-driven methods based on machine learning models.
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ABSTRACT
This paper aims to solve the challenge of quantifying the perfor-
mance of Hardware-in-the-Loop (HIL) computer systems used for
data re-injection. The system can be represented as a multiple queue
and server system that operates on a First-In, First-Out (FIFO) basis.
The task at hand involves establishing tight bounds on end-to-end
delay and system backlog. This is necessary to optimise buffer and
pre-buffer time configurations. Network Calculus (NC) is chosen
as the basic analytical framework to achieve this. In the literature,
there are different techniques for estimating arrival and service
curves from measurement data, which can be used for NC calcu-
lations. We have selected four of these methods to be applied to
datasets of industrial Timestamp Logging (TL). The problem arises
because these conventional methods often produce bounds that
are much larger (by a factor of 1000 or more) than the measured
maximum values, resulting in inefficient design of HIL system pa-
rameters and inefficient resource usage. The proposed approach,
called TBASCEM, introduces a reverse engineering approach based
on linear NC equations for estimating the parameters of arrival and
service curves. By imposing constraints on the equation variables
and employing non-linear optimization, TBASCEM searches for a
burst parameter estimation which derives tight global delay bounds.
In addition, TBASCEM simplifies the run-time measurement pro-
cess, supporting real-time data acquisition to evaluate and optimise
HIL system performance, and enhancing observability to adapt the
HIL configuration to new sensor data. The benefits of TBASCEM
are clearly that it enables an efficient performance logging of arrival
and service curve parameters and with deriving tighter bounds in
HIL systems, compared to evaluated state-of-the-art methods, mak-
ing TBASCEM an invaluable tool for optimising and monitoring
streaming applications in non-hard-real-time environments.
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1 INTRODUCTION
Autonomous vehicle technology requires millions of kilometres
of recorded sensor data to be replayed with HIL systems to ver-
ify the perception technology on the Device Under Test (DUT).
This process absorbs a significant amount of time and energy for
the computing resources, as the recordings must be replayed in
real-time from the HIL to the DUT. In addition, the replay must
accurately reproduce a real-world scenario to ensure high quality
HIL performance. It is essential that there is no data loss within
the HIL system and that the timing to the DUT is accurate and
precise, as needed by the DUT. We dive deeper into that topic in
the Section 2. However, many HIL systems, beyond their hardware
interfaces to the DUT, do not fall under the category of hard real-
time systems. Instead, they fall into the realm of soft and non-hard
real-time systems.

How can non-hard real-time computing machines meet the hard
real-time requirements of the DUT?One approach involves utilizing
a playback-buffer on the hard real-time capable interface-card. By
filling the buffer with sufficient data before streaming to the DUT,
uninterrupted streaming can be achieved.
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The challenge lies now in designing the buffer size and pre-buffer
time appropriately. To do so, it is crucial to determine the worst-case
end-to-end delay and backlog bounds for buffer size dimensions
and the pre-buffer time parameter.

Filling the playback buffer creates idle time before streaming
to the DUT, leading to wasted time and energy of HIL computing
resources. Hence, minimising pre-buffering time is crucial.

On the contrary, it is crucial to avoid an empty playback buffer
during re-injection, as it disturbs the precise timing needed by
mostly hard real-time DUTs. This hence leads to failed tests and
again a loss of time and energy at the HIL computing resources.
To achieve an efficient HIL performance, it is essential to adjust
the pre-buffer time to be at least equal to or greater than the worst
case end-to-end delay. The aim is to fill the playback buffer with a
minimum of the burst parameter of the arrival curve of the sensor
stream.

The methodology involves measuring the HIL system before op-
eration, designing it accordingly, and monitoring its performance
during operation to optimise its parameters if necessary. Using the
measured maximum end-to-end delay directly would overestimate
the required time, as waiting time in a queue could be included.
Hence, it is necessary to consider queuing theory, which is accom-
plished by employing NC: a deterministic queuing system theory.
Using NC, bounds for the backlog and end-to-end delay of a queu-
ing system can be computed from its arrival and service curves.
However, NC bounds should be tight, for our use-case and our
system, at least the end-to-end delay bound needs to be as tight as
possible, this is the major challenge.

There are basic concepts in the NC framework and mathemati-
cally defined in all basic literature about NC [13, 14]. In short, an
arrival curve is the upper constraint of an input flow, and a service
curve is the lower constraint of a flow provided by a service. The
basic linear arrival curves and service curves, made used off in
this work, are burst-rate curves and rate-latency curves. In hard
real-time systems, their parameters can be found easily, they are
often directly defined. However, in our non-real-time HIL system
under study, they are not. So, they need to be measured, what is
challenging. The analytical solutions for streaming devices with
NC has been derived by Le Boudec et al. in [14]. We adapted and
applied the NC solutions by linear equations on measurement data
from a HIL test system in [11]. However, the results in [11] showed
us, that there are improvements of the derived bounds needed for
the estimation methods of the system service curves, to make them
usable in practice.

One of the approaches mentioned in the survey study by Fidler
et al. [8] to generate a strict service curve based on TL of the input
and output of queuing server systems by Alcuri et al. [1] are used
here in this paper. However, the results show, that the bounds are
not tight at all with these methods. They often exceed by a factor
of 1000.

Additionally, all the measurement methods, which are discussed
in the survey, are based upon TL from the ingress and egress of the
system. We are specifically interested to reduce the TL, to be able
to do run-time measurements at the HIL system during operation,
without generating massive data and performance overhead for the
network or processor. On one hand, TL are occupying the memory.

On the other hand, the TL need to be sent via network, what would
occupy the processor and the network during operation.

To close the gap of estimating a service curve by measurements,
with the aim to provide tight delay and backlog bounds of a stream-
ing process within a computer system, without producing lots
of TL, a new approach has been developed called TBASCEM —
Tight Bounds with Arrival and Service Curve Estimation by Mea-
surements. TBASCEM aims to provide a performant and efficient
estimation method from TL as well as a technique for reducing the
needed measurement data for arrival and service curve estimation,
to be able to calculate tight bounds with NC.

In summary, our novel TBASCEM approach fills the gap for
an effective and efficient method to measure and estimate service
curves by measurements with the aim to calculate tight bounds,
while maintaining low impact on CPU performance and memory
allocation during operation.

The remainder of this paper is structured as follows: In Section 2
we start with basic technical backgrounds of HIL systems. In Sect. 3
we introduce our TBASCEMapproach.We start with the description
of the concept idea and the needed reduced measurements, followed
by the reverse engineering approach for the estimation arrival and
service curve parameters. In the following Section 4, we define our
research questions, with a short explanation of the methodology on
how to evaluate them and our hypothesis, followed by a description
of the experimental setting, and finishingwith discussing the results.
In the following Section 5 we describe former work in literature
and how it relates to our work. Finally, we end up with Section 6,
where we conclude with a short summary and the contribution of
our work. Our contributions include:

• Evaluating the tightness of delay and backlog bounds derived
from four state-of-the-art service curve estimation methods
by TL from the HIL test system with industrial workload,
which highlights the need for TBASCEM, to analyse the
performance of non-hard real-time streaming systems.

• Derivation of the TBASCEMapproach by reverse-engineering
of NC solution by linear arrival and service curves.

• Setting up of the optimization equation as well as the con-
straints for the TBASCEM algorithm.

• Implementing the TBASCEMRun-TimeMeasurement (RTM)
in LabVIEW and the TBASCEM service curve generation in
MATLAB for a proof-of-concept and performance evalua-
tion.

• Quantitatively comparing the CPU performance of state-of-
the-art TL with our TBASCEM RTM.

• Quantitatively comparing the bound tightness of four state-
of-the-art approaches for estimating service curves from
measurement with our TBASCEM estimation approach.

2 FUNDAMENTALS
HIL test systems have emerged as invaluable tools in computer sci-
ence research and engineering. Their ability to seamlessly integrate
virtual simulations with physical hardware empowers researchers
and engineers to evaluate and optimize complex systems efficiently.
With applications ranging from software testing to fault diagno-
sis, HIL test systems continue to shape the future of innovative
technologies.
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The following subsections of this section will confidently explore
important aspects of HIL test systems, with a specific focus on real-
time constraints and designing HIL test systems based on NC.

2.1 Real-Time Constraints of HIL Systems
In HIL systems, the processing time of software or network pro-
cesses is heavily influenced by the computing machine on which
the processes run. For hard real-time systems, the worst-case pro-
cessing time serves as a critical performance indicator, imposing
stringent requirements on the computing machine. Hard real-time
systems are costly but offer formal evaluation and guarantees of
their Worst-Case Execution Time (WCET) through measurements
of processing cycles and CPU frequency.

However, many HIL systems, beyond their hardware interfaces
to the DUT, do not fall under the category of hard real-time systems.
Instead, they fall into the realm of soft and non-real-time systems.
For such systems, formal evaluation cannot be done and guarantees
for a WCET cannot be given due to various factors. Processing
times are influenced by caching mechanisms, memory system hi-
erarchies, CPU frequency fluctuations during run-time, hardware
travel times, interrupt requests, context switches, and other features
of modern computer and operating systems. Additional delays and
processing times may arise when software systems use middleware,
making accurate measurement difficult with high variation. For
instance, interprocess communication using a localhost network
connection in the robot operating system (ROS) [18] exemplifies
this complexity, like applied in the HIL test system [10].

In these non-real-time systems, relying solely on an observed
WCET can also be overly pessimistic, leading to bottleneck assump-
tions and infinite bounds in theory, while practical results suggest
more leniency, as demonstrated by us in [11]. Despite their limi-
tations, non-real-time systems are more cost-effective, and their
software development is simpler and less expensive. For many cases,
a service based onmean-rate or even stochastic bounds suffices. The
occasional timing overshot does not result in catastrophic events if
overshoots are monitored and documented in the test results.

In practice, closed-loop simulations running on HIL systems
often employ monitoring mechanisms to detect simulation service
performance during run-time. Any task overruns are logged as
warnings or errors, prompting re-evaluation of tests in case of
excessive, unwanted overruns [7].

In the case of open-loop re-injection, the HIL system functions as
a streaming device. It streams measured input data like previously
captured sensor data to the DUT. The DUT processes the data, and
the output is streamed back to the HIL system for evaluation as test
results. This setup allows for comprehensive testing and evaluation
of complex cyber-physical systems, providing insights into their
behaviour and performance in real-world scenarios.

2.2 Design of HIL Test Systems with NC
To provide bounds for end-to-end delay and buffer size design of
queuing systems, NC is a possible analytical framework to work
with. NC was introduced by Cruz et al. in 1991 [6]. The analytical
solutions for streaming devices have been derived by Le Boudec et
al. in [14]. It facilitates the establishment of strict yet secure buffer
and delay bounds in these kinds of streaming systems.

We adapted and applied the NC solutions by linear equations
on measurement data from a HIL test system in [11]. But as the
findings in [11] demonstrated, there is a need to refine the derived
boundaries in order to make the system service curve estimate
techniques practical The derived bounds with the WCET method
are often growing to infinity.

To fill this gap, we started a review study on practical measure-
ment methods for arrival and service curves and applied them to
the HIL system, published in [9]. The methods for estimating ser-
vice curves by measurement data proposed by Helm et al. [12] and
Wandeler et al. [20] were applied by us in [9] on TL from a HIL test
system. We used realistic industrial workload for streaming data
to CAN and Automotive Ethernet interfaces for re-injection to the
DUT. The study showed that the delay and backlog bounds, gener-
ated by these estimated service curves are not tight enough in all
cases, to be used in practice. Compared to the maximum measured
backlog or end-to-end delay, the calculated bounds were a factor of
over 10k higher.

The subsequent chapter of this paper introduces our new ap-
proach TBASCEM, which enables monitoring of the streaming
performance like latency, rate, and backlog of the HIL systems
during operation. It estimates arrival and service curves by using
measurements which provide tight bounds for delay and backlog.

3 TBASCEM APPROACH
Our proposed concept aims to measure and estimate arrival and
service curves for non-hard real-time software services in a stream-
ing chain of a HIL system. This methodology can be applied to
other streaming systems, including video streaming services, to
accurately measure worst-case latency, backlog, and estimate burst
parameters. Furthermore, it can estimate arrival and service curves
from this data for tight NC bound calculations.

The approach relies on an iterative online algorithm derived by
reverse engineering of linear NC bound equations. It replaces the
conventional TL used for evaluating the processing performance of
software modules. By doing so, the amount of logging data is sig-
nificantly reduced. Instead of saving two timestamps per message,
our method only requires saving three variables in total for one
software process, based on timestamps and the number of messages
in the queue. The iterative calculation process is computationally
efficient, making it suitable for real-time operation of a HIL test
bench in streaming mode.

The estimated service curves provide an overview of the HIL
system’s performance during operation, offering insights into any
system influences and changes. By logging system data and storing
these curves in a database, it is possible to calculate the likelihood
of these service curves and analyse system affects more easily. This
information may then be utilized with the stochastic NC framework.

Basically, the service curves play a crucial role in determining
delay and backlog bounds with NC. If the HIL system needs to
process new input data with a different arrival curve behaviour, the
buffer size and pre-buffer time parameter will require adjustments.
Our concept helps suggest an appropriate pre-buffer time to prevent
buffer underflow at the playback buffer, and can also save time if
the recommended pre-buffer time is significantly lower than the
initially designed value. Furthermore, it allows for predicting the
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required buffer size between each software service, with a defined
safety factor, represented by the desired tightness factor.

3.1 Concept Idea of TBASCEM
The following Figure shows the queue and server system that can be
abstracted by our streaming SW in the HIL system and the available
measurement points.

T1 T3T2

Inf

Figure 1: Queue and software service

During operation, our algorithm generates fundamental mea-
surements by monitoring two key metrics: the maximum delay
and maximum backlog between the input to a queue of a server
(represented by 𝑇1 in Figure 1) and the output of the server (repre-
sented by 𝑇3 in Figure 1). To compute the burst parameter of the
arrival curve, we utilize the given mean-rate from the original data
and determine the vertical deviation from the mean-rate curve in
each iteration, like illustrated in Figure 2a. We then store only the
maximum positive and minimum negative values of this deviation.

The objective of the reverse engineering algorithm is to derive
the rate-latency service curve parameters using themeasured worst-
case delay, backlog and burst parameter. The final reverse calcula-
tion from these three parameters to the service curve parameters
are illustrated in Figure 2b. Furthermore, Figure 2c illustrates the
reverse calculation in the negative burst domain.

The algorithm takes the following data as input for its calcula-
tions: for each packet i, the timestamp of the packet, 𝑡𝑖 , and the
number of bytes at each packet, 𝑏𝑖 . During operation, we measure
the maximum queue length, 𝑞𝑚𝑎𝑥 , and the maximum delay, 𝑙𝑚𝑎𝑥 .
The algorithm utilizes the inter-arrival time Δ𝑡𝑖 , which represents
the time difference between two successive incoming packets at
time 𝑇𝑖 and time 𝑇𝑖−1.

Δ𝑡𝑖 = 𝑇𝑖 −𝑇𝑖−1 (1)

The algorithm used for the arrival curve run-time measurement
initially calculates the cumulative sum of inter-arrival time for each
step i:

𝑖∑︁
𝑖=0

Δ𝑡𝑖 = 𝑇𝑖 (2)

Let 𝑇𝑖 represent the time passed until packet i, measured in
seconds, and �̃�𝑖 denote the total number of bits sent until packet i:

𝑖∑︁
𝑖=0

𝑏𝑖 = �̃�𝑖 (3)

The mean input rate, 𝑟𝑖𝑛 , is calculated from the timestamp 𝑇0 of
the measurement data, which will be re-injected to the DUT.

Next, we iteratively compute the deviation from the ideal curve
(see Figure 2a):

𝑟𝑖𝑛 ·𝑇𝑖 − �̃�𝑖 = Δ𝑏𝑖 (4)
Where Δ𝑏 quantifies the deviation in terms of bits or messages.
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Figure 2: (a) Visualisation of burst parameter Δ𝑏 estimation
for the arrival curve; (b) 𝑙𝛽 and 𝑟𝛽 parameter estimation of
the service curve ; (c) NC solution with negative burst

The algorithm determines the burst parameter in the arrival
curve during operation as follows:

• Measure𝑚𝑖𝑛(Δ𝑏𝑖 ) and store it as 𝑏𝑚𝑖𝑛 if the value is smaller
than the previous saved value.

• Measure𝑚𝑎𝑥 (Δ𝑏𝑖 ) and store it as 𝑏𝑚𝑎𝑥 if the value is higher
than the previous value.

• Calculate 𝑏𝑖𝑛𝑝𝑜𝑠 as (Δ𝑏𝑖 ) − 𝑏𝑚𝑖𝑛 and update the maximum
value of 𝑏𝑖𝑛𝑝𝑜𝑠 if the calculated value is higher than the old
value.

• Calculate 𝑏𝑖𝑛𝑛𝑒𝑔 as 𝑏𝑚𝑎𝑥 − (Δ𝑏𝑖 ) and update the maximum
value of 𝑏𝑖𝑛𝑛𝑒𝑔 if the calculated value is higher than the old
value.

The TBASCEM approach for estimating the service curve rate
and latency parameters is based on the following measurement
values:

• burst parameter 𝑏𝑖𝑛 of the arrival curve at the service input,
divided into a positive 𝑏𝑖𝑛𝑝𝑜𝑠 and a negative 𝑏𝑖𝑛𝑛𝑒𝑔 deviation
from the mean rate
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• burst parameter 𝑏𝑜𝑢𝑡 of the arrival curve at the service out-
put, divided into a positive 𝑏𝑜𝑢𝑡𝑝𝑜𝑠 and a negative 𝑏𝑜𝑢𝑡𝑛𝑒𝑔
deviation from the mean rate

• maximum latency 𝑙𝑚𝑎𝑥 between service input and output
• maximum queue length 𝑞𝑚𝑎𝑥 between service input and
output, however, we determine the final maximum queue
length as the maximum of 𝑞𝑚𝑎𝑥 and 𝑏𝑜𝑢𝑡𝑝𝑜𝑠 . This approach
is based on the NC theory, as the output bound is equal to
the backlog bound.

3.2 Reverse Engineering Algorithm
The reverse engineering approach to calculate the service curve
parameter rate 𝑟𝛽 and latency 𝑙𝛽 , involves the following equations,
based on the basic geometric connections shown in Figure 2b.

For the calculation of the latency parameter 𝑙𝛽 , the following
equation can be used:

𝑙𝛽 =
𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛
(5)

The parameter 𝑙𝛽 is expressed in seconds.
Next, we obtain the rate parameter 𝑟𝛽 using the following equa-

tion:

𝑟𝛽 =
𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
(6)

where the parameter 𝑟𝛽 is given in units of
[
𝐵𝑦𝑡𝑒𝑠

𝑠

]
or

[
𝑏𝑖𝑡
𝑠

]
or[𝑚𝑠𝑔

𝑠

]
.

However, this reverse engineering approach has two risks of
incorrect parameter estimation: The first risk occurs when the nu-
merator of Equation (5) becomes ≤ 0, resulting in 𝑙𝛽 ≤ 0. This
can happen if the approximation of Δ𝑏 from the input flow is over-
estimated. The second incorrect estimation can occur when the
denominator of Equation (6) becomes smaller than 0, leading to 𝑟𝛽
becoming negative. This can happen if 𝑙𝛽 is higher than 𝑙𝑚𝑎𝑥 , what
can be caused by an underestimated 𝑏𝑖𝑛 .

To handle these risks, we introduce the estimation parameter
𝑏𝑖𝑛 and use it instead of the measured parameter 𝑏𝑖𝑛 , to distinguish
it from the measurements.

To determine a good value for 𝑏𝑖𝑛 , we furthermore analyse the
tightness calculation of the two bounds, with 𝑑𝑏𝑜𝑢𝑛𝑑 as the delay
bound and 𝑡𝐷 as the delay bound tightness. Respectively, we anal-
yse the backlog bound with 𝑞𝑏𝑜𝑢𝑛𝑑 and 𝑡𝐵 as the backlog bound
tightness. We establish the equations for calculating the tightness
of the bounds, starting with the backlog bound:

𝑞𝑏𝑜𝑢𝑛𝑑 = 𝑟𝑖𝑛 · �̃�𝛽 + 𝑏𝑖𝑛 (7)

𝑡𝐵 =
𝑞𝑏𝑜𝑢𝑛𝑑

𝑞𝑚𝑎𝑥
=
𝑟𝑖𝑛 · 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛

𝑟𝑖𝑛
+ 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
=
𝑞𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥

(8)

The tightness needs to be ≥ 1 to ensure that the bounds are
not undershot. Therefore, an additional constraint is derived from
Equation (8):

𝐶3 : 𝑏𝑖𝑛 ≤ 𝑏𝑖𝑛 (9)

The tightness formula for the delay bound is set up as follows:

𝑑𝑏𝑜𝑢𝑛𝑑 =
𝑏𝑖𝑛

�̃�𝛽
+ �̃�𝛽 (10)

We calculate the tightness of the delay bound using the following
equation:

𝑡𝐷 =
𝑑𝑏𝑜𝑢𝑛𝑑

𝑙𝑚𝑎𝑥
=

𝑏𝑖𝑛
𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 −�̃�𝛽

+̃𝑙𝛽

𝑙𝑚𝑎𝑥
=

𝑏𝑖𝑛

𝑏𝑖𝑛
· 𝑙𝑚𝑎𝑥 + 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛

𝑟𝑖𝑛
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
)

𝑙𝑚𝑎𝑥
(11)

To ensure that the delay bound is not undershot, the tightness
needs to be ≥ 1, and from equation 11, we get the additional con-
straint:

𝑡𝐷 ≥ 1 =⇒ 𝑏𝑖𝑛

𝑏𝑖𝑛
+ 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
) ≥ 1 (12)

Tightness is important because loose bounds lead to inefficient
HIL system design. Specifically, in the case of a backlog bound, it
leads to a waste of memory resources, and in the case of a delay, it
leads to a loss of time.

We derive the following two conditions from Equation (5) and
(6) that must be handled separately to derive a service curve with
valid bounds by the measurements.

3.2.1 Basic Conditions for Valid Bounds. The basic assumption
is that there are no bottlenecks in the service. So, we set up the
following inequality at first and derive the basic condition from it.

𝐴1 : 𝑟𝛽 ≥ 𝑟𝑖𝑛

=⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
≥ 𝑟𝑖𝑛 ⇐⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑞𝑚𝑎𝑥−𝑏𝑖𝑛
𝑟𝑖𝑛

≥ 𝑟𝑖𝑛

⇐⇒ 𝑏𝑖𝑛 ≥ 𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑞𝑚𝑎𝑥

=⇒ 𝐶𝐷1 :
𝑞𝑚𝑎𝑥

𝑙𝑚𝑎𝑥
≥ 𝑟𝑖𝑛

(13)

The assumption 𝐴1 and setting in Equation (6) leads to the con-
dition 𝐶𝐷1, what we prove at first. If the condition is not fulfilled,
we assume another possible theoretical solution. If 𝑙𝛽 > 𝑙𝑚𝑎𝑥 the
inequality changes to the following term:

𝐴1 : 𝑟𝛽 ≥ 𝑟𝑖𝑛 =⇒ 𝑏𝑖𝑛

𝑙𝑚𝑎𝑥 − 𝑙𝛽
≥ 𝑟𝑖𝑛

𝐼 𝑓 : 𝑙𝑚𝑎𝑥 − 𝑙𝛽 ≤ 0 =⇒ 𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 (𝑙𝑚𝑎𝑥 − 𝑙𝛽 )

𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 (𝑙𝑚𝑎𝑥 − 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛
) ⇔ 𝑏𝑖𝑛 ≤ 𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑞𝑚𝑎𝑥

=⇒ 𝐶𝐷2 :
𝑞𝑚𝑎𝑥

𝑙𝑚𝑎𝑥
≤ 𝑟𝑖𝑛

(14)

The visualisation of the theoretical concept for 𝐶𝐷2 and the
negative solution space of 𝑏𝑖𝑛 is shown in Figure 2c.

We know that the arrival curve shown in Figure 2c is not a valid
arrival curve according to the NC definition in the min-plus algebra,
because it does not fulfil the subadditivity property. However, in the
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max-plus algebra and in the Real-Time Calculus (RTC) framework,
it is used. So, we also use it as an arithmetic solution to estimate
the service curve parameters if the condition 𝐶𝐷1 is not fulfilled
and a possible solution can be found in the negative solution space.
We later use the arrival curve with the positive burst parameter for
the calculation of the bounds.

Also, the equation ( 14) for the service rate is not geometrically
tractable, and cannot directly be applied to the solution. We can
assume that there is no bottleneck and that the service rate corre-
sponds to the input rate, and the input rate can be estimated by this
formula. So, the inequality in Equation ( 14) is still valid.

However, estimating the 𝑏𝑖𝑛 parameter may lead to overestima-
tion, as the maximal and minimal deviation from the average rate,
like 𝑏𝑖𝑛𝑝𝑜𝑠 and 𝑏𝑖𝑛𝑛𝑒𝑔 are measured, may not necessarily occur at
subsequent arrivals, as shown in Figure 2a. The deviation could
happen at entirely different epochs in the trace.

To find a suitable value for 𝑏𝑖𝑛 that ensures a valid calculation
of the service rate and latency parameter, it must be located within
certain limits, not necessarily matching the measured value 𝑏𝑖𝑛𝑝𝑜𝑠 .
We derive the constraints for these limits in the following sections.

3.2.2 Basic Constraints for Valid Bounds under Condition 1. To
ensure a valid value for the latency 𝑙𝛽 parameter, the following
constraint needs to be met, based on Equation (5):

𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛 ≥ 0 =⇒ 𝐶1 : 𝑏𝑖𝑛 ≤ 𝑞𝑚𝑎𝑥 (15)

To ensure a valid value for the rate parameter, the following
constraint needs to be fulfilled, based on Equation (6):

𝑙𝑚𝑎𝑥 − 𝑙𝛽 > 0𝑤𝑖𝑡ℎ(5) =⇒ 𝐶2 : 𝑏𝑖𝑛 > 𝑞𝑚𝑎𝑥 − 𝑙𝑚𝑎𝑥 · 𝑟𝑖𝑛 (16)

Since the burst parameter under Condition 1 should not be
smaller than 0, a final constraint is added:

𝐶4 : 𝑏𝑖𝑛 ≥ 0 (17)

3.2.3 Basic Constraints for Valid Bounds under Condition 2. Since
the burst parameter under Condition 2 should be smaller than 0, a
first constraint 𝐶5 is added:

𝐶5 : 𝑏𝑖𝑛 ≤ 0 (18)

To ensure a valid value for the latency 𝑙𝛽 parameter, the constraint
needs to be met, based on Equation (5):

𝐶6 : 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛 ≥ 0 =⇒ 𝑏𝑖𝑛 ≤ 𝑞𝑚𝑎𝑥 (19)

To ensure a valid value for the rate parameter, the following con-
straint needs to be fulfilled, based on 𝐶𝐷2 described in Equation
(14):

𝑙𝑚𝑎𝑥 − 𝑙𝛽 < 0𝑤𝑖𝑡ℎ (5) =⇒ 𝐶7 : 𝑏𝑖𝑛 < 𝑞𝑚𝑎𝑥 − 𝑙𝑚𝑎𝑥 · 𝑟𝑖𝑛 (20)

The final constraint is the same as constraint 3 derived by Equation
(8):

𝐶8 : 𝑏𝑖𝑛 ≤ 𝑏𝑖𝑛 (21)

3.2.4 The Optimization Function — Finding a Solution for the Arrival
and Service Curve Parameter Estimation Problem. As a basis, we set
up an optimization function which shall be minimized. It can be
derived by finding the minimum of both summed tightness factors
𝑡𝐷 and 𝑡𝐵 :

𝑡𝐵 + 𝑡𝐷

=
𝑞𝑚𝑎𝑥 + 𝑏𝑖𝑛 − 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
+ 𝑏𝑖𝑛

𝑏𝑖𝑛
+ 𝑞𝑚𝑎𝑥 − 𝑏𝑖𝑛

𝑟𝑖𝑛 · 𝑙𝑚𝑎𝑥
· (1 − 𝑏𝑖𝑛

𝑏𝑖𝑛
)

= −(𝑞𝑚𝑎𝑥 + 𝑙𝑚𝑎𝑥𝑟𝑖𝑛

𝑞𝑚𝑎𝑥 𝑙𝑚𝑎𝑥𝑟𝑖𝑛
)𝑏𝑖𝑛︸                       ︷︷                       ︸

𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑎𝑟𝑡

+...

(𝑏𝑖𝑛 − 𝑏𝑖𝑛𝑞𝑚𝑎𝑥

𝑟𝑖𝑛𝑙𝑚𝑎𝑥
) 1
𝑏𝑖𝑛︸                    ︷︷                    ︸

ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐 𝑝𝑎𝑟𝑡

+...

(1 + 𝑏𝑖𝑛

𝑞𝑚𝑎𝑥
+ 𝑏𝑖𝑛 + 𝑞𝑚𝑎𝑥

𝑟𝑖𝑛𝑙𝑚𝑎𝑥
)︸                           ︷︷                           ︸

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑝𝑎𝑟𝑡

(22)

The optimization function (22) consists of a linear, a hyperbolic,
and a constant part, using 𝑏𝑖𝑛 as the variable. We use the built-in
MATLAB function 𝑠𝑜𝑙𝑣𝑒 , to solve it as an optimization problem
fulfilling either constraint 1-4 and inserting 𝑏𝑖𝑛𝑝𝑜𝑠 as 𝑏𝑖𝑛 for condi-
tion 1, or constraint 5-8 and inserting 𝑏𝑖𝑛𝑛𝑒𝑔 as 𝑏𝑖𝑛 for condition 2.
However, the minimum could also be derived by graphical analysis
of the optimization function (22) within the constraints.

In the first step of our algorithm, we verify, if condition 𝐶𝐷1
holds true. Using the constraints 𝐶1 to 𝐶4 and 𝑏𝑖𝑛𝑝𝑜𝑠 as the param-
eter 𝑏𝑖𝑛 in the optimization function, we can determine a suitable
parameter for 𝑏𝑖𝑛 to find proper service curve parameters.

If 𝐶𝐷1 it is not satisfied, 𝐶𝐷2 must hold true. So, we derive the
service curve based on our measurements for the negative burst
parameter 𝑏𝑖𝑛𝑛𝑒𝑔 . We insert 𝑏𝑖𝑛𝑛𝑒𝑔 as the measured parameter 𝑏𝑖𝑛
into the formula of the optimization function (22) and solve it. We
always use the 𝑏𝑖𝑛𝑝𝑜𝑠 for the burst parameter of the arrival curve,
to derive a valid arrival curve fulfilling the subadditivity property.

4 EVALUATION AND RESULTS
In this chapter, we state three research questions (RQ1-RQ3), explain
why the question is important to us, we explain the methodology
we use to answer the research question, we state a hypothesis,
explain our experimental setup, and discuss the results.

RQ1: How tight are the end-to-end delay and backlog bounds by the
estimated arrival and service-curves derived by different estimation
methods based on TL from real industrial workload?

There are various methods which can be found in literature for
estimating service curves fromTL. Our aim is to decrease the TL and
to enable a RTM technique during operation. To this end, we have
developed the TBASCEM method. However, prior to implementing
the RTM in software, it is worth evaluating the tightness of the
bounds we can generate with the TL already collected from the HIL
system.
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Methodology: To evaluate the tightness, we implement themethod
inMATLAB and apply it offline onHIL TL.We furthermore compare
it to other methods from literature, applied on the same dataset.

Hypotheses: Our Hypothesis is that TBASCEM derives the tight-
est bounds compared to all other applied methods.

Experimental Setup: To assess the performance of various arrival
and service curve algorithms, we employ a dataset comprising 81
instances of TL with each, 61116 data points divided into 9 meaning-
ful subserver configurations. This leads to a set of 44 million data
points in total, collected from our prototype HIL system. We used
realistic industrial workload; emulating radar data send as Ethernet
packets over a 100 Mbps channel to the DUTwith an average rate of
7.222 Mbps and a maximum rate of 100 Mbps while using Ethernet
packets of 1538 byte length. TBASCEM is implemented in MATLAB
and is subsequently applied to the recorded timestamps originating
from the software processes. We extract both, latency and backlog
bound from the arrival curve yielded by a single RTM algorithm, as
well as from the service curve generated by four other state-of-the
art algorithms, namely Best-Case Execution Time (BCET), Mean-
Case Execution Time (MCET), WCET and the approach by Alcuri et
al.. Additionally, we conduct a comparison of the bounds’ tightness
by dividing the NC bound by the maximum measured values of
queue length and end-to-end delay. We used software timestamps
as a baseline for our performance evaluation of the HIL streaming
system. Having in mind that these Software (SW) timestamps are
not as precise at Hardware (HW) timestamps. However, as the sys-
tem processing time works in the ms range and their precision lays
in the 𝜇𝑠 range, they can be presumed as precise enough.

Results:
We evaluate the tightness of the TBASCEM and the other algo-

rithms offline using TL. Subsequently, we compare the computed
bounds of all methods as tightness factors by dividing them with
the maximum measured delay or backlog. These comparisons are
presented in Figure 4 as box plots, which displays the following
information: the median, the lower and upper quartiles, any outliers
(computed using the interquartile range), and the minimum and
maximum values that are not outliers. The box plot or box chart is
described by MathWorks™according to [16] as follows. The sample
median is the line inside each box. The top and bottom edges of
each box are the upper and lower quartiles, respectively, where the
upper quartile corresponds to the 0.75 quantile and the lower quar-
tile corresponds to the 0.25 quantile. The distance between the top
and bottom edges is the Interquartile Range (IQR). Outliers are val-
ues that are more than 1.5 IQR away from the top or bottom of the
box. The whiskers are lines that extend above and below each box.
A whisker connects the upper quartile to the non outlier maximum
and to the non outlier minimum respectively. A tightness factor of
smaller than 1 is an undershot and hence rated as a violation of the
bound by the maximum measured value. We refer the interested
reader to the full description of MathWorks™defined box charts
to this source [16]. A tightness factor between 1 and 10 is rated as
high tightness. A tightness factor between 10 and 103 is rated as
medium tightness. And a tightness factor over 103 we rate as low
tightness. However, it depends on the absolute value at the end if
the tightness factor can be used as a safety factor for the playback-
buffer size or pre-buffer time. If the measured service delay is in
the 𝜇𝑠 range and the maximum measured backlog is in the byte

range, a safety factor of 10k or even 1000k would be still in practice
feasible. However, it would lead to inefficient use of computing
resources. It is a trade-off between system robustness and resource
capabilities. Remarkably, the delay tightness of the TBASCEM algo-
rithm is mostly 1 in our datasets with outliers at 1.1 what was our
aim, to have a very tigtht delay bound. Compared to the boxplots
of the other algorithms, the TBASCEM bounds are significantly
tighter. It is followed by the Alcuri and MCET method. They can’t
be significantly distinguished, as their boxes overlap. However, the
median is significantly different, with 25 for Alcuri and around 60
for the MCET method. The BCET follows on the third place and the
WCETmethod derives the untightest results with 60k in median but
seems to have almost no variation, however this mainly depends
on the logarithmic scale of Figure 4. While diving into the numbers
in Table 1, we see that its whiskers and its outliers range between
53k and 70k and its IQR is around 562. For the backlog tightness,
the results look a bit different. The Medium tightness of TBASCEM
is with 2 the lowest of all algorithms. However, as the boxes over-
lay with the Alcuri and MCET method, they are not significantly
distinguishable. The median value of the Alcuri algorithm is 10.
The Median of the MCET method lays significantly higher at 90.
The BCET method lays with its median of 300 significantly higher
as the three before mentioned methods, its boxes lay between 100
and 11k also significantly higher and its whiskers range between
11 and 30k what is also significantly higher. Its outliers are near to
the upper whisker also at around 28k. The WCET reaches again the
significantly untightest median bound with 25k, while its box lays
between 14k and 31k and its whiskers range between 500 and 58k
without any outliers. However, it highly depends on the system pa-
rameters and the absolute value if the bounds derived by the arrival
and service curve values can be used in practice. If they cannot be
used, the maximum measured end-to-end delay and backlog can be
used instead. However, as the TBASCEM algorithm produces tight
bounds in our datasets for the delay, we can use the results to design
the pre-buffer delay of our system. Even with a backlog tightness
up to 10k we also can use the approach to design our buffers, as
the Random Access Memory (RAM) resources are in the Gigabyte
range while the calculated absolute bounds would be still in the
Megabyte range. However, the design in total would be still just
medium efficient, but is comparable to the other state-of-the-art
methods.

RQ2: How high is the impact on the CPU performance of the eased
runtime measurement method for TBASCEM compared to TL?

Explanation: To monitor our HIL streaming system’s perfor-
mance while it is in use, the RTM must reduce the saved variables
while utilizing a relatively small amount of additional computa-
tional power. Producing less logging data would mean to reduce the
measurements and implement an online algorithm for the measure-
ments based on the TBASCEM approach. The logging data would
be highly reduced, however, what would that mean for the CPU
performance, if that algorithm runs in parallel on the computing
machine?

Methodology: Implementation of the runtime measurement al-
gorithm for TBASCEM and run it without logging, with TL and
with TBASCEM logging and log the CPU load, compare the mea-
sured CPU load in a box plot. If the boxes cover each other and
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Figure 3: HIL streaming and queuing system with SW instrumentation to collect timestamps
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Figure 4: Performance evaluation: Maximum tightness of end-to-end delay bound (a) and backlog bound (b) over different
servers and derived with different methods

Table 1: Summary Statistics for Delay Tightness

Method Alcuri BCET MCET TBASCEM WCET
Upper Outlier 1802.2 28731.1 547.6 1.1 70817.8

Upper Whisker 188.3 4033.3 192.4 1.0 61265.0
0.75 Quantile 84.3 2139.2 100.3 1.0 60812.2

Median 24.5 844.0 62.5 1.0 60574.6
IQR 69.9 1665.7 63.5 0.0 562.2

0.25 Quantile 14.4 473.5 36.8 1.0 60250.0
Lower Whisker 5.3 43.4 3.1 1.0 59452.5
Lower Outlier NaN NaN NaN NaN 53263.4

Table 2: Summary Statistics for Backlog Tightness

Method Alcuri BCET MCET TBASCEM WCET
Upper Outlier 1464.5 28706.2 6271.6 4112.0 NaN

Upper Whisker 55.4 27984.2 139.8 122.1 58111.9
0.75 Quantile 26.4 11524.5 117.1 79.8 31762.1

Median 10.0 314.3 92.9 1.7 24543.5
IQR 19.6 11408.6 103.4 78.7 17879.9

0.25 Quantile 6.8 115.9 13.8 1.1 13882.2
Lower Whisker 3.6 13.3 2.0 1.0 492.5
Lower Outlier NaN NaN NaN NaN NaN

there is no gap between them, they are assumed as not significantly
distinguishable.

Hypotheses: We postulated that the CPU performance demand
for the run-time algorithm would be significantly lower than that
of TL, given our observation that file writing places a substantial
burden on CPU resources.

Experimental Setup: In order to validate this hypothesis, we ex-
ecuted a proof-of-concept implementation of the TBASCEM run-
time measurement algorithm using LabVIEW. Subsequently, we
carried out a comparative analysis, evaluating the LabVIEW-based
TBASCEM implementation against TL, as well as a scenario with-
out any logging. The assessment focused on parameters such as

CPU utilization. CPU utilization measurements were taken every
second using the Linux top command. This was chosen to provide
granularity while avoiding overloading the system with monitoring
measurements. We captured a snapshot of the CPU utilization of
all cores as a percentage. We stream Ethernet data via 1,4,8,10,16
streams in parallel while logging via TBASCEM, TL and no logging
while logging the CPU load every second via top command.

Results: The results of the measurements with different logging
configurations, while scaling up the number of streams is shown in
Figure 5.We see in the results, that the CPU utilization of TBASCEM,
TL, and without logging differ not much per stream. They lay all
in a comparable range, and the boxes overlap, so they are not
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Figure 5: Measurement of CPU utilization of different logging methods

distinguishable. The measurements of 1, 4, 8, and 10 streams show
consistent results for the higher peaks in CPU utilization of TL
compared to TBASCEM logs. For 16 streams, the TBASCEM logging
peak is higher. So, the TL and writing to a file, could indeed need
more often high CPU resources. We don’t see this always, like in
the example of 16 streams, as the granularity of the CPU logs are
too low. We could increase that with a higher frequency of top
logs, but this would also increase the CPU load itself. However,
the difference of the CPU load for 1 and 16 streams between the
methods with TL and TBASCEM logging are just about 5%. So, the
TBASCEM RTM approach may not need less performance, however
it is comparable to the TL method and does not need much more
CPU performance. Furthermore, the data size would be reduced,
since the algorithm merely stores four values instead of the two
TL per sample, a difference that becomes pronounced with a high
number of samples and testing time. Table 3 displays the file sizes
for both a TL at a single point and the TBASCEM log written to a
CSV file.

Table 3: File sizes of streams with different duration with
different logging methods.

timestamp log in [kB] TBASCEM log in [kB]
90s stream 1970 1
180s stream 3940 1
360s stream 7880 1
5000h stream 394.000.000 1

Considering the parallel streaming of up to 40 streams and the
requirement for at least two points with timestamps to calculate

delay and backlog, the overall file size can quickly increase up to
several TB for a stream duration of approximately 5000h just for
TL. Transferring the data from the HIL system to a different server
for post-processing may be necessary, even though memory may
not be an issue. This needs additional time, what could be used for
the normal operation of the HIL system instead.

RQ3: How performant are the arrival- and service-curve estimation
methods implemented as online algorithms compared to state-of-the-
art TL?

Explanation: We want to compare the performance needs of the
different methods for the memory and CPU, to rate their scalability
and their tightness. These are the most relevant requirements for a
run-time monitoring method.

Methodology:We assess the computational effort, memory usage,
and scalability qualitatively by considering how the method oper-
ates and must be implemented as a runtime RTM. We describe the
effort and provide a qualitative rating. The tightness of the bounds
can be evaluated quantitatively by examining the results of the ini-
tial evaluation and comparison. The results have been categorised
into qualitative values, with values under 10 considered high, those
between 10 and 1000 considered medium, and values above 1000
considered low. This approach ensures consistency with other qual-
itatively rated factors. Additionally, we outline our requirements
for the run-time monitoring approach.

Results: Various algorithms for estimating arrival and service
curves using NC have been extensively discussed in the literature
in recent years. The subsection offers valuable insights into the
different approaches proposed by researchers for estimating arrival
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curves and service curves, helping readers understand the diversity
and nuances of the existing methods.

Service Curve Performance Estimation: When evaluating the suit-
ability of the measurement method for normal run-time operation
of a computer system, our primary focus is on achieving high
performance, characterized by low computational effort and min-
imal memory usage, to ensure excellent scalability. A high level
of tightness for the delay and a medium level of tightness for the
backlog bound is considered sufficient for our specific objectives.
Emphasizing efficiency and the ability to handle larger workloads is
essential in practical applications, guiding our approach to ensure
the method’s practicality and effectiveness in real-world applica-
tions. The approach proposed by Alcuri et al. [1] follows an iterative
method that analyses backlogged periods first for mean-rate estima-
tion and then for maximum latency estimation. However, due to its
high computational effort and memory usage, its scalability is rated
as low, making it unsuitable as a run-time measurement algorithm.
The WCET algorithm, proposed by Helm et al. [12] and applied
to a HIL test system in Funda et al. [9] exhibits good performance
but suffers from low tightness, particularly in non-hard real-time
streaming systems where the mean service rate is close to the mean
input rate. Any short-termWCET that results in a service rate lower
than the input rate will create infinite bounds, limiting its practical
application. The WCET method displayed in Figure 4 often yields
no results due to an infinite bound, which is not illustrated.

The MCET algorithm, also proposed by Helm et al. [12] and
detailed in Funda et al. [9] shows medium suitability from a per-
formance perspective, with medium to low tightness. However, it
requires saving a significant amount of data as all processing times
are accumulated to derive rate and latency parameters.

The BCET algorithm, inspired byWandeler et al. [20] and applied
to a HIL test system by Funda et al. in [9] is unsuitable in terms
of performance since it requires storing and sorting all measured
processing latencies. Moreover, its tightness is insufficient, as it
achieves medium to low tightness of the measured values as dis-
played in Figure 4. In contrast, the TBASCEM algorithm proposed
in this paper has been evaluated to have medium computational re-
quirements and low memory usage and high tightness for the delay
and high to medium tightness for the backlog. The performance
evaluation and tightness assessment of the TBASCEM algorithm
are the primary focus of this paper and have been presented in the
preceding chapters.

Arrival Curve Performance Estimation: The algorithm developed
by Bouillard [5] is structured in multiple layers to detect more
refined periodical behaviours. Initial data points that fall outside
the specified bounds are identified as a sub-flow and are used as
input for subsequent stages. From its description, we assess its
computational effort to be of medium magnitude and its memory
usage to be high, resulting in a medium level of scalability. However,
this algorithm is not applicable in our context since we do not
employ a traffic shaper like a token-bucket, which is a prerequisite
for this algorithm. As a result, we cannot provide the required
maximum burst parameter in advance; instead, we need to measure
it during run-time.

On a different note, the iterative algorithm introduced in [9] lays
a strong foundation for run-time implementation. With a founda-
tional understanding of NC and basic measurements, this algorithm
can be extended to estimate the minimum service curve.

The direct iterative approach discussed by Funda et al. in [9]
estimates both the burst and mean-rate parameters with reduced
computational effort. However, it necessitates the continuous stor-
age of data over time, leading to a gradual increase inmemory usage,
which we rate as excessive. Nevertheless, it attains the highest level
of tightness since it aligns with the definition of arrival curves. This
algorithm serves as a valuable benchmark for comparison purposes.

In this paper, we operate under the assumption of low-performance
requirements and an at least medium level of tightness for the run-
time measurement demands. To validate these assumptions, we
conducted a comprehensive experimental performance evaluation
of the RTM for the reverse engineering TBASCEM algorithm. The
TBASCEM algorithm proposed in this paper has been evaluated to
have medium computational requirements and low memory usage
and medium to high tightness.

5 RELATEDWORK
Algorithms for estimating service curves using NC have been a
common topic in the literature for the past years [1, 3–5, 8, 9, 12,
15, 20]. In this section, we present some examples of them, which
we have chosen due to their applicability for our use-case of a FIFO
queuing server system.

The work by Alcuri et al. [1] introduces a method to estimate
service curves for various types of systems, including non-First-In-
First-Out ones. The algorithm segments input and output traffic
measurements into backlogged periods (periods when the buffer is
not empty) and iteratively determines the start time, end time, and
the amount of output traffic for each backlogged period. Through-
put 𝑟 of each period is computed as the bits leaving the system
divided by the duration of the period. A maximum estimation tech-
nique finds the maximum throughput 𝑟𝑚𝑎𝑥 among all backlogged
periods. By tracing a line with a slope of 𝑟𝑚𝑎𝑥 at all points of the
departure process and projecting it onto the horizontal axis, the
delay 𝑇 is computed. Maximum delay 𝑇𝑚𝑎𝑥 of each backlogged
period is then obtained. The service curve is represented as a rate-
latency curve with rate 𝑟𝑚𝑎𝑥 and latency 𝑇𝑚𝑎𝑥 [1]. This approach
aligns with the definition of strict service curves as mentioned by
Le Boudec et al. in [14].

The first method, proposed by Helm et al. [12], utilizes WCET
to estimate the service curve. It takes the maximum measured
processing latency and the minimum measured rate as the latency
and rate for the service curve, respectively. While this approach
performs well for hard real-time requirements, it requires that the
minimum system service rate to be higher than the mean input
rate. For systems involving streams of limited length and playback
buffers, uninterrupted streaming is possible even if the mean system
rate is not higher than the mean input rate.

To address this, the second method is based on the MCET and
estimates the service using the measured mean rate. It computes
the system latency by considering the maximum and minimum
deviation between the input flow and the mean flow, effectively
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accounting for latency outliers. This approach is inspired by Helm
et al. [12].

The third method, based on BCET, orders the measured data
with cumulative latencies in descending order to derive a service
curve. A tangent at the rate-point of interest is traced, and the
intersection point with the time-axis determines the system latency.
However, this method may lead to highly overestimated bounds,
particularly when patterns in the service flow exist. Additionally, it
can be employed to estimate the arrival curve by sorting measured
data in ascending order by the inter-arrival time. The intersection
between the tangent and the y-axis (bytes) determines the burst
parameter. This approach is inspired by the sliding window ap-
proach mentioned in the real-time calculus (RTC) framework by
Wandeler et al. [20]. This method is particularly useful for assessing
the feasibility of streaming a time-limited stream.

There are other measurement-based estimation methods for ser-
vice curves mentioned in a literature review and survey study, that
was conducted by Fidler et al. on various service curve models in the
NC framework [8]. Especially in the section about “measurement-
based service curve estimation” [8], are different methods men-
tioned, like the one from Alcuri et al. [1]. We have not re-implement
all the methods and compared to our method. Especially the method
by Undheim et al. [19] seek to estimate the latency and rate pa-
rameter during a burst and backlogged period like Alcuri et al. [1].
The main difference is that Undheim et al. use the max-plus alge-
bra instead of the min-plus algebra. It could be, that the max-plus
algebra-based estimation derives tighter bounds than the min-plus
algebra-based solution used in [1]. This was already observed ones
by Xie et al. in [21], while applying NC with min-plus algebra and
max-plus algebra on priority scheduling for deriving delay bounds.

6 CONCLUSIONS
This paper introduces the TBASCEM methodology. The method de-
livers arrival and service curves which produce tight delay bounds
and involves an efficient measurement process. It combines a RTM
technique and a reverse engineering algorithm to estimate linear
arrival and service curve parameters from measured data. However,
it can also be applied to state-of-the-art TL from the input flow
and output flow of any FIFO server queuing system. We applied
the alternative methods on realistic data from the HIL system and
received bounds with a tightness factor from several hundred up to
several thousands. So, we found a gap for service curve estimation
from measurement data, which produces tight bounds.

According to our empirical investigation, the reverse engineer-
ing algorithm TBASCEM provides tighter bounds compared to
other methods in the literature. It can be applied on either TL of
input and output flows of a server queuing system, or on reduced
measurements we proposed here in this paper. Furthermore, we
found out that the TBASCEM RTM adequately uses similar CPU
performance like state-of-the-art TL, while it reduces limitations by
data explosion associated with conventional TL, as confirmed by
empirical evaluation of CPU utilisation and exemplary calculation
of logging data sizes.

The TBASCEM RTM can be used in any streaming system to
generate arrival and service curves without significantly impacting
performance. It can be employed to evaluate performance, design

buffer sizes and pre-buffer time, and continuously monitor perfor-
mance during operation, to make service outliers visible.

Future work could involve comparing other measurement-based
estimation methods for service curves mentioned in [8], that we
did not implement and compare to our method. Additionally, our
concept estimates the burst parameter. One could argue that it
would be better to measure this parameter in a more appropriate
manner. It is also critical to note that we assume all maximum
parameters occur simultaneously, which is highly probable, but
cannot be guaranteed. It may be more beneficial to measure the
arrival curve burst parameter and the service curve rate and latency
parameter directly online during operation from current values,
saving only the maximum latency and minimum rate parameter
for future reference. The TBASCEM optimization algorithm could
also be adapted to find a solution for a given tightness factor for
either the latency or the backlog within the solution space of the
functional share of arrival and service curves. Future research could
also include to extend the approach to the stochastic NC framework
for formal validation of soft real-time streaming systems.
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A APPENDIX
A.1 Technical Information about the HIL

Systems Under Study
The HIL cluster consists of a HOST PC and a HIL RT-PXI.

A.1.1 HOST PC. The HOST PC is equipped with a 2012 Intel Xeon
E3-1230 V2 3.3 GHz processor (four physical CPU cores) and 16
GB system memory. All worker nodes are connected via 40 Gbit
Ethernet in a single-switch star topology. Each node runs Gentoo
Linux (kernel version 3.6.11) and Java 1.7.0.13.

A.1.2 HIL PC. The HIL RT-PXIe-8880 is equipped with an Intel(R)
Xeon(R) CPU E5-2618L v3 @ 2.30GHz (8 physical CPU cores) and
24 GB system memory. All worker nodes are connected via 40 Gbps
Ethernet in a single-switch star topology. Each node runs NI Linux
Real-Time x64 4.14.146-rt67 and other NI LabVIEW Runtime and
NI Drivers.

GLOSSARY
BCET Best-Case Execution Time (BCET) is the lowest observed

execution time of a software process running on a dedicated
computing machine.. 7, 10, 11

DUT Device Under Test (DUT) is the technical device, what is
integrated into the hardware-in-the-loop simulator and stim-
ulated by measurement data from the real-world device or
by simulation.. 1–4, 7

FIFO First-In, First-Out (FIFO) refers to a principle where the first
item to enter a system or queue is the first to be processed
or served.. 1, 10, 11

HIL Hardware-in-the-Loop (HIL) test system or simulator or test
bench is a methodology and a technical system for testing
and validation of a technical product. See [2, 17] for details..
1–12

HW Hardware (HW) are machines, wiring, and other physical
components of a computer or other electronic system.. 7

IQR interquartile range (IQR) refers to the distance between the
top and bottom edges of a boxplot, corresponding to the
upper quartile or 0.75 quantile and the lower quartile or 0.25
quantile, respectively. 7

MCET The Mean-Case Execution Time (MCET) is the mean or av-
erage observed execution time of a software process running
on a dedicated computing machine.. 7, 10

NC Network Calculus (NC) is a system theoretical approach for
calculating delay and backlog bounds by min-plus algebra..
1–5, 7, 9–11

RAM Random Access Memory (RAM) is a type of computer mem-
ory that stores data that can be searched by programs.. 7

RTM Run-Time Measurement (RTM) approach are measurement
methods for performance evaluation of software during sys-
tem operation. In this paper mainly used to measure the
maximum end-to-end delay and backlog between the input
and output flow of a message stream in a software service
process with queues in between. Additionally, the maximum
burst parameter of the input and output flow is estimated..
2, 6, 7, 9–11

SW Software (SW) are programs and other operating information
used by a computer.. 7

TL Timestamp Logging (TL) is a state-of-the-art method for per-
formance evaluation of software timing. Timestamp Logs
(TL) are the respective data-files generated by the logging.
In this paper mainly used to measure the input and output
flow of a message stream in a software service process with
queuing.. 1–3, 6–9, 11

WCET Worst-Case Execution Time (WCET) is the highest ob-
served execution time of a software process running on a
dedicated computing machine.. 3, 7, 10
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ABSTRACT
With the advent of 5G networks and the rise of the Internet of

Things (IoT), Content Delivery Networks (CDNs) are increasingly

extending into the network edge. This shift introduces unique chal-

lenges, particularly due to the limited cache storage and the diverse

request patterns at the edge. These edge environments can host

traffic classes characterized by varied object-size distributions and

object-access patterns. Such complexity makes it difficult for tradi-

tional caching strategies, which often rely on metrics like request

frequency or time intervals, to be effective. Despite these complexi-

ties, the optimization of edge caching is crucial. Improved byte hit

rates at the edge not only alleviate the load on the network backbone

but also minimize operational costs and expedite content delivery to

end-users. In this paper, we introduce HR-Cache, a comprehensive

learning-based caching framework grounded in the principles of

Hazard Rate (HR) ordering, a rule originally formulated to compute

an upper bound on cache performance. HR-Cache leverages this

rule to guide future object eviction decisions. It employs a light-

weight machine learning model to learn from caching decisions

made based on HR ordering, subsequently predicting the “cache-

friendliness” of incoming requests. Objects deemed “cache-averse”

are placed into cache as priority candidates for eviction. Through

extensive experimentation, we demonstrate that HR-Cache not only

consistently enhances byte hit rates compared to existing state-of-

the-art methods but also achieves this with minimal prediction over-

head. Our experimental results, using three real-world traces and

one synthetic trace, indicate that HR-Cache consistently achieves

2.2–14.6% greater WAN traffic savings than LRU. It outperforms

not only heuristic caching strategies but also the state-of-the-art

learning-based algorithm.

CCS CONCEPTS
• Theory of computation→Caching and paging algorithms; •
Computing methodologies→Machine learning; • Networks
→ Network services; • General and reference → Performance.
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caching, content delivery network, hazard rate, hit probability
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1 INTRODUCTION
The increasing use of multimedia content services and the expan-

sive deployment of IoT systems necessitate fast and dependable

content delivery. Essential online services, such as web hosting and

video streaming, rely heavily on the efficiency of these deliveries.

With the advancement of 5G networks, edge caching has become

a pivotal technology for addressing these rising demands and im-

proving overall performance. By storing content closer to users at

the network edge, edge caching plays an essential role in enhancing

user experience and reducing the bandwidth required across the

wide-area network between edge nodes and the original content

servers.

This surge in demand for content delivery directly leads to a

substantial and growing volume of traffic. This increase has a sig-

nificant financial impact on network service providers, particularly

if traffic is not managed effectively at the edge. While low latency is

critical for delivering small-size, latency-sensitive content, the pri-

mary objectives for distributing larger files, such as video streams

and extensive downloads, are to minimize traffic handling costs

and prevent overload at network bottlenecks [20]. Therefore, a key

goal of caching at the edge of network is to maximize the fraction

of bytes served locally from the cache [11], also known as the byte

hit ratio (BHR).

The caching algorithm, which decides which objects are cached,

is integral to achieving a low byte miss ratio. As such, this prob-

lem has been extensively studied since the advent of the internet.

Caching strategies have evolved from basic heuristic methods like

Least Recently Used (LRU), which evicts the oldest data first, to

intricate algorithms that combine frequency and recency (e.g. Hy-

perbolic) and others that use a composition of frequency and ob-

ject size (e.g. GDSF). Despite extensive research, most production

systems—such as those employed by Akamai [23], Memcached,

and NGINX—commonly implement LRU variants as their standard

caching algorithm. Yet, these may not be ideally suited to the partic-

ular demands of edge caching, which contends with limited cache

sizes and the unpredictable nature of user requests [17]. The chal-

lenge in designing effective caching algorithms is that workload

characteristics, like object access patterns or request processes, are

not constant and often change over time. Thus, a heuristic that per-

forms well for one workload scenario may falter in another, or fail
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to adapt when access patterns evolve, underscoring the necessity

for flexible caching strategies that can overcome these challenges.

Recent advancements inmachine learning (ML) have opened new

avenues for enhancing cache algorithms, particularly in the face of

the aforementioned challenges. One increasingly popular method

is to employ ML techniques to forecast the popularity of objects

for proactive caching [32]. Yet, this method can lead to suboptimal

cache performance [8] under some workloads and proactive down-

loads consume additional bandwidth which is counter-intuitive to

our optimization goal. Another popular approach employs model-

free reinforcement learning (RL), where the system starts with

no preconceived notions about the traffic patterns and iteratively

works its way toward the optimal caching strategy [16, 30, 40, 42].

In this system, decision-making is honed through direct interac-

tion with the environment, utilizing a reward function to reinforce

actions that yield positive outcomes. Due to the large state-action

space, RL methods tend to be more complex and require greater

computational resources. Additionally, they can be sensitive to

hyper-parameters, making it challenging to fine-tune their perfor-

mance.

A promising approach for designing cache algorithms has been

to leverage oracle policies, such as the offline Belady algorithm

[3], the practical flow-based offline optimal (PFOO) algorithm [5],

and the more recent Hazard Rate (HR) based upper bound [26],

which compute the theoretically optimal cache decisions. This is

achieved by either learning to “imitate” the optimal decisions [4, 18]

or by directly learning and predicting the objects’ next request

arrival to inform the optimal caching choice as explored by [34].

In this paper, we introduce HR-Cache framework, a new learning-

based caching framework grounded in the principles of Hazard

Rate Ordering (HRO) rule introduced in [1]. HR-Cache is based

on several original contributions. The framework is divided into

two main components: The first component calculates the caching

decisions for a window of past requests based on the HRO rule. The

second part then trains an ML model that maps a set of features

to HRO cache decisions. This model is then applied to in the next

window to predict the “cache-friendliness” of objects at the time

they are requested. In the event of a cache miss, where eviction is

necessary to make space, our framework preferentially evicts items

in the cache that were previously identified as “cache-averse.”

Our application of the HRO rule presents an intricate challenge:

accurately determining the hazard rate function for object inter-

request times to reconstruct the HRO, without making simplifying

assumptions about the nature of the request distribution. We ad-

dress this by employing a Kernel Hazard Estimator, which estimates

the hazard function directly from the data without assuming a spe-

cific parametric form for the distribution. This consideration can

be particularly important, as our use of ML methods is intended

to address the shortcomings of heuristic-based algorithms, which

usually excel with specific access patterns but not others. Therefore,

making assumptions about the workload might negate the advan-

tages that machine learning brings to our caching decision process.

Putting all this together in a practical system, however, requires us

to address other challenges including controlling the computational

overhead for ML training and prediction. Our evaluation results

using production and synthetic traces show that our learning-based

policy consistently performs better than state-of-the-art methods

and reduces WAN traffic by 4–25% compared to the LRU replace-

ment policy and reduces the prediction overhead by a factor of

19.2x compared to the state-of-the-art learning-based cache policy.

Roadmap: We organize the rest of this paper as follows. Section 2

provides background and discusses related work. Section 3 presents

the HR-Cache algorithm. Section 4 empirically evaluates the pro-

posed scheme. Section 5 concludes the paper with a summary of

its contributions.

2 BACKGROUND & RELATEDWORK
Most earlier designs of caching rely on heuristic-based methods

including the least recently used (LRU), least frequently used (LFU),

and first in first out (FIFO), along with their variants. While these

classical methods offer straightforward solutions for managing

cache resources, they often fall short in adapting to the dynamic

and complex nature of request patterns. Moreover, different fea-

tures may have varying levels of importance across diverse work-

loads, a nuance that heuristic methods struggle to accommodate.

This limitation is particularly evident in edge networking envi-

ronments, where traditional traffic assumptions may no longer be

valid [27, 35]. In addition, prior work [4, 34] have pointed out a

considerable discrepancy between current state-of-the-art caching

designs and theoretical upper limits on cache performance, as estab-

lished by algorithms like Belady’s algorithm [3], flow-based offline

optimal [5], and the hazard rate upper bound [26]. This significant

gap, along with the supporting evidence from recent measurement

studies in edge caching systems [10, 13, 33], signals a clear oppor-

tunity for enhancements in cache performance and addressing the

limitations of existing caching strategies. In light of these develop-

ments, there has been a growing emphasis in recent research on

developing learning techniques that can intelligently manage cache

resources. In the following part, we will focus on a discussion of

learning-based cache policies, providing the necessary background

and rationale for the development of the proposed HR-Cache frame-

work. Simultaneously, this portion will serve as a review of related

work in this area. We’ll finish this section with a brief overview of

use of ML methods to improve performance, bringing together the

key aspects of our research discussion.

2.1 Learning-based Caching
Approaches to learning-based caching can be roughly grouped into

three categories, with the first category encompassing recent re-

search efforts focused on leveraging theoretically optimal caching

policies to develop learning-based methods. A significant point

of reference here is the Belady optimal policy [3]. This algorithm

operates on the principle of evicting the object that will be used

furthest in the future, thereby minimizing miss rate. While Belady’s

algorithm provides an ideal strategy for cache replacement, its

real-world application has been limited because it requires fore-

knowledge of future cache access patterns, which is generally not

feasible. Nevertheless, this algorithm forms a basis for designing

practical caching policies.

Hawkeye [14] was the first to introduce learning from the Be-

lady’s algorithm. Hawkeye employs a binary classification model

to determine whether a cache line is likely to be reused (deemed

“cache-friendly”) or not (“cache-averse”). Their policy prioritizes
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the eviction of cache-averse lines over cache-friendly ones. By us-

ing oracle labels for previous access patterns, Hawkeye effectively

transforms cache replacement into a supervised learning challenge.

Building upon Hawkeye’s foundation, Glider [31] enhances this ap-

proach by integrating deep learning techniques to develop a more

accurate predictor than its predecessor. However, it’s important to

note that both Hawkeye and Glider focus on hardware caches and

are not directly applicable to software cache systems, particularly

those handling variable-sized objects. Another work, “Parrot” as

described in [18] adopts an imitation learning approach to automat-

ically learn cache access patterns by leveraging Belady’s. Although

effective, its computational demands can be significantly high.

Diverging from Parrot’s methodology, LRB, as outlined in [34],

employs a different strategy by predicting the next arrival times

of object requests. This enables LRB to approximate Belady’s al-

gorithm through a supervised learning method. By learning the

next access time for each object based on a multitude of features,

LRB identifies and evicts objects predicted to have the furthest re-

quest time. This strategy has demonstrated enhanced performance

over state-of-the-art caching algorithms in terms of byte hit ratios.

However, LRB is not without its limitations. To closely emulate

the optimal offline oracle, a system like LRB is required to predict

the next access times for all objects in the cache, selecting for evic-

tion the one with the most distant future request. This prediction

process can be extremely resource-intensive for large caches. LRB

mitigates this by limiting the inference to a sample of 64 objects for

each eviction. Despite this optimization, the prediction overhead

remains a significant computational burden. LRB’s use of dynamic

features means that prediction results are not reusable over time,

necessitating fresh sampling and inference for every eviction. Re-

flecting this overhead, LRB’s simulation shows that on a single CPU

core, each eviction in LRB consumes 227.19 µs.
1
Consequently, this

caps the eviction rate at a maximum of approximately 4,500 objects

per second per core, rendering it less efficient for high-demand

production environments.

LFO [4], another work employing supervised learning, first cal-

culates the sequence of optimal caching decisions (OPT) for recent

history using a min-cost flow model from [5], designed for opti-

mal caching of variable-sized objects. Following this calculation,

LFO applies manually-designed features and a gradient boosting

decision tree to train a binary classifier for caching decisions. The

classifier’s prediction is then used to imitate the admission policy of

OPT and serve as a ranking metric for the eviction policy. However,

the process of deriving optimal decisions based on the min-cost

flow model is complex and computationally intensive, hindering

LFO’s ability to swiftly adapt to workload changes. Additionally,

its design necessitates executing a prediction for every incoming

request, further impacting its practical efficiency.

Inspired by similar principles to our work, LHR in [41] draws

on the concept of the Hazard Rate bound from [26] to develop

a learning-based caching policy. Unlike a direct adoption, LHR

modifies this approach by constructing an online upper bound,

which approximates the request process through a Poisson process.

Under this assumption, the hazard rate remains constant and is

equivalent to the request rate for each object. While this approach

1
For 64 GB cache size, Wikipedia 2019 workload

simplifies their model, it considerably narrows the applicability of

LHR [12]; particularly in light of [26]’s demonstration that the HRO

upper bound is effective for any stationary arrival process. Thus,

LHR’s reliance on the Poisson assumption potentially restricts the

full exploitation of HRO’s capabilities.

Considering the insights gained from the review of existing

works, our framework’s design will be informed around these piv-

otal lessons:

(1) Utilization of HRO Bound: Taking into account the limi-

tations of LHR’s Poisson assumption, our approach will seek

to fully leverage the HRO bound’s potential, avoiding over-

simplified assumptions that could undermine the practicality

and justification of using machine learning.

(2) Minimizing Prediction Overhead: Addressing the chal-
lenge of high computational demands seen in methods like

LRB, our framework will prioritize efficient prediction mech-

anisms to enhance scalability and performance.

(3) Decision-Making Process: Considering the complexity of

the LFO approach, we aim to create an efficient method for

making caching decisions. This is important in fast-paced

environments where models need regular updates and train-

ing. Our approach is designed for quick adjustments to stay

up-to-date with frequent changes.

2.2 Use of Machine Learning to Improve
Performance

Our work is part of the growing effort to use machine learning

to improve system performance, especially in caching strategies.

This effort extends across various fields, as evidenced by related

literature showcasing the application of machine learning (ML) and

deep learning (DL) in enhancing system performance and efficiency

in different domains. For instance, the work in [36] employs deep

neural networks (DNNs) for optimizing resource management in

edge computing environments, enabling dynamic scheduling in

distributed fog systems by estimating key Quality of Service (QoS)

metrics. The work of [9] utilizes recurrent neural networks to de-

velop performancemodels for queuing networks, aiming to improve

resource utilization based on it. In the realm of database efficiency,

the work in [19] leverages tree convolutional neural networks and

reinforcement learning to optimize queries , while the work in [22]

applies machine learning techniques for effective database indexing.

Collectively, these studies underscore the potential of ML and DL

as powerful tools for system performance optimization.

3 HR-CACHE
In this section, we begin by discussing the hazard rate upper bound

introduced in [26], which forms the cornerstone of our approach.

Building upon this foundation, we then introduce our learning-

based caching policy, HR-Cache. The primary goal of HR-Cache

is to assess whether a requested object is cache-friendly or cache-

averse. Upon a cache miss, the requested object is inserted into

the cache; however, objects identified as cache-averse are placed

in a candidate queue for potential future eviction. HR-Cache gives

priority to evicting objects from this candidate queue, resorting to

the main queue only when the candidate queue becomes empty.
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Figure 1: Architecture Overview of HR-Cache

To learn how to make this decision, our method reconstructs the

hazard rate ordering solution from [25] for past requests within a

window to provide training targets for our model. The output from

the model is then used in our caching policy.

Figure 1 provides a high-level overview of the HR-Cache archi-

tecture.

3.1 Hazard Rate-Based Upper Bound
The framework in [26] considers a caching system serving 𝑛 dis-

tinct objects, possibly of different sizes. The system is defined with

a cache capacity of 𝐵 bytes, where 𝐵 is a predefined parameter rep-

resenting the total storage capacity of the cache. In the basic case,

the model assumes a cache of size 𝐵 bytes addressing requests for

𝑛 distinct objects of equal size. In this context, [26] introduces the

hazard rate based rule, termed as HR-E, which operates as follows:

• At any given time 𝑡 , HR-E first determines the hazard rate

function for each object.

• Then it places in the cache the 𝐵 objects which have the

largest hazard rates (ties between equal rates are broken

randomly) .

• A request at time 𝑡 is considered a “hit” if the requested

object is among those cached based on the aforementioned

criteria.

They use this rule as a way to upper-bound various cache perfor-

mance metrics including object hit and byte hit ratio.

They further extend this rule to obtain an upper bound on the

byte hit probability for variable size objects. In this case, the authors

adapt the hazard rate-based rule denoted as HR-FC to accommodate

fractional caching, a strategy that permits the storage of a fraction

of an object. Specifically, the rule at any time caches objects with

the highest hazard rates until an object cannot fit. For the object

that cannot be fully fit due to limited remaining cache capacity,

only a sufficient number of bytes required to reach the cache limit

are stored. In the case for equal-sized objects, the HR-E rule serves

as an upper bound on the cache hit probability for non-anticipative

caching policies, while HR-FC serves as an upper bound on the

cache byte hit probability, which is the metric we are interested in.

Throughout this work, we will collectively refer to these rules as

the “HRO” rule (hazard rate ordering rule) for consistency and ease

of reference.

3.2 Hazard Rate Function
Let us consider the sequential times at which object 𝑖 is accessed

as {𝜏𝑖𝑘 | 𝑘 ∈ Z}. The time interval between consecutive requests—

namely, the 𝑘th and (𝑘 − 1)th requests—for the same object 𝑖 is

termed 𝑋𝑖𝑘 and computed as 𝜏𝑖𝑘 − 𝜏𝑖 (𝑘−1) , for 𝑘 ≥ 1. By default,

𝜏𝑖0 is set to zero. The sequence {𝑋𝑖𝑘 }𝑘≥1 is assumed to form a

stationary point process, with the cumulative distribution function

(c.d.f) for the inter-arrival time given as 𝐹𝑖 (𝑡) = P(𝑋𝑖𝑘 ≤ 𝑡), and its

corresponding density function is represented as 𝑓𝑖 (𝑡).
The hazard rate function, denoted as 𝜆𝑖 (𝑡), associated with 𝐹𝑖 (𝑡)

is defined as follows:

𝜆𝑖 (𝑡) =
𝑓𝑖 (𝑡)

1 − 𝐹𝑖 (𝑡)
, 𝑡 ∈ [0, 𝐹−1𝑖 (1)], (1)

Here, the hazard rate function is the conditional density of the

occurrence of an object request, given the realization of the re-

quest process over [0, 𝑡) [7]. It is noteworthy that the hazard rate

function’s meaning can vary based on its application context. For

example, in survival analysis, the hazard rate quantifies the condi-

tional probability of an item’s failure, given that it has remained

functional up to a specific time point. In caching terminology, fail-

ure of an object can be treated as the object being requested.

3.3 Calculating Hazard Rate
To effectively implement hazard rate-based rule in our framework,

we must first accurately determine the hazard rate function for

each object. While this is relatively straightforward for synthetic

data sets, it poses a significant challenge in real-world production

settings. One approach to this challenge is approximating the inter-

request times of objects using well-defined distributions, such as

Poisson [41] or Generalized Pareto [26]. However, relying solely

on these approximations could potentially diminish the benefits

of leveraging machine learning in cache decision-making since

these approximations may not be universally applicable across

varying workloads and use-cases. Therefore, to calculate hazard

rates that are adaptable to various workload trace distributions,

we use the kernel hazard estimator proposed by [21]. We obtain

this estimator by applying smoothing to the increments of the

Nelson-Aalen estimator.

The Nelson-Aalen estimator is a non-parametric method used to

estimate the cumulative hazard function in survival analysis. Unlike

parametric methods, which make specific assumptions about the

underlying hazard rate distribution, the Nelson-Aalen estimator

does not require any such assumptions. We denote 𝐻 (𝑡) as the
cumulative hazard function at time t. The estimator is given by:

𝐻 (𝑡) =
∑︁
𝑗 :𝑡 𝑗 ≤𝑡

𝑑 𝑗

𝑛 𝑗

where 𝑡 𝑗 are the observed event times, 𝑑 𝑗 is the number of events

at time 𝑡 𝑗 , and 𝑛 𝑗 is the number of subjects at risk just before time

𝑡 𝑗 . However, the Nelson-Aalen estimator results in a step function,

which is not differentiable. Instead, kernel smoothing techniques

are utilized to smooth the increments of the cumulative function

estimate obtained by the Nelson-Aalen estimator [39]. The kernel

hazard estimator we use takes the form:
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𝜆(𝑡) = 1

ℎ

𝑛∑︁
𝑖=1

𝐾

( 𝑡 − 𝑡𝑖
ℎ

)
Δ𝐻 (𝑡𝑖 )

where 𝐾 (·) is a kernel function (e.g., Epanechnikov kernel), ℎ is

the bandwidth, determining the width of the smoothing window,

and Δ𝐻 (𝑡𝑖 ) is the increment in the Nelson-Aalen estimate at time

𝑡𝑖 , which is
𝑑𝑖
𝑛𝑖
.

Trace length 3.7 million

Unique objects 5638

Table 1: IBM Web Access Trace Collected from a Gateway Router

We use a real-world IBM trace from [26], to test the validity of

the non-parametric hazard estimator. Details about the trace are

provided in Table 1. For our experiment, we derive the upper bound

on hit probability using the HR-E ordering rule with three different

estimators. The first method employs the non-parametric estimator

introduced earlier in this section. The study by [26] effectively esti-

mated the hazard rate for each object in the IBM trace, assuming a

Generalized Pareto distribution for inter-request times. We include

the HR-E upper bound calculated under their estimator for vali-

dation. Additionally, we explore the HRE upper bound assuming

request processes follow a Poisson process. For further comparison,

we also present the object hit probabilities attained by the LRU and

Belady’s algorithms. The results of these comparisons, run under 3

different cache sizes, are illustrated in Figure 2.
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Figure 2: HR-E Upper Bound Comparisons and Hit Probabilities for
LRU and Belady’s Algorithms Across Three Cache Sizes.

As can be seen, the kernel hazard estimationmethodwe use gives

us an upper bound that aligns with the expected bound derived

using the “good” parametric estimator of the Generalized Pareto

distribution. This confirms that kernel hazard estimation is indeed

suitable for our use case. As anticipated, the simplistic nature of the

Poisson assumption results in LRU outperforming it. Moreover, our

results reaffirm the tighter upper bound achieved by the HR-E rule

compared to the Belady algorithm, consistent with the findings of

the work in [26].

3.4 Learning From HRO
Before diving into the learning process, it is crucial to make a key

observation. We argue that since the HRO bound (Section 3.1) is

derived in a pre-fetching manner, it does not directly correspond to

cache decision at the time of request to an object. Specifically, the

HRO rule assumes that at any time 𝑡 , the objects with the highest

hazard rates among all available objects, have already been pre-

fetched and are present in the cache. Thus, the requested object at

time 𝑡 is considered a hit if it is among objects in the cache. Based

on this, for object 𝑖 to be considered as cached in the system, the

previous request to object 𝑖 must admit it to the cache. Or in other

words, when the request at time 𝑡 arrives, it can only be considered

a hit if object 𝑖 was already cached due to a prior request. We classify

these earlier requests as cache-friendly, as they are the ones leading

to hits. With this and the HRO rule as a backdrop, we are set to

develop a learning-based caching strategy. Our approach employs a

sliding window of past requests𝑊 [𝑘]. Using the gathered requests

in𝑊 [𝑘], we do three things:

(1) First, using the inter-request times of objects in the win-

dow we calculate the increments of hazard rates for each

object according to the Nelson-Aalen estimator, to be later

smoothed by the kernel hazard estimator.

(2) Second, we go over the requests in the window and mark

them as hit/miss based on the HRO rule. Meaning for each

request at time 𝑡 , we compute the hazard rate at time 𝑡 for

every object within the window using the kernel estimator,

and consider objects with the highest hazard rates in cache

until one doesn’t fit. If the object requested at time 𝑡 is among

the cached objects, it is considered as a hit; otherwise, it is

considered as a miss.

(3) Next, we examine the requests in the window once more:

For each request 𝑖 that was marked as a hit in the first step,

we mark the previous request to 𝑖 as cache-friendly. This

provides us with a vector of cache decisions for requests in

the window, which serves as the label data for our machine

learning model training.

HR-Cache then trains a model that maps features to the decision

derived in step 3. The trained model is subsequently used over the

next window,𝑊 [𝑘 + 1], to inform cache decisions during which

HR-Cache again records the requests to use for the next window

and so on.

3.5 Training Data
An important design issue involves determining the optimal amount

of past information to utilize. We adopt a sliding window approach,

using the data within this window for hazard estimation, deriving

the HRO cache decision, and model training. The choice of window

size significantly impacts the system’s effectiveness. A small win-

dow might result in few data for training or hazard rate estimations,

while a window that is too large could lead to increased memory

usage, as well as longer processing and training times. While some

studies arbitrarily define their window sizes (e.g., [4] opts for a

window of 1 million, [16] for the initial 10 million requests), [14]

considers window size as a factor of cache capacity, 1× represents

a window that consists of accesses to k cache lines, where k is the

capacity of the cache. We choose a 3× window, meaning the unique
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bytes of object requests in the window is three times the cache size

as we find that this works well across all our experiments, how-

ever there is room for investigating how to set an optimal window

size. In practice, the sliding window can encompass millions of ob-

jects, which presents significant challenges for the labeling process,

particularly when reconstructing the HRO-Rule. To address this

issue, HR-Cache employs a strategy of randomly sampling objects

within the window to generate training samples. The sampling

rate is automatically calibrated to ensure that the total number of

operations stays within a manageable range, thus preventing the

computational overhead from becoming prohibitive. In our C++

implementation, this adaptive approach has proven to be effec-

tive, yielding favorable results while keeping the computational

demands at a reasonable level.

3.6 Features
When designing a machine learning model for cache decision, it

is essential to choose relevant features that can help predict the

optimal decision. Our chosen features encompass both the insights

from past heuristics and the insight of recent learning-based caching

policies. Traditional caching heuristics focus on individual metrics,

such as object recency (as seen in LRU), its frequency (as in LFU),

or object size. This is while learning-based methods allow us to

incorporates a range of them. We consider the following features

which can be derived in an online and robust manner.

(1) Delta series: The time differences between consecutive re-

quests for an object. Δ1 indicates the amount of time since

an object was last requested. Δ2 indicates the time in be-

tween an object’s previous two requests and so on, i.e., Δ𝑛
is the amount of time between an object’s 𝑛th and (𝑛 − 1)th
previous requests. This can provide insights into the object’s

access pattern, which can help predict future requests. We

use 32 deltas as our features.

(2) Decayed frequency: Unlike simple frequency, decayed fre-

quency accounts for the recency of requests by giving more

weight to recent accesses. It calculates the fraction of re-

quests for an object among all requests so far, but with a

diminishing emphasis on older requests. This approach helps

in capturing not just how often an object is requested, but

also how its popularity or relevance changes over time.

(3) Static features. These include unchanging characteristics

of an object, such as its size and type. Static features can

be useful due to their inherent correlation with different

access patterns. For our implementation we only consider

size among static features due to the availability of data in

our traces.

3.7 Training HR-Cache
The goal of HR-Cache is to map its features to a decision of whether

an incoming line is cache-friendly or cache-averse according to the

HRO rule. For this task, we employ gradient boosting decision tree

(GBDT) model. GBDTs are known for their strong performance

across various datasets, particularly useful in tasks involving classi-

fication and regression with structured data. They are also conve-

nient because they don’t need feature normalization. Additionally,

their effectiveness in caching-specific tasks is supported by studies

like [34] and [4].

Algorithm 1 HR-Cache Policy

1: procedure UpdateCache(𝑜𝑏 𝑗𝑒𝑐𝑡 , 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑎𝑏𝑙𝑒)
2: Perform lookup for 𝑜𝑏 𝑗𝑒𝑐𝑡 in 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑎𝑏𝑙𝑒

3: if 𝑜𝑏 𝑗𝑒𝑐𝑡 is in cache (Hit) then
4: if 𝑜𝑏 𝑗𝑒𝑐𝑡 is in Candidate Queue then
5: if predicted as Cache-friendly then
6: Change mode to Main Queue

7: Move 𝑜𝑏 𝑗𝑒𝑐𝑡 from Candidate to Main Queue

8: end if
9: else if 𝑜𝑏 𝑗𝑒𝑐𝑡 is in Main Queue then
10: if predicted as Cache-friendly then
11: Promote 𝑜𝑏 𝑗𝑒𝑐𝑡 to MRU in Main Queue

12: else if predicted as Cache-averse then
13: Change mode to Candidate Queue

14: Move 𝑜𝑏 𝑗𝑒𝑐𝑡 to Candidate Queue

15: end if
16: end if
17: else ⊲ Request not in cache (Miss)

18: if predicted as Cache-friendly then
19: Add 𝑜𝑏 𝑗𝑒𝑐𝑡 to Main Queue

20: else
21: Add 𝑜𝑏 𝑗𝑒𝑐𝑡 to Candidate Queue

22: end if
23: end if
24: end procedure
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Figure 3: Comparison of HR-Cache to State-of-the-Art Heuristic
Caching Systems for the IBM trace.

3.8 The HR-Cache Policy
Putting it all together, we design a caching policy guided by our

learned model. For every object request, our HR-Cache predictor

outputs a decision indicating whether the object is cache-friendly

or cache-averse. This decision guides how we update the cache as

detailed in Algorithm 1. The goal is to manage objects so that cache-

averse items end up in the candidate queue, while cache-friendly

ones are placed in the main queue. The candidate queue consists

of objects that the HR-Cache identifies as unlikely to lead to hits,

hence prioritized for eviction. Meanwhile, the main queue employs
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Table 2: Summary of the traces used in our evaluation.

Wikipedia 2018 Wikipedia 2019 CloudPhysics EU Synthetic
Total Requests 84 million 90 million 27 million 100 million

Unique Objects Requested 7 million 11 million 8 million 41 million

Total Bytes Requested 2.6 TB 3.4 TB 360 GB 100 TB

Unique Bytes Requested 0.75 TB 1 TB 86 GB 38 TB

Request Obj Size Mean 34 KB 41 KB 14 KB 1 MB

Max 674 MB 558 MB 1 MB 7 MB

an LRU strategy, ensuring that, should it become necessary to evict

items from the main queue (once the candidate queue is depleted),

the items least recently used are evicted first.

For a preliminary evaluation, we use the IBM request trace from

Section 3.3 to assess the effectiveness of our learning framework.

Given the trace’s limited length, we use the initial one million

requests to derive HRO decisions as outlined in Section 3.4. Subse-

quently, we train a model based on these decisions and apply the

HR-Cache policy to evaluate the byte hit ratio on the remainder

of the trace. As depicted in Figure 3, HR-Cache demonstrates its

effectiveness by achieving a Byte Hit Ratio that surpasses the state-

of-the-art heuristic policies, even within the limited range of this

relatively short trace.

4 EXPERIMENTAL EVALUATION
We developed our framework in C++ as part of a trace-driven

simulator designed to accurately assess our framework’s miss ratios

by replaying cache requests from traces. For the implementation of

the Gradient Boosted Decision Trees (GBDT) model, we utilized the

LightGBM framework [15]. The code is publicly available on our

GitHub repository
2
to facilitate the reproducibility of our proposed

research in this paper. Additionally, we introduce an optimization

in our implementation in the following section and examine its

impact in Section 4.4.

4.1 Batched Predictions
The basic HR-Cache needs to predict cache-friendliness of ob-

jects as each request arrives. To take advantage of the architec-

tural strengths of multi-core processors in contemporary CDN and

edge servers, we implement data parallelism in our cache decision-

making. This modification permits parallel predictions for 𝑁 re-

quests simultaneously. The chosen batch size, 𝑁 , plays a critical

role in balancing parallelism and miss ratio. A small 𝑁 fails to fully

utilize the potential of parallelism, while an excessively large 𝑁 can

lead to delayed predictions and negatively affect the miss ratio. We

selected a batch size of 𝑁 = 128, finding it optimal for harnessing

parallelism without affecting our miss ratio. For instance, in our

simulations, which do not account for object retrieval overhead,

a batch size of 𝑁 = 128 enabled an increase in throughput from

handling 11,828 requests per second to 98,404 requests per second,

while maintaining cache performance efficiency on the Wiki 2019

trace.

We conduct trace-driven simulations to evaluate the performance

of HR-Cache against a broad spectrum of state-of-the-art caching

2
https://github.com/pacslab/HR-Cache

algorithms. Our analysis primarily focuses on two key questions:

First, we examine how the byte miss ratio of HR-Cache compares

with that of other state-of-the-art research systems across a variety

of traces and cache sizes. Second, we assess how HR-Cache per-

forms in relation to the state-of-the-art (SOA) learning-based cache

mechanisms, particularly in terms of prediction overhead.

4.2 Experimental Methodology
This subsection describes traces, the experiment setup of our sim-

ulation, the competing algorithms, and the parameter settings of

HR-Cache. Unless otherwise noted, the reported results for HR-

Cache are based on its default operation settings, which include

batch-mode inference with a batch size of 128.

Workloads. Our evaluation uses a set of four distinct traces to cre-

ate a diverse testing environment for the HR-Cache system. This

includes two public CDN production traces from Wikipedia for

the years 2018 and 2019 [34], a public trace from CloudPhysics

[38], and a synthetic trace generated using the JEDI tool in [28, 29].

The selection of these traces aims to represent the performance

of HR-Cache across a wide spectrum of real-world and synthetic

workloads. Detailed descriptions of each trace source are as follows:

(1) Wikipedia Traces (2018 and 2019): These traces are sourced
from Content Delivery Network (CDN) nodes in a metropol-

itan area in 2018 and 2019, respectively. They mainly consist

of web and multimedia content, including images and videos,

catering to Wikipedia pages. To reflect the typical environ-

ment of edge caches, our evaluations on these traces are

conducted with cache sizes of 16 GB, 32 GB, 64 GB, and 128

GB, aligning with the characteristics of smaller cache sizes

often found in edge caches [17].

(2) CloudPhysics Trace: A Block I/O trace from [38], capturing

the activity of VMware virtual disks. This trace introduces a

more diverse workload for our analysis, extending beyond

the typical CDN scenarios to demonstrate the generalizabil-

ity of our method across different computing environments.

In our analysis of this trace, we chose cache sizes of 1 GB, 4

GB, 8 GB, and 16 GB, reflecting common configurations in

virtual machine environments.

(3) EU Synthetic Trace: This trace is generated using the JEDI

tool [29] which produces traces that have similar caching

properties and object-level properties as original production

traces. We use the “eu” traffic class which is tailored to repli-

cate the traffic patterns observed in an Akamai’s production

CDN, specifically those serving content related to social me-

dia. For this trace, we use cache sizes of 256 GB, 512 GB, 1 TB,
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(c) EU Synthetic
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(d) Wikipedia 2019

Figure 4: WAN traffic reduction compared to LRU across various cache sizes for HR-Cache and seven leading algorithms. HR-Cache consistently
achieves 2.2–14.6% greater WAN traffic savings than LRU, outperforming the SOA alternatives.

and 2 TB. This decision is based on the trace’s large working

set size, where smaller cache sizes would not be effective or

meaningful for performance analysis.

Table 2 summarizes key properties of the four traces.

State-of-the-art algorithms. In our evaluation, HR-Cache is com-

pared with twelve state-of-the-art caching algorithms: LRB, LRU,

LRU-4, S4LRU, GDSF, LFUDA, AdaptSize, Hyperbolic, LHD, LeCaR,

and UCB. To enhance readability, we present only the six best-

performing algorithms compared to LRU. These are divided into

two categories: 1) learning-based algorithms, which include LRB

[34], LeCaR [37], and UCB [6]; and 2) heuristics-based algorithms,

comprising LRU-4 [24], LFUDA [2], and S4LRU[13].

Parameter Value
Learning Rate 0.1

Max Depth 50

Number of Trees 100

Max Number of Bins 255

Objective logistic regression

Table 3: Parameters of the GBDT Model

Experimental Setup. All simulation experiments were run on a

Google Cloud server with 24 E2-v CPUs (12 shared physical cores)

and 64 GB of RAM. Unless specified otherwise, the reported results

for HR-Cache are based on the settings that HR-Cache operates

in batch-mode inference with a batch size of 128. We also set the

frequency decay factor to 0.9 for the decayed frequency feature.

Throughout our evaluation, we utilized the parameters listed in

Table 3 for the GBDT model in LightGBM.

We note that the LRB algorithmwas run using its default window

parameter. The longer duration of this default memory window,

in comparison to the lengths of our traces and the sizes of our

caches, might have a bearing on its performance. However, any

such influence is expected to be advantageous, which contributes

to a balanced comparison in our study.

In all our experiments, the initial training window, during which

HR-Cache reverts to LRU, is considered a warm-up phase.We report

the metrics for HR-Cache and other algorithms after this period.

Notably, LRB starts its training ahead of our framework, and thus,

this warm-up phase provides enough time for its training phase to

start.
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4.3 Main Results
We compare HR-Cache with the caching algorithms detailed in

Section 4.2, utilizing simulations across various cache sizes. Figure 4

illustrates the reduction in wide-area network (WAN) traffic for

each algorithm relative to LRU, across different cache sizes and the

six traces.

HR-Cache consistently outperforms existing state-of-the-art al-

gorithms, securing the lowest byte miss ratios across various com-

binations of traces and cache sizes. The sole exception is observed

with the EU Synthetic, size 2048, where HR-Cache achieves perfor-

mance equivalent to that of LeCar. On average, HR-Cache reduces

WAN traffic by over 9.7% compared to LRU, with reductions ranging

from 2.2–14.6%. Its robust performance is evident across all traces,

unlike other algorithms that lack consistent improvements across

varying traces and cache sizes.

For instance, LRU-4 improves performance over LRU in 3 of the

workloads, but completely underperforms in the EU traces, resulting

in a significant 16-24% increase in traffic over LRU (not depicted in

the plot due to being below the y-axis). On the other hand, UCB

generally underperforms compared to the other algorithms, with a

notable exception in CloudPhysics at 16 GB, where it closely rivals

HR-Cache and LRB. Shifting focus to LeCaR and LFUDA, these

algorithms consistently outperform LRU, yet they do not manage to

surpass the effectiveness of other top-performing policies. LRB, on

the other hand, exhibits strong results on the Wiki traces, however,

it performs the same or falls short in comparison to HR-Cache even

where it performs best. Moreover, LRB is outperformed by heuristic

algorithms in an instance of CloudPhysics and EU Synthetic and

undergoes a significant decrease in effectiveness in the EU Synthetic

trace, particularly as cache sizes increase.

Furthermore, it is important to note that the pattern of WAN

traffic reduction achieved by HR-Cache does not consistently corre-

late with cache capacity. For instance, in the EU Synthetic trace, we

observe that the traffic reduction effectively doubles when moving

from 256 GB to 1 TB. Conversely, in CloudPhysics, HR-Cache’s

reduction over LRU generally shows an increasing trend, yet there

are instances where the improvement trend inversely declines. This

variability suggests that the traces used in our study encompass

a diverse array of request patterns, influencing the performance

dynamics of HR-Cache differently across scenarios.

Overall, these results suggest that heuristic-based algorithms

excel with specific patterns but falter with others. A similar trend

is observed among the learning-based algorithms we evaluated.

UCB generally underperforms across the board, and LeCaR strug-

gles to match the performance of state-of-the-art alternatives. LRB,

although demonstrating strengths in certain scenarios, does not

consistently show improvement, underscoring the variability in its

efficacy.

4.4 Prediction Overhead Optimization
In this section, we analyze the additional prediction overhead in-

troduced by HR-Cache in comparison with the state-of-the-art LRB

algorithm. To understand the source of this overhead in both LRB

and HR-Cache, we examine this overhead for the Wiki 2018 trace.

LRB incurs prediction overhead by running predictions on 64

samples for each eviction event. In contrast, HR-Cache requires a
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Figure 5: Comparison of Byte Miss Ratios for HR-Cache, the Best
Performing Policy, and LRU

prediction for each incoming request to determine cache-friendliness.

However, HR-Cache’s batch mode significantly reduces this require-

ment by enabling inference on every 128 requests, rather than on

each individual request. As both frameworks utilize the GBDT

model, we measure the inference time for batches of 64 (LRB’s

eviction candidate count) and 128 (HR-Cache’s inference batch size)

inputs, respectively. The results of these measurements is found in

Table 4.

Prediction batch Prediction time (𝜇𝑠)

LRB 64 183

HR-Cache 128 220

Table 4: Comparison of Prediction Batch Sizes and Prediction Times
for LRB and HR-Cache Algorithms

Given that LRB is required to run predictions with every eviction

event, its prediction overhead is directly tied to the object miss ratio.

For our analysis, we assume the best-case scenario for LRB, where

only one object needs to be evicted per cache miss.

Under the Wikipedia 2018 workload for cache sizes of 64 GB

and 128 GB, LRB is required to run predictions for 18% and 13% of

requests, respectively. In contrast, HR-Cache with a batch size of

128, effectively runs predictions for only 1/128 of requests. Taking
this and the measured inference times into account, this translates

to a prediction overhead reduction by factors of 19.2x and 13.8x for

cache sizes of 64 GB and 128 GB, respectively, when compared to

LRB.
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Table 5: Prediction Overhead Reduction For Wiki 2018

Alg.

Miss Ratio Pred Time (𝜇𝑠/𝑟𝑒𝑞) Reduction Factor

64 GB 128 GB 64 GB 128 GB 64 GB 128 GB

LRB 0.18 0.13 32.94 23.8 - -

HR-Cache - - 1.72 1.72 19.2x 13.8x

Another aspect of overhead comes from the process of feature

building. HR-Cache constructs one feature per request, while LRB,

in contrast, needs to build 64 features on each object miss. This dif-

ference results in a significant reduction of overhead for HR-Cache.

Specifically, under the Wiki 2018 workload for cache sizes of 64

GB and 128 GB, HR-Cache achieves a reduction in feature-building

overhead by factors of 11.5x and 8.3x, respectively, compared to

LRB.

To illustrate HR-Cache’s computational burden, consider the

Wiki 2018 trace with a cache size of 64: replaying 84million requests,

conducting frequent training and inference, and updating our cache

based on these predictions, takes approximately 13 minutes, which

is more than acceptable given the inter-arrival request rates for

objects.

4.5 Ablation
In Section 3.4, we discussed how hit or miss outcomes determined

by hazard ordering may not directly correspond to cache decisions.

This is because Hazard Rate Ordering (HRO) assumes objects with

the highest hazard rates are always pre-fetched and available in the

cache whenever a request occurs at time 𝑡 . Therefore, if a request for

an object at time 𝑡 is a hit, we previously classify it as cache-friendly

in its last request. We also noted that modeling the request process

as a Poisson process is a simplification, even though it offers a less

complexmethod for calculating hazard rates. Under this process, the

hazard rate remains constant. In our study, we conduct an ablation

analysis on three of the traces, where we remove the look-back

option in one scenario. In another, we operate HR-Cache under the

Poisson assumption, as opposed to using kernel hazard estimation.

Figure 6 shows the relative gains of our assumptions. On the Wiki

2018 trace, the look-back option assumption significantly influence

performance, a trend also observed in the CloudPhysics and EU

traces. Under the Poisson assumption, the performance on the Wiki

2018 trace is markedly diminished, whereas this assumption has a

minimal impact on the other two traces. This disparity also confirms

our hypothesis that the Poisson assumption may not be universally

applicable to all real-world traces.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposedHR-Cache, a novel learning-based caching

framework for edge environments. It learns from hazard rate or-

dering decisions to identify cache-averse objects and prioritizes

them for eviction. HR-Cache comprises two main components: it

reconstructs the hazard rate ordering on a window of requests using

kernel hazard estimation and a decision tree classifier that learns to

predict the cache-friendliness of incoming requests. We evaluated

our framework using real-world data traces and compared it with

several state-of-the-art caching strategies. Our results indicate that

HR-Cache significantly improves the byte hit rate compared to LRU
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Figure 6: Percentage improvement of HR-Cache modes over the
state-of-the-art method.

and surpasses a wide range of state-of-the-art policies, all while

maintaining minimal prediction overhead compared to contem-

porary learning-based cache policies. Further experiments were

conducted to confirm the positive impact of our specific design

choices and assumptions on HR-Cache’s performance, highlighting

their validity and effectiveness.

We envision two main ways for future exploration to enhance

HR-Cache applicability and performance in real-world scenarios.

The first involves extending HR-Cache for distributed caching en-

vironments. Exploring the potential of HR-Cache in distributed

environments opens avenues for leveraging federated learning to

pool insights from diverse data sources, enhancing model accuracy

while adhering to privacy concerns. This approach, however, in-

troduces challenges, particularly with non-IID data, which could

affect model performance. Additionally, adapting HR-Cache to hier-

archical cache architectures allows us to optimize cache utilization

across different levels and closely mirrors the operational struc-

tures of real-world CDN and edge caches. This adaptation, however,

necessitates navigating the intricacies of cache dynamics within

such structures. The second avenue focuses on integrating HR-

Cache into production cache systems, necessitating adjustments

to overcome hardware limitations and ensure seamless operation.

This effort will extend to evaluating HR-Cache’s impact on latency,

resource consumption, and scalability under practical conditions.
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ABSTRACT
Serverless computing and, in particular, Function-as-a-Service (FaaS)
have emerged as valuable paradigms to deploy applications with-
out the burden of managing the computing infrastructure. While
initially limited to the execution of stateless functions in the cloud,
serverless computing is steadily evolving. The paradigm has been
increasingly adopted at the edge of the network to support latency-
sensitive services. Moreover, it is not limited to stateless appli-
cations, with functions often recurring to external data stores to
exchange partial computation outcomes or to persist their internal
state. To the best of our knowledge, several policies to schedule
function instances to distributed hosts have been proposed, but
they do not explicitly model the data dependency of functions and
its impact on performance.

In this paper, we study the allocation of functions and associated
key-value state in geographically distributed environments. Our
contribution is twofold. First, we design a heuristic for function
offloading that satisfies performance requirements. Then, we formu-
late the state migration problem via Integer Linear Programming,
taking into account the heterogeneity of data, its access patterns
by functions, and the network resources. Extensive simulations
demonstrate that our policies allow FaaS providers to effectively
support stateful functions and also lead to improved response times.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • General and reference→ General conference proceed-
ings; •Computingmethodologies→Distributed computingmethod-
ologies.
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serverless, scheduling, data migration, edge computing, cloud com-
puting
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1 INTRODUCTION
Serverless computing enables the deployment of applications with-
out the burden of managing the computing infrastructure (e.g., [5]).
In the last few years, we are witnessing the increasing adoption
of serverless for organizations using cloud services; for example,
in 2023, Datadog declared that up to 70% of its customers use at
least one serverless function1. The diffusion of serverless has been
also boosted by the Function-as-a-Service (FaaS) offering by cloud
providers, where customers can execute code (or functions) in re-
sponse to events, thus drastically simplifying the infrastructure
operations typically associated with microservices applications.

Recently, two major trends have involved serverless computing.
First, besides traditional cloud environments, serverless has been in-
creasingly adopted at the edge of the network as well (e.g., [20, 22]).
Second, its adoption is not limited to stateless functions any more,
with functions often recurring to external data stores to exchange
partial computation outcomes or to persist their internal state
(e.g., [5, 19, 31]). Function state usually consists of key-value pairs
(e.g., [13, 26, 30, 31]). While in cloud environments it is reasonable
to rely on centralized storage services to save state information
(e.g., object storage, in-memory stores), in edge-cloud environments
state can be distributed across edge and cloud nodes to increase
data locality. Therefore, traditional cloud serverless platforms, such
as OpenWhisk and OpenFaaS, do not well fit the features of the
emerging environment (e.g., [8]). First, they do not consider la-
tency and bandwidth between edge-cloud resources, which can be
particularly relevant for functions with stringent latency require-
ments. Second, by not explicitly considering data dependencies
of functions, they do not often optimize for data locality or data
movement. Most of recent research efforts on stateful serverless
focus on running functions in logically centralized clouds, thus
neglecting the impact of heterogeneous resources on performance
(e.g., [9, 26, 27]). As functions usually recur to external data stores
to persist their state, other research efforts propose to make explicit
data intents of functions (e.g., [20, 27]), to co-locate functions with
their data (e.g., [26, 28]), or to optimize over an explicit data de-
pendency model (e.g., [2, 19]). While the first approach moves the
complexity of managing data dependencies to users and developers,
the others leverage rather simple data models, which do not con-
sider the heterogeneity of data and access patterns, as well as its
geographic distribution. To the best of our knowledge, the efficient
execution of stateful serverless edge functions is still an open issue.

1https://www.datadoghq.com/state-of-serverless/
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In this paper, we study the allocation of functions and associ-
ated state in geo-distributed environments. Since the performance
uncertainty affecting FaaS platforms is a frequent concern for de-
velopers, we envision a setting where developers and serverless
providers stipulate a Service Level Agreement (SLA), enabling the
autonomous execution and management of stateful serverless func-
tions with possibly stringent performance requirements. The SLA
helps define the target function performance, through Service Level
Objectives (SLOs), to be met at run-time as well as the penalties
paid by the platform provider whether these expectations are disre-
garded. We focus on policies for such a serverless edge computing
environment. Differently from existing works (e.g., [2, 19, 20]), we
explicitly model the heterogeneity of computing, storage, and net-
working devices as well as data dependencies of functions. The
core contributions of this paper are as follows. First, we present a
conceptual Decentralized Stateful Serverless Platform (DS2P) that in-
cludes the mechanisms where the proposed policy can be installed.
Second, we present a SLO-aware offloading strategy for allocating
functions to edge and cloud nodes that explicitly considers the
time to access their data and aims to meet the SLOs stipulated in
SLAs. Then, we also propose a state-aware data migration policy
that relocates data at run-time, aiming to further improve applica-
tion performance while limiting penalty costs paid by the platform
provider. Ultimately, we extensively evaluate the proposed policies
by investigating the impact of different configuration parameters
as well as their scalability.

The remainder of the paper is organized as follows. We present
the system model, the problem under investigation, and the main
assumptions in Sect. 2. In Sect. 3, we overview the proposed solution
by presenting DS2P, which offers mechanisms for running the
policy we focus on in this paper. The function offloading and data
migration policies are then presented in Sect. 4 and evaluated in
Sect. 5. In Sect. 6, we discuss related works and conclude in Sect. 7.

2 SYSTEM MODEL AND PROBLEM
STATEMENT

We consider serverless applications, where user-defined code can
be executed without allocating and managing virtualized servers
and resources, or being concerned about other operational aspects.
The responsibility for operational aspects is offloaded to the ser-
vice provider. Serverless applications consist of multiple functions,
whose trigger is usually an HTTP request, a cloud event, or a
scheduler. Functions are commonly used to implement APIs, asyn-
chronous processing, batch tasks, or operations tasks [5]. Most
functions are very short-lived, running for less than 1 minute (also
due to execution time constraints imposed by service providers).
Functions can be stateful or stateless, whether they need persistent
data to answer requests. Hereafter, we focus on stateful functions.

A serverless platform manages serverless applications to make
them available to users. Users from different network locations
can request function execution to obtain a service (e.g., [3, 18]) or
to manipulate data (e.g., [4, 11, 29]). To preserve the state across
invocations, serverless functions usually rely on external store to
persist data (e.g., [5, 11, 19]). According to [5], data volumes handled
by serverless applications follow a bimodal distribution: although

53% of applications handle less than 1 MB, 16% between 1 MB and
10 MB, a second peak of 16% of them handle more than 1 GB.

To run function instances, the serverless platform could lever-
age geographically distributed edge-cloud computing environment,
where edge and cloud nodes provide computing and storage re-
sources. Let 𝐹 be the set of all functions. Each function 𝑓 ∈ 𝐹 is
characterized by a memory demand𝑚𝑓 ∈ R and an execution time
on a reference architecture, 𝑟 𝑓 ∈ R. We model application state as
key-value pairs, where different keys can be allocated to different
storage nodes (e.g., [1, 14, 26, 31]). Let 𝐾 be the set of key-value
pairs, where each key 𝑘 ∈ 𝐾 is associated with a value, whose size
is 𝑙𝑘 . We assume that each function 𝑓 ∈ 𝐹 can access a subset of
key-value pairs in 𝐾 (with some keys possibly accessed by multiple
functions). As computing environment, we consider a system com-
prising 𝑁 distributed cloud and edge nodes. Each node in 𝑖 ∈ 𝑁 has
limited computing 𝐶𝑖 , memory𝑀𝑖 , and storage 𝑆𝑖 capacity. Nodes
𝑖, 𝑗 ∈ 𝑁 are interconnected with non-negligible network latency
𝑑𝑖, 𝑗 , i.e., the logical network link (𝑖, 𝑗) has 𝑑𝑖, 𝑗 ≥ 0. We denote
by 𝑏𝑖, 𝑗 the bandwidth of the logical network link (𝑖, 𝑗). Different
disjoint subsets of keys 𝐾 ′ ⊆ 𝐾 can be hosted on different nodes,
whereas a single key is hosted on a single node. We consider a
per-key placement, e.g., through client-side partitioning2, enabling
keys to be possibly distributed independently from one another. Al-
though sophisticated replication strategies can be designed, during
our first iteration of this study, we assume no data replication. Each
node handling a portion of the state can be used for both reading
and writing operations.

Problem Statement. Determining the allocation of functions and
data is critical to run latency-sensitive serverless functions. In the
computing environment under investigation, users request func-
tion execution from different locations. These functions can access
different portions of the data store, i.e., subsets of the keys in 𝐾 ,
which can be possibly located on far away nodes. Moving data
across different network locations introduces latency, which, in
turn, increases the overall function completion time. Moving large
data volumes might also introduce prohibitively long delays, calling
for adaptive relocation of function code and its execution on a node
close to the data store. Each function can exhibit its data access
pattern, which may also vary depending on the geographical zone
where the function is executed. The key issue relates to the hard-
ness of statically (i) distributing keys to data store instances and
(ii) deciding where function execution requests should be scheduled
(i.e., locally or to a remote computing node via offloading).

We assume that function developers stipulates a Service Level
Agreement (SLA) with the serverless platform provider, including
Service Level Indicators (SLIs), i.e., metrics, and Service Level Objec-
tives (SLOs), i.e., predicate over SLIs. Data location impacts on the
function running time. Therefore, we consider that each function
𝑓 ∈ 𝐹 exposes a SLO on the maximum data access latency, i.e.,
𝑇max
𝑓

, that should be met at run-time.3 Otherwise, the serverless
platform provider incurs in a penalty cost 𝜌 𝑓 ∈ R+ per unit of extra
time to access data that exceeds 𝑇max

𝑓
.

2https://redis-doc-test.readthedocs.io/en/latest/topics/partitioning/
3As it will be evident in the following, our approach can be readily adapted to cope
with different requirements (e.g., maximum response time).
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Figure 1: Overview of the architecture of a DS2P node.

Two key problems are considered. First, we need to identify
a function execution and offloading policy that determines where
to run a function instance among all the available (possibly geo-
distributed) computing resources. Second, we need to define a data
migration policy that possibly relocates data at run-time, so as to
satisfy the SLA between the function developer and the serverless
platform provider, in face of the current workload.

Assumptions. Any client can request the execution of any func-
tion in 𝐹 . To run a function, a client sends an execution request to
the closest node 𝑛 ∈ 𝑁 in the computing environment (likely, an
edge node in their proximity). Therefore, assuming that invocation
requests are always directed to the closest available node, we do
not explicitly model client locations in this work. Instead, we only
account for the locations of nodes in 𝑁 , in terms of network latency
among them.

The node 𝑛 ∈ 𝑁 receiving the client request is responsible for
scheduling the execution of the requested function: the node can
possibly decide to offload the execution to another node and, hence,
determine how data should be retrieved. To this end, we assume
that each node can instantiate any function as it caches a copy of
the code for all functions. To support offloading, nodes periodically
exchange state information, e.g., using a gossiping protocol (e.g., a
similar approach is implemented in [22]).

3 SOLUTION OVERVIEW
We propose Decentralized Stateful Serverless Platform (for short,
DS2P), an abstract decentralized FaaS platform designed for edge-
cloud computing environments. DS2P manages resources for func-
tion execution upon invocation and data storage. As most of FaaS
platforms, including OpenWhisk and OpenFaaS, functions run
within software containers, which are spawned as needed and
initialized with the required code and libraries. A DS2P node can
run on edge and on cloud resources; it implements the functional-
ity to receive execution requests, run functions, and interact with
other DS2P nodes. In DS2P, there are not privileged entry points for
function invocation: every node is able to schedule the execution
of incoming requests. Since edge nodes can have limited resource
capacity, DS2P allows nodes to offload execution requests to other
nodes, when needed.

The architecture of a DS2P node is depicted in Fig. 1. Its main
components include a Scheduler, a Local Data Store, a Data Proxy,
a Data Migrator, and a Container Pool. The Scheduler oversees re-
source allocation for function execution, as it decides whether to
execute requests locally, to offload them to other nodes, or to drop
them (e.g., during heavy-load periods). To this end, the Scheduler

Table 1: Main notation adopted in the paper

Symbol Description
𝐹 Set of functions
𝑚𝑓 Memory demand of 𝑓 ∈ 𝐹
𝑟 𝑓 Execution time on a reference architecture of 𝑓 ∈ 𝐹
𝑇max
𝑓

Maximum data access latency expressed by 𝑓 ∈ 𝐹
𝜌 𝑓 Unit penalty cost paid when 𝑇max

𝑓
is exceeded

𝐾 Set of keys
𝑙𝑘 Size of value associated to key 𝑘 ∈ 𝐾
𝑝 𝑓 ,𝑘 Estimated key access probability 𝑘 ∈ 𝐾 by 𝑓 ∈ 𝐹
𝑁 Set of edge nodes
𝐶𝑖 Computing capacity of node 𝑖 ∈ 𝑁
𝑀𝑖 Memory capacity of node 𝑖 ∈ 𝑁
𝑆𝑖 Storage capacity of node 𝑖 ∈ 𝑁
𝑠𝑖 Computation speed-up of node 𝑖 ∈ 𝑁
𝑑𝑖, 𝑗 Network latency between 𝑖, 𝑗 ∈ 𝑁
𝑏𝑖, 𝑗 Network bandwidth between 𝑖, 𝑗 ∈ 𝑁

can be equipped with custom policies, such as the one we present
in Sect. 4.1. The Local Data Store is a key-value store aimed to store
function data. It can be implemented using, e.g., Redis, Hazelcast,
or Anna. The Data Proxy has the responsibility of (i) proxying data
access operations, and (ii) characterizing the workload of each func-
tion (i.e., which keys they use, type of operation, frequency). The
Data Proxy internally exposes a data distance table, which reports
the estimated latency due to data read/write operations, to the
Scheduler and Data Migrator. The Data Migrator can periodically
relocate key-value pairs by interacting with other DS2P nodes. In
the decentralized architecture of DS2P, each Data Migrator handles
a subset of keys, i.e., those physically co-located on the DS2P node.
Nonetheless, in the following, we assume a logically centralized
Migrator that manages all keys stored in the system. Sect. 4.2 pro-
poses a policy to determine when and which key should be more
conveniently relocated.

4 FUNCTION AND DATA ALLOCATION
POLICIES

In this section, we propose the policies for solving the function
execution and offloading problem, as well as the data migration
problem. Main notation is reported in Table 1.

4.1 Function Scheduling and Offloading
We propose a SLO-aware offloading policy that aims to allocate
functions by minimizing their completion time and by fulfilling
the SLO on the data access time. Basically, SLO-aware offloading
estimates the function completion time both on local node and
on other nodes. Since we consider stateful functions, this time is
influenced by the access latency of keys used by the function. Then,
the policy selects the configuration leading to minimum function
completion time, among those satisfying the SLO.

For each function 𝑓 ∈ 𝐹 , wemaintain an estimate of its key access
probability, i.e., 𝑝 𝑓 ,𝑘 ∈ [0, 1] with 𝑘 ∈ 𝐾 . Such information can be
estimated by tracing function data accesses (either in historical
traces or at run-time) or, if possible, through static code analysis.
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Local Execution. When a node 𝑖 ∈ 𝑁 receives an execution re-
quest for function 𝑓 ∈ 𝐹 , it checks the execution configuration
(i.e., local or offloading) leading to lower response time. First, it
estimates the completion time𝑇 𝑓

𝑖
assuming that the function 𝑓 will

be executed locally on 𝑖:

𝑇
𝑓

𝑖
= 𝑇 exec

𝑓 ,𝑖
+𝑇 data

𝑓 ,𝑖
(1)

this term consists of two contributions, respectively the code ex-
ecution time of 𝑓 , 𝑇 exec

𝑓 ,𝑖
,4 and the average data access time 𝑇 data

𝑓 ,𝑖
,

which can be defined as follows:

𝑇 exec
𝑓 ,𝑖

=
𝑟 𝑓

𝑠𝑖
(2)

𝑇 data
𝑓 ,𝑖

=
∑︁
𝑘∈𝐾

𝑝 𝑓 ,𝑘𝑇
data(𝑘 )
𝑓 ,𝑖,loc(𝑘 ) (3)

where 𝑟 𝑓 is the function execution time on a reference architecture,
𝑠𝑖 is the computation speed-up of node 𝑖 , 𝑝 𝑓 ,𝑘 is the access proba-
bility of 𝑘 by the instance of 𝑓 , and loc(𝑘) returns the node hosting
key 𝑘 . 𝑇 data(𝑘 )

𝑓 ,𝑖, 𝑗
is the access time of state 𝑘 by 𝑓 , when 𝑓 runs on

𝑖 and 𝑘 is stored on 𝑗 ∈ 𝑁 , with 𝑗 = loc(𝑘); it models the delay to
copy the value corresponding to the key from its location 𝑗 to 𝑖:

𝑇
data(𝑘 )
𝑓 ,𝑖, 𝑗

= 𝑑𝑖, 𝑗 +
𝑙𝑘

𝑏𝑖, 𝑗
+ 𝑑 𝑗,𝑖 (4)

where 𝑑𝑖, 𝑗 is the network delay between 𝑖 and 𝑗 , 𝑙𝑘 is the size of
data associated to 𝑘 , and 𝑏𝑖, 𝑗 is the bandwidth between nodes 𝑖 and
𝑗 .5

Local execution of 𝑓 is admissible, if 𝑇 data
𝑓 ,𝑖

≤ 𝑇max
𝑓

and its re-
quired memory fits the spare capacity of 𝑖 , i.e.,𝑚𝑓 ≤ �̄�𝑖 .

Offloading. Afterwards, the node 𝑖 estimates the time to run
𝑓 ∈ 𝐹 when the computation is offloaded to another node. Due to
data dependencies, we only consider as candidate the nodes hosting
at least a key accessed by 𝑓 . Having to transfer function inputs and
later collect its output, the completion time of 𝑓 , when offloaded
from 𝑖 to 𝑗 , with 𝑖, 𝑗 ∈ 𝑁 , is defined as follows:

𝑇
𝑓

𝑖, 𝑗
= 𝑇 𝑖𝑛𝑖, 𝑗 +𝑇

𝑜𝑢𝑡
𝑗,𝑖 +𝑇 exec

𝑓 , 𝑗
+𝑇 data

𝑓 , 𝑗
(5)

where𝑇 𝑖𝑛
𝑖, 𝑗

is the time to move the function input from 𝑖 to 𝑗 ,𝑇𝑜𝑢𝑡
𝑖, 𝑗

is
the time to collect the computation results from 𝑗 back to 𝑖 ,𝑇 exec

𝑓 , 𝑗
is

the time to execute 𝑓 on 𝑗 (as in (2)), and 𝑇 data
𝑓 , 𝑗

is the average data
access time of 𝑓 in 𝑗 (as in (3)). The first two terms can be formally
defined as follows:

𝑇 𝑖𝑛𝑖, 𝑗 =
𝑙 in
𝑓

𝑏𝑖, 𝑗
+ 𝑑𝑖, 𝑗 (6)

𝑇𝑜𝑢𝑡𝑗,𝑖 =

𝑙out
𝑓

𝑏 𝑗,𝑖
+ 𝑑 𝑗,𝑖 (7)

4In this work, we assume that invocation requests do not experience any queueing
delay, similarly to what happens in commercial FaaS platforms (e.g., AWS Lambda).
Moreover, we assume that performance interference among functions is negligible
in the considered computing environment. Note that—with no loss of validity of the
proposed approach—more complex models of the execution time can be considered
instead.
5We consider a simple model of data transfer times. More accurate models accounting,
e.g., for possible packet re-transmissions and pipelining issues, can be plugged into
our approach with no loss of validity.

where 𝑙 in
𝑓
and 𝑙out

𝑓
represent respectively the size of input and output

data.
Offloading 𝑓 ∈ 𝐹 to 𝑗 ∈ 𝑁 is admissible, if 𝑇 data

𝑓 , 𝑗
≤ 𝑇max

𝑓
and

𝑚𝑓 ≤ �̄�𝑗 , where �̄�𝑗 is the spare memory capacity of 𝑗 .

Scheduling. At this point, the node 𝑖 has all the ingredients to
determine where to schedule the function. Among admissible con-
figurations, the policy chooses the one leading to lower expected
completion time: the best candidate for offloading is the node 𝑗∗

with minimum completion time 𝑇 𝑓
𝑖, 𝑗∗ , i.e., 𝑗

∗ = arg min𝑗∈𝑁 ′
(
𝑇
𝑓

𝑖, 𝑗

)
,

among admissible nodes 𝑁 ′. If local execution is eligible and 𝑇 𝑓
𝑖

≤
𝑇
𝑓

𝑖, 𝑗∗, then 𝑓 is executed on 𝑖; otherwise, 𝑓 is offloaded to 𝑗∗. If no
configuration is admissible, the node 𝑖 returns an error as 𝑓 cannot
be executed while meeting the agreed SLA.

4.2 Data Migration
The Data Migrator can periodically relocate keys among nodes so
to reduce the completion time of functions by lowering their data
access time. We formulate state-aware data migration as an Integer
Linear Programming (ILP) problem.

Let 𝑥 (𝑘 )
𝑖

∈ {0, 1} be a binary variable such that 𝑥 (𝑘 )
𝑖

= 1 if 𝑘 ∈ 𝐾
is allocated on 𝑖 ∈ 𝑁 ; 0 otherwise. The data migration policy can
relocate keys across resources aiming to fulfill the SLA of functions.
We consider SLAs with a SLO on the average data access time.

Data Access Time. We define as 𝑇 data(𝑘 )
𝑓

the average data access
time of state 𝑘 ∈ 𝐾 experienced by function 𝑓 ∈ 𝐹 :

𝑇
data(𝑘 )
𝑓

=
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑝 𝑓 ,𝑘𝑇
data(𝑘 )
𝑓 ,𝑖, 𝑗

𝑥
(𝑘 )
𝑗

(8)

where 𝑇 data(𝑘 )
𝑓 ,𝑖, 𝑗

is the average access time of state 𝑘 ∈ 𝐾 stored in
𝑗 ∈ 𝑁 , when 𝑓 runs on 𝑖 ∈ 𝑁 ; it is defined in (4).

Migration Time. Data relocation does not come for free, as we
need to transfer one or more key-value pairs across the network.
In some cases, this activity may be too expensive and we may
prefer to completely avoid it. In the data migration policy we model
migration time as follows:

𝑇
mig(𝑘 )
𝑖, 𝑗

=

(
𝑑𝑖, 𝑗 +

𝑙𝑘

𝑏𝑖, 𝑗
+ 𝑑 𝑗,𝑖

)
𝑦
(𝑘 )
𝑖, 𝑗

(9)

where 𝑦 (𝑘 )
𝑖, 𝑗

is a binary variable indicating whether 𝑘 ∈ 𝐾 has to
migrated from 𝑖 ∈ 𝑁 to 𝑗 ∈ 𝑁 .

We can define 𝑦 (𝑘 )
𝑖, 𝑗

through auxiliary constant terms, 𝑥 (𝑘 )
𝑖

, indi-
cating where 𝑘 was hosted on 𝑖 before solving the ILP. Conceptually,
𝑦
(𝑘 )
𝑖, 𝑗

represents the logical AND between 𝑥 (𝑘 )
𝑖

and 𝑥 (𝑘 )
𝑗

; formally,

we define 𝑦 (𝑘 )
𝑖, 𝑗

as:

𝑦
(𝑘 )
𝑖, 𝑗

≤ 𝑥 (𝑘 )
𝑗

∀𝑖, 𝑗 ∈ 𝑁 (10)

𝑦
(𝑘 )
𝑖, 𝑗

≤ 𝑥 (𝑘 )
𝑖

∀𝑖, 𝑗 ∈ 𝑁 (11)

𝑦
(𝑘 )
𝑖, 𝑗

≥ 𝑥 (𝑘 )
𝑖

+ 𝑥 (𝑘 )
𝑗

− 1 ∀𝑖, 𝑗 ∈ 𝑁 (12)
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SLA Violations. To identify the SLA violations for function 𝑓 ,
we resort to excess variables 𝛿𝑓 ∈ R+ and 𝛿𝑓 ,𝑘 ∈ R+, and slack
variables 𝑧𝑓 ,𝑘 ∈ R+; they indicate how much the data access time
is, respectively, above or below the SLO. Formally, we have:

𝑇
data(𝑘 )
𝑓

+ 𝑧𝑓 ,𝑘 = 𝑇max
𝑓

+ 𝛿𝑓 ,𝑘 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (13)

𝛿𝑓 ≥ 𝛿𝑓 ,𝑘 ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (14)

We assume that, when the SLA is violated, the serverless platform
provider pays, to the owner of 𝑓 , a penalty 𝑃𝑓 proportional to 𝛿𝑓 :

𝑃𝑓 = 𝜌 𝑓 𝛿𝑓 ∀𝑓 ∈ 𝐹 (15)

where 𝜌 𝑓 is the unit of penalty cost. Other formulations of 𝑃𝑓 could
be easily considered.

Objective Function. To compute the migration strategy, we need
to express the goal function, which formally defines the idea of “best”
data placement among all possible solutions. We resort to a simple
function F that minimizes the violations of the functions’ SLA and
the time tomigrate key-value pairs (9). The latter controls how often
data should be relocated: ideally, we want to avoid moving heavy
data too often. We formulate the objective function of state-aware
data migration as:

min F + 𝑍 (16)

with:

F =
∑︁
𝑓 ∈𝐹

𝑤𝑝𝑃𝑓 +
∑︁
𝑘∈𝐾

∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁

𝑤𝑚

𝑇
mig(𝑘 )
𝑖, 𝑗

𝑇
mig(𝑘 )
max

(17)

𝑍 =
∑︁
𝑓 ∈𝐹

∑︁
𝑘∈𝐾

𝑧𝑓 ,𝑘 (18)

where F is the objective function and 𝑍 is a technical term to
correctly define the slack and excess variables. Moreover,𝑤𝑝 ,𝑤𝑚 ≥
0,𝑤𝑝 +𝑤𝑚 = 1, are weights for the different contributions of the
objective function, and 𝑇mig(𝑘 )

max is a normalization term defined as
𝑇
mig(𝑘 )
max = max𝑖, 𝑗∈𝑁×𝑁

(
𝑇
mig(𝑘 )
𝑖, 𝑗

)
.

Constraints and Domain. Storing a key-value pair on a node
requires modeling capacity constraints, namely:∑︁

𝑘∈𝐾
𝑙𝑘𝑥

(𝑘 )
𝑗

≤ 𝑆 𝑗 ∀𝑗 ∈ 𝑁 (19)∑︁
𝑗∈𝑁

𝑥
(𝑘 )
𝑗

= 1 ∀𝑘 ∈ 𝐾 (20)

where 𝑆 𝑗 is the spare storage capacity of node 𝑗 before solving
the optimization problem, and (20) ensures that a specific key is
allocated on a single node at a time. 𝑆 𝑗 can be readily defined as
𝑆 𝑗 = 𝑆 𝑗 −

∑
𝑘∈𝐾 𝑙𝑘𝑥

(𝑘 )
𝑗

.

Table 2: Average execution time,memory demand and default
arrival rate of the functions used in the experiments.

Function 𝑓 𝑟 𝑓 𝑚𝑓 _𝑓
𝑓1 0.40 s 512 MB 8 req/s
𝑓2 0.20 s 512 MB 16 req/s
𝑓3 0.30 s 128 MB 42 req/s
𝑓4 0.25 s 1024 MB 6 req/s
𝑓5 0.45 s 256 MB 14 req/s

The ILP formulation also includes domain constraints for each
variable used in all the previous equations:

𝛿𝑓 ∈ R+ ∀𝑓 ∈ 𝐹 (21)

𝛿𝑓 ,𝑘 ∈ R+ ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (22)

𝑧𝑓 ,𝑘 ∈ R+ ∀𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹 (23)

𝑦
(𝑘 )
𝑖, 𝑗

∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (24)

𝑥
(𝑘 )
𝑖

∈ {0, 1} ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑁 (25)

Equations (8)–(25) formulate the state-aware data migration prob-
lem.

5 EVALUATION
We evaluate the proposed policies by simulation. We implement
the simulator in Python.6 In this section, we first describe the ex-
perimental setup and then present the results.

5.1 Experimental Setup
Infrastructure.We consider a FaaS system comprising a total of
10 nodes, divided as 5 cloud nodes and 5 edge nodes, which can
both execute functions and store key-valued state. The infrastruc-
ture comprises an additional cloud node, indicated as data store,
which only stores state information. Memory capacity is set to
64 GB for cloud nodes and 4 GB for edge nodes. For simplicity,
we consider an identical CPU speedup value for all the nodes. We
randomly generate network latency values for all the pairs of nodes
in the infrastructure. Specifically, edge-to-edge latency is uniformly
sampled from [1, 20] ms; latency between edge and cloud nodes
(including the data store) is uniformly sampled from [5, 100] ms;
cloud-to-cloud latency is uniformly sampled from [1, 10] ms for
FaaS nodes, and from [1, 20] ms for cloud-to-data store communi-
cation. As regards network bandwidth, we set it to 100 Mbps for
edge-to-edge and edge-to-cloud communication, and 1 Gbps for
cloud-to-cloud communication.

Functions and invocations. We consider 5 functions, with dif-
ferent resource demands, as indicated in Table 2, and exponentially
distributed execution times. Invocation requests to the functions
are modeled as independent Poisson arrival processes, where the in-
vocation rate (reported in Table 2) is chosen to have equal expected
memory utilization for all functions.

We consider twoworkload settings, where (i) invocation requests
for all the functions are uniformly distributed across edge nodes
(W1); and, (ii) invocations request for each function are directed

6The software is publicly available: https://zenodo.org/doi/10.5281/zenodo.10590302
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Table 3: Experimental results in the workload scenario W1.

Policies Avg. Penalty Resp. Time (s)
𝑇𝑚𝑎𝑥
𝑓

(s) Data Placement Offloading ($/req) ×10−1 SLO Viol. (%) Migr. Data (MB) 𝑃50 𝑃95

0.1 No Migration Greedy-local 1.7522 61.3518 0.0 0.5833 1.6209
0.1 No Migration Greedy-data 0.0093 5.3667 0.0 0.3112 1.0684
0.1 No Migration SLO-aware 0.0087 5.9523 0.0 0.3154 1.0630
0.1 Random Greedy-local 1.2317 69.8047 384.0 0.5783 1.4500
0.1 Random Greedy-data 0.7868 56.0006 388.4 0.4748 1.2800
0.1 Random SLO-aware 0.0835 15.0189 345.9 0.3461 1.1689
0.1 Greedy Greedy-local 1.7504 65.7991 254.6 0.6242 1.5632
0.1 Greedy Greedy-data 0.0006 0.2587 204.2 0.3194 1.0763
0.1 Greedy SLO-aware 0.0005 0.3752 232.6 0.2834 1.0426
0.1 State-aware Greedy-local 1.4318 53.2727 7.4 0.5386 1.5652
0.1 State-aware Greedy-data 0.0015 0.7404 7.4 0.3187 1.0765
0.1 State-aware SLO-aware 0.0004 0.5055 8.3 0.2900 1.0482

0.2 No Migration Greedy-local 1.5213 47.2753 0.0 0.6083 1.6715
0.2 No Migration Greedy-data 0.0000 0.0000 0.0 0.3337 1.0918
0.2 No Migration SLO-aware 0.0000 0.0000 0.0 0.3188 1.0754
0.2 Random Greedy-local 0.7323 46.5192 339.1 0.5797 1.4774
0.2 Random Greedy-data 0.5394 38.8161 390.4 0.5113 1.3215
0.2 Random SLO-aware 0.0620 11.8700 307.5 0.4011 1.2429
0.2 Greedy Greedy-local 1.1246 48.9581 206.2 0.6159 1.5650
0.2 Greedy Greedy-data 0.0000 0.0000 256.3 0.3147 1.0715
0.2 Greedy SLO-aware 0.0122 1.4703 225.9 0.2928 1.0497
0.2 State-aware Greedy-local 1.0295 40.3417 7.4 0.5415 1.5803
0.2 State-aware Greedy-data 0.0000 0.0000 7.9 0.3131 1.0699
0.2 State-aware SLO-aware 0.0000 0.0000 7.5 0.2888 1.0473

to a single edge node, with functions assigned to edge nodes in a
round-robin fashion (W2).

Policies. For comparison against our proposed policies, we con-
sider the following baseline approaches for function offloading:

• Greedy-local (GrL for short): local execution is always
preferred; if the local node runs out of memory, requests are
offloaded to the closest cloud node;

• Greedy-data (GrD): a simplified variant of our state-aware
approach, where we always schedule function execution
so as to minimize the amount of state data that must be
retrieved through the network.

For data migration, we consider the following baselines:
• No Migration: keys are never migrated;
• Random: randomly assign keys to nodes;
• Greedy: move each key to the node that ranks first in remote
accesses to that key; to compute the ranking, we use a custom
metric defined as the product of the data requests rate coming
from the node and the estimated network latency between
the node and the current key location.

State.We consider a total of 100 state keys in the system, and
assume that each function accesses (i.e., reads or updates) up to 5
keys during execution. The set of keys accessed by each function is
randomly sampled, and we consider two different scenarios where
the probability of accessing a key follows, respectively, (i) the Zipf
and (ii) the uniform distribution. In the latter scenario, the same

key is rarely accessed by more than a single function, whereas
few popular keys exist in the former. Each state access for every
function occurs with a probability value uniformly sampled from
{0.1, 0.25, 0.5, 0.75, 0.9, 1.0}. As regards the size of the data associ-
ated with each key, inspired by the observations reported in [21],
we consider a bimodal distribution defined as a mixture of two
Gamma random variables with shape 𝑘 = `10−4 and scale \ = 104,
with ` ∈ {104, 107} bytes. At the beginning of each experiment, we
assume all the key-value pairs to be stored in the data store node
in the cloud.

Other parameters.We simulate system execution for one hour,
replicating every experiment 10 times. Data migration policy is
activated every 120 seconds. We consider different values for the
maximum data access time requirement 𝑇𝑚𝑎𝑥

𝑓
∈ {0.1, 0.2}s, assum-

ing it to be identical for all the functions. The penalty cost unit
associated with SLO violations is set as 𝜌 𝑓 = 1 $/s.

5.2 Offloading and Data Migration Policies
Table 3 reports the simulation results for the first considered work-
load scenario (W1) and the Zipf distribution for key popularity.
In this workload scenario, invocation requests are uniformly dis-
tributed to edge nodes, meaning that the keys needed by each
function will be necessarily accessed from multiple locations. Con-
sidering the stricter SLO requirement of having data accessedwithin
100 ms (also depicted in Fig. 2), we observe that guaranteeing the
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Figure 2: Results in the workload scenario W1, with 𝑇𝑚𝑎𝑥
𝑓

= 0.1s.
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desired service level cannot be simply achieved using any set of
policies. Specifically, the experiments demonstrate the importance
of devising and adopting state-aware policies.

With no data migration policy enabled, it is particularly evident
the impact of state-aware offloading. Indeed, the Greedy-local policy
fails to meet the SLO for more than 50% of the served requests in
this setting, demonstrating that simply ignoring data locality is not
a successful approach in presence of stateful functions. State-aware
policies (i.e., Greedy-data and SLO-aware) manage to significantly
reduce the number of SLO violations, keeping them below 10% of
the served requests.

To further improve the results, we need the ability to relocate
data out of the centralized data store. For this purpose, we consider
the baseline case of a random migration approach. However, ran-
dom migrations—as expected—only worsen the situation for all the
offloading policies. They also cause a significant amount of data to
be migrated throughout the experiment (up to 400 MB in 75% of
the cases).

Interestingly, the Greedy migration policy fails to improve the
situation compared to the no-migration scenario when coupledwith
Greedy-local offloading. Conversely, when paired with state-aware
offloading policies, SLO violations are less than 1% and the paid
violation penalty significantly decreases as well, both for Greedy-
data and SLO-aware. Compared to the Greedy migration approach,
our State-aware approach achieves even better results. While it also
keeps violations below 1%, it reduces the amount of migrated data
from about 200 MB to less than 10 MB, avoiding the oscillations of
the Greedy data migration policy.

Looking at the overall request response times, we can further
observe that the SLO-aware offloading policy performs slightly
better than Greedy-data, avoiding unnecessary execution offloading
based on expected SLO satisfaction. Therefore, the combination of
State-aware data migration and SLO-aware offloading (i.e., the two
policies we propose in this paper) leads to the best results in this
scenario.

When considering a less strict SLO requirement, i.e., 𝑇𝑚𝑎𝑥
𝑓

=

200 ms, all the policies experience fewer SLO violations and the
impact of data migration decreases. Nevertheless, adopting a proper
offloading policy is still fundamental to achieve acceptable perfor-
mance, with Greedy-local largely failing to meet SLO requirements
even in this scenario. State-aware offloading policies completely
avoid paying SLO violation penalties in this scenario. The impact of
data migration is still visible looking at overall response times. Com-
pared to the baseline scenario with no migrations, the state-aware
key placement reduces median response times by about 10%.

Similar results are observed in the alternative workload scenario
W2, where invocation requests for each function are directed to
a single edge node. As illustrated in Fig. 3, the different workload
dynamics do not alter the relative performance of the policies we
compare. It is only worth observing that the Greedy-local policy
performs slightly better, especially in terms of overall response
times. This is explained by the fact that having a limited number of
functions to handle at each edge node favors container reuse and,
hence, reduces memory contention for local execution. However,
this policy still fails to meet SLO expectations in terms of data
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Figure 4: Execution time of the State-aware migration policy.

access time and causes the provider to pay a significant amount of
penalties.

Due to space limitations, we do not show the results obtained
with reduced key contention among functions (i.e., using uniform
key popularity rather than Zipf), as they lead to the same consider-
ations reported above.

Overall, our experiments demonstrate that the proposed State-
aware data migration and SLO-aware offloading represent the best
policies, allowing the provider to minimize the monetary penalties
associated with SLO violations, while also leading to the lowest
response times.

5.3 Scalability
Throughout the experimental campaign, we kept track of the com-
putational overhead imposed by policy execution. As expected, the
State-aware data placement policy, based on ILP resolution, is the
most demanding one. Figure 4 shows the execution time of the pol-
icy varying the number of functions and computing nodes in the
system, with the ILP resolved using IBM CPLEX® (version 12.6.2.0).

It can be observed that the computational overhead is lower than
2 s with 10 computing nodes and grows to less than 10 s with 35
nodes. The observed overhead looks acceptable, especially as the
computation of data migrations can be performed asynchronously
with respect to function execution. Nonetheless, we plan to explore
heuristic resolution strategies in the future to further reduce the
execution time of the policy.

6 RELATEDWORK
The serverless paradigm requires platform providers to transpar-
ently manage infrastructure operations, possibly in face of (strin-
gent) SLAs. We classify the existing research efforts into two cate-
gories, according to their main focus. A large set of papers considers
functions and their scheduling on computing resources, whereby
data strictly depends on functions; data dependencies are modeled
at different degrees of granularity, including also implicit modeling.
Stressing the importance of data, other works treat data as first-class
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citizens, whereby it is assumed to be more convenient to execute or
relocate functions whenever needed. In this case, the key topics are
caching, replication, and consistency of data. In the following, we
analyze the key results, aiming to highlight the core contribution
of our work. To the best of our knowledge, the execution of stateful
serverless functions in edge-cloud environments is still an open
issue.

Function scheduling. Different solutions have been proposed so
far to allocate stateful functions. Basically, four main approaches
are pursued to model the dependency between functions and their
data: make explicit the data intent of functions through APIs or an-
notations; co-locate functions with their data; optimize data passing
among functions; and model data dependencies. Hence, different
function scheduling policies are designed.

To make explicit the data dependencies of functions, developers
enrich the metadata of functions with references to data (or bucket
of data) required during execution (e.g., [20, 25, 27]). Lambdata [27]
is the first approach that makes the intent of a function’s input
and output explicit for improved locality. Although the framework
works in a cloud environment, such information is exploited to
optimize functions execution, e.g., by running functions that read
same data on the same worker. Similarly, to ensure that functions
are scheduled close to their data, FaDO [25] provides a unified
interface to the various storage services, and defines a special HTTP
header to specify the required bucket on the function invocation
requests. In this case, functions are allocated on the requested
bucket, if possible. Data intent information is especially useful in
geographically distributed environments. To determine a trade-off
between data and computation movement in edge systems, Rausch
et al. [20] propose a greedy multi-criteria policy that selects the
best node for function scheduling by leveraging a scoring function
with four contributions: (1) proximity to data storage nodes at
edge locations; (2) proximity to the cloud-based container registry;
(3) availability of specialized hardware; and (4) matching of user-
annotated scheduling preferences between edge and cloud locality.

The second class of approaches resorts to co-location, thus con-
sidering data dependencies only implicitly. Co-location can be im-
plemented either through replication or caching (e.g., [26]), or by
running the function code on the storage node (e.g., [28, 32]). For
example, Cloudburst [26] is a popular stateful serverless platform
that co-locates compute and data. It employs an architecture with
distributed storage and caching on machines hosting functions. In a
preliminary work, Tiwary et al. [28] propose usingWebAssembly to
run serverless functions: exploiting lightweight virtualization, such
functions can be more efficiently executed directly on data sources.
The idea of pushing WebAssembly functions into storage has been
also exploited by Shredder [32], which realizes a single-node multi-
tenant cloud store that allows small units of computation to be
performed directly within storage nodes. Hetzel et al. [9] suggest
using an actor-based model, where each actor has its own locally
stored state. Actors only interact by exchanging messages.

Serverless applications are usually composed of multiple func-
tions that exchange intermediate (ephemeral) data. To this end,
three general approaches emerged: leverage a shared (remote) stor-
age (e.g., [6, 11, 15, 18]), exploit data locality to improve perfor-
mance (e.g., [10, 12, 14, 24, 26–28]), and perform direct transfer

(e.g., [14]). For example, SyncMesh [7] stores and processes data lo-
cally, so as to provide it to other nodes only on-demand. Conversely,
Sonic [14] optimizes application performance and cost by select-
ing among different data-passing methods for each (namely, local
storage, direct passing, remote storage). To this end, they model
cost and time needed to exchange data and use a Viterbi algorithm,
which guarantees to find the true maximum a-posteriori solution.
Wukong [3] enhances the locality of DAG-based parallel workloads,
by explicitly considering data that a function passes to downstream
functions directly connected in the graph. Xu et al. [30] propose
a more general approach, where functions can access data gen-
erated by upstream function (even if not directly connected). To
rule the complexity of model and uncertainty of data volumes and
delays, the authors resort to an online learning heuristic that aims
to co-locate functions and their data on groups of edge resources.
A slightly different perspective is presented in Zion [23], which
considers data flowing from storage gateways to storage nodes and
enables triggering functions on a data-driven basis (instead of an
event-driven basis).

To conclude, a few works explicitly model the relationship be-
tween functions and data (e.g., [2, 19]). For example, Puliafito et
al. [19] distinguish between stateless functions executed on server-
less, which can access a remote cloud storage, and stateful con-
tainers, with a locally attached persistence volume. The scheduling
problem, formulated as a mixed ILP (MILP), aims to find a trade-off
between the cost of transferring input and output data using the
network and a data access cost. First, stateful containers are allo-
cated; then, stateless functions are placed so to balance load among
nodes. The data model is rather simple, as it assumes that functions
exchange a fixed amount of data with a centralized cloud storage
system at each invocation. NEPTUNE [2] is a K3s-based platform for
running latency-sensitive serverless applications on geo-distributed
edge topologies. The authors formulate the application placement
as a MILP, considering CPU and GPU requirements and minimizing
the overall network delay. Currently, NEPTUNE only models net-
work traffic exchanged between functions, whereas their access to
external data stores is only partially modeled: the time to read from
and write on a database is modeled as non-controllable stationary
disturbance of the response time.

Data placement. The advent of serverless fostered the develop-
ment of novel approaches to store data. A fewworks build persistent
storage leveraging serverless, being cheaper than cloud computing
resources (e.g., [4, 11, 29]). These works do not explicitly consider
the presence of functions for computation, but provide convenient
storage abstractions.

Other works focus on data and consider serverless functions as
volatile, lightweight, and easily relocatable (e.g., [18, 31]). These
works usually do not optimize the allocation of resources for func-
tions, but mainly focus on data placement (e.g., [1]), replication
(e.g., [16, 17]), and caching (e.g., [26]). Building on Cloudburst [26],
Pheromone [31] proposes a data bucket abstraction that can be con-
figured with triggers specifying when the target functions should
be invoked and how their output should be passed to the next func-
tions in a workflow. To improve data locality, Pheromone uses a
two-layered scheduler, with a global coordinator that balances load
across nodes and drives the execution of function across multiple
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buckets, and a local scheduler that triggers functions execution on
each node. Pfandzelter et al. [17] propose a data replication middle-
ware that operates in a geographically distributed environments
and with heterogeneous resources. Although the middleware can be
used to optimistically replicate data on cloud and edge devices run-
ning serverless functions [16], currently it only blindly replicates
key-groups on every replica node (thus introducing inefficiencies
for writing operations). Conversely, the policy we propose helps to
identity the locations where it is more convenient to move data.

Contribution. To the best of our knowledge, policies for SLA-
aware execution of stateful functions in geo-distributed environ-
ments are missing. We consider serverless functions accessing ex-
ternal data stores, dealing with heterogeneous data access patterns
and non-uniform data size for different keys. This model agrees
with the evidences in [21].

The closest works to ours are [2, 19, 20]. As in [20], we con-
sider an edge-to-cloud computing environment, where computing
and storage nodes are interconnected with non-negligible network
delay. Nevertheless, we do not require the user to manually in-
dicate the data intent of functions. These access patterns can be
estimated (or learned) at run-time. Moreover, we propose a state-
aware data migration policy. Differently from [2, 19], we propose a
more detailed formulation of the data dependency model, by explic-
itly considering the data access patterns of functions. We leverage
this information to solve two main tasks, namely function offload-
ing and data migration. Both tasks consider that functions expose
requirements through a SLO on data access latency: hence, func-
tions and data cannot be located on distant nodes, otherwise the
serverless platform provider will pay penalties for SLA violation.
To the best of our knowledge, this is the first contribution that con-
siders a SLA-aware allocation of functions and data in edge-cloud
environment.

Finally, we acknowledge that our approach is far from being
fully-fledged. Indeed, we postpone to future work the integration
of more sophisticated techniques for improving replication, fault-
tolerance, and caching of data.

7 CONCLUSION
We investigated the problem of executing stateful serverless func-
tions in edge-cloud environments, providing guarantees about the
time required to access key-valued state. We proposed a set of
policies to control both function offloading (i.e., when and where
function execution should be offloaded to a remote node), and data
placement (i.e., how to relocate state data to better accommodate
the current workload). Simulated experiments demonstrate that
our approach provides the desired SLO guarantees, while avoiding
frequent data migrations and improving overall response times.

For future work, we plan to integrate our approach in an ex-
isting FaaS framework, and investigate efficient heuristics for the
resolution of the data migration problem.
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ABSTRACT
Caching is a classic technique for improving system performance by

reducing client-perceived latency and server load. However, cache

management still needs to be improved and is even more difficult in

multi-tenant systems. To shed light on these problems and discuss

possible solutions, we performed a workload characterization of a

multi-tenant cache operated by a large ecommerce platform. In this

platform, each one of thousands of tenants operates independently.

We found that the workload patterns of the tenants could be very

different. Also, the characteristics of the tenants change over time.

Based on these findings, we highlight strategies to improve the

management of multi-tenant cache systems.
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1 INTRODUCTION
Caching is a classic that never dies. From the bottom layers of

hardware CPU caches to the upper layers of web caches of cloud
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applications, caching reduces client-perceived latency and service

load.

To get the most out of a cache, one needs to understand the

characteristics of the workload submitted to the cache and configure

it accordingly. Failing to match parameters such as cache capacity

and eviction algorithms to the workload leads to direct impacts on

the quality of service (usually observed in miss/hit ratio indicators)

or resource waste (i.e., when the cache capacity is over-provisioned

and additional capacity does not improve performance).

As an example, when configuring a web cache system, a typical

starting point is to estimate the load level. The number of servers

used in a large cache service depends on this load-level information

since cache systems degrade when overloaded. Despite being useful,

one needs more than load levels to define other cache parameters.

For example, to determine cache capacity, it is necessary to consider

the popularity of cached items. Item popularity matters because

many requests sent to a cache might be related to a small number

of cached items, thus reducing the need for more cache capacity.

Also, caches typically show temporal locality [2]. Consequently,

the cache needs to retain only the current working set.

Practitioners are well aware of the importance of considering

these advises. However, one factor deviates practice from good

practice: multi-tenancy.

To illustrate, consider multi-tenant ecommerce platforms, the

case study of this paper. In these platforms, each tenant is an en-

terprise independent from the others; each tenant has its clients

and products. There must be tenants that sell more than others.

There must be tenants with large and small product inventories.

There must be tenants with seasonal and sporadic selling patterns.

However independent, the tenant’s ecommerce sites run on shared

resources and services (including caches) owned and managed by

the platform. Considering that cache services are sensitive to load

characteristics, as we described, and tenants are unlikely to have

the same workload, what are the challenges a multi-tenant cache

operator has to deal with?

To uncover these factors and highlight the challenges of multi-

tenant caching, we collected and analyzed a trace of one of the

cache services from VTEX, a large-scale ecommmerce platform
1
.

1
https://vtex.com
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The observed cache service supports a few thousand tenants for a

10 hours observation period.

We observed that the cache load varies up to three times, reach-

ing hundreds of thousands of requests per minute. Also, the load

follows the same overall platform traffic trend (high traffic until late

at night and lower traffic at dawn). However, we have a completely

different picture when we analyze tenants in isolation. Some ten-

ants exhibit stable load, others show a periodic load pattern, while

some show peak periods (even at unexpected hours). Also, the load

is highly concentrated among tenants: the 10% most loaded tenants

account for almost 80% of the aggregated load.

The item popularity is also concentrated. Around 10% of items

received about 50% of all requests. While there is a subset of very

popular items, there are many items on the opposite extreme; 69%

of the items are requested only one time (also known as one-hit

wonders).

We also analyzed the degree of repeated access to the same items

for each tenant. A high repetition degree indicates that the load is

cache-friendly. This is because, the higher the repetition, the higher

the chances of cache hits. Half of the tenants show less than 40%

of repetition; a direct implication is that these tenants cannot have

more than the 40% hit ratio, regardless of the cache configuration

and capacity. Repetition also varies over time. While some tenants

sustain low or high repetition during the observed period, others

change their behavior as time passes.

The remainder of this paper is organized as follows. Section 2

describes the procedure for collecting data from the ecommerce

platform in production. Section 3 describes the context and metrics

applied in the workload characterization presented in Section 4.

In addition, Section 5 describes the implications of the observed

workload characteristics for cache management. Section 6 presents

this research’s findings and future work.

2 SYSTEM OVERVIEW AND
INSTRUMENTATION

This section provides an overview of the Catalog system, the com-

ponent of the platform from which we collected cache information

(Section 2.1). We also describe the instrumentation procedure for

data collection on production servers (Section 2.2). Finally, we ex-

plain the data used in the analysis and describe how data normal-

ization is performed for anonymization purposes (Section 2.3).

2.1 Catalog Service
We collected data from a global business-to-consumer (B2C) and

business-to-business (B2B) ecommerce provider. This provider of-

fers tools and services to support ecommerce companies in creat-

ing and operating their online stores. This study focused on the

Catalog system. The Catalog system is responsible for managing

non-ephemeral product data (e.g., titles, descriptions, product iden-

tifiers, and enterprise identifiers) for all the tenants in the platform

using a cache layer to improve their Quality of Service (QoS).

The Catalog system is composed of three layers: i) the database

layer is responsible for the persistence of data and works as an

index for the product information; ii) the logic and load balancing

layer, responsible for providing access to product information and

load balancing of requests; and iii) the cache layer is the service

that temporarily stores product information for performance im-

provement. Figure 1 shows an overview of the system with the

three layers and their relationships.

Figure 1: Overview of the architecture of ecommerce plat-
form Catalog system. The cache layer stores database re-
sponses. The logic layer requests data from the database,
using the cache layer as a proxy. In case of a MISS, requests
are forwarded to the databases, and responses are cached. In
the case of a HIT, a cached response is directly returned from
the cache layer.

The Catalog services access the production information stored

on the database through HTTP using a key-value format to struc-

ture the data. A key is generated by hashing the URI that uniquely

identifies the request made to the database, and the value is the

descriptive information for the related product. A cache layer, imple-

mented as a cluster of NGINX [1] servers, is a proxy of the database

to the service layer. The cache layer returns product information

already cached by previous requests, thus reducing the load on the

database system and reducing the latency perceived by the clients.

As the ecommerce system provides Catalog services for different

online stores, the cache layer is shared by different tenants. Each

request for product information is related to a specific product of

a specific tenant in the same cache system. Thus, the cache stores

data from products of all tenants’ catalogs.

2.2 Data Collection
During our observation period, we activated a more verbose NGINX

logging mode to collect the data. The Catalog operates within a

high-traffic production environment, where misguided data instru-

mentation may cause disruption or system performance degrada-

tion. Therefore, we collected a 10% random sample of all requests

in 5-minute intervals to avoid affecting the reliability of the Cata-

log. An agent running on the cache service continuously sends the

log files to another server, to avoid fulfilling the NGINX servers’

disks. The observation period ranged from 21:00 to 7:00 GMT-3, on

December 13 and 14, 2022. After that, we stopped the observation

and resumed the NGINX logging level to its default value.

To support our analysis, the data we collected includes the in-

formation associated with the products requested to the Catalog,

cache status, and timing metadata. In summary, we considered the

following information for each observed request:

• The request URI. Product and tenant identifications are en-

coded as parameters in the URI;
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• Cache response status, which indicates when the cache an-

swered a request as aMISS or HIT (and other NGINX possible

statuses);

• The timestamp the request arrived at the cache layer;

• The identification of the NGINX node that received the re-

quests;

• The request-response wait time.

2.3 About the Data
The collected workload has up to tens of millions of requests. These

requests refer, approximately, to another tens of millions of products

from approximately a few thousand online stores. Notably, each

tenant exhibits unique and specific access patterns, which Section

4 will explore further.

To protect business-sensitive information, we anonymized the

dataset. All the data discussed in the following sectionswas anonymized

by applying the min-max normalization function. All the identifiers

were anonymized using a hash function. The data normalization

allows temporal comparison for all aggregated tenants, for one ten-

ant, as much as comparisons among tenants. For example, Figure

2 presents the normalized number of incoming requests received

per minute throughout the data collection period, illustrating the

overall variations and trends in request rates.

Figure 2: Normalized incoming request rates per minute for
all aggregated tenants. It highlights variations in the request
rate per minute and trends over the data collection period
where peak demand occurs at night, with a typical decline
in the dawn, followed by a resurgence of demand in the
following hours of the morning.

Furthermore, for this work, we have focused on three key data

fields crucial for understanding a multi-tenant cache system. These

fields include request timestamp, tenant identifier, and product (or

item) identifier.

3 BACKGROUND
In this section, we define the metrics we adopted to our charac-

terization analyzed in Section 4. While these metrics were already

described in the literature, some of them were not formally defined.

To evaluate the overall cache efficiency, we used the Hit Ratio.

This metric is the proportion of data requests that were successfully

met from the cache (referred to as Hit Status) relative to the total

number of requests made. Consider two multisets: R, containing all

data requests made during a specific period, and H, containing only

those requests fulfilled by the cache within the same period (𝐻 ⊆ 𝑅).

The Hit Ratio can be calculated using the following relation:

Hit Ratio =
|𝐻 |
|𝑅 | (1)

For example, consider a cache with a capacity of two items and

a sequence of requests for items, R = {"A": "MISS", "B": "MISS", "A":

"HIT", "A": "HIT", "C": "MISS", "B": "MISS", "A": "MISS"}, and a few hits,

represented by H = {"A", "A"}. To calculate the hit ratio, we divide

the number of hits by the total number of requests made, which in

this case is 2/7 or 0.29. This means that 29% of the requests were

successfully satisfied by the cache during the given time period.

To understand the demand, in addition to the number of requests

submitted to the cache, we considered the Footprint. The Footprint
metric measures the amount of data accessed within a specified

time window by quantifying the number of distinct requested items

in a given period [18]. This metric is essential for analyzing system

capacity utilization, as it allows us to see how many items are

requested in a given period. It also shares a close relationship with

the Working Set Size (WSS) theory, which helps to understand an

application’s memory requirements. Considering the sequence of

requests R and the set F (a subset of R) of distinct items requested,

the Footprint is defined as follows:

Footprint = |𝐹 | (2)

The Item Repetition Ratio (IRR) metrics, in its turn, gives

an indication on how a workload would take advantage of the

cache [9]. The IRR is an upper bound for the cache hit ratio for a

determined workload. Given the multiset P of repeated requests for

items in the period, the IRR is defined as follows:

𝐼𝑅𝑅 =
|𝑃 |
|𝑅 | (3)

For the previous example, P = {"A", "A", "B", "A"} and the IRR is

4/7 or 57.14%.

We also considered Temporal Locality in our characterization.

Temporal locality refers to the tendency of the same item to be

referenced within short intervals. It differs from concentration,

which refers to the aggregate reference counts for items, regardless

of the referencing order. Some metrics can be used to measure

temporal locality, for example, the LRU stack-depth [12] and Inter-

Reference Time [14]. In this work, we will focus on Inter-Reference
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Table 1: Normalized statistical measures of the number of
requests per minute. These statistics represent a substantial
difference between the mean and median to the maximum
value, suggesting a significant difference for the peaks.

Mean Median Max Min Std. Dev

0.41 0.37 1 0 0.20

Time [2]. This metric represents the time between references to

the same item. We calculated the mean of the Inter-Reference Time

(MIRT). MIRT sets itself apart from LRU stack-depth analysis by

focusing on the timing of data access rather than the order within

a stack. While LRU stack-depth provides insight into the sequence

in which a specific number of requests occurred within a particular

interval, MIRT’s primary objective is to define and analyze these

time intervals.

In addition to the metrics defined above, in the discussion pre-

sented in section 5, we adopted LRU as eviction policy. There is a

huge literature on eviction policies trade-offs and there are many

policies that can be better than LRU [7, 10, 11, 19, 20]. Notwith-

standing, we adopted LRU because: 1) it was the policy used by the

cache we observed (NGINX); and 2) some analytical methods (as

the one used in section 5) are based on LRU.

4 WORKLOAD CHARACTERIZATION
This section discusses the characteristics of the load submitted to

the cache of the Catalog system we observed. Section 4.1 focuses

on observing the demand for requests the caching system receives.

Next, section 4.2 explores the irregular popularity of the items

stored in the system, identifying "hot" and infrequently accessed

items. Section 4.3 highlights Footprint results, while section 4.4

presents IRR. Finally, section 4.5 evaluates the temporal locality of

the data by analyzing the Inter-Reference Time.

4.1 Request Load
The initial analysis centers on the volume of requests entering the

system over ten hours, as detailed in Table 1. The table provides

normalized statistical metrics derived from the load. The findings

reveal a mean of 0.41 and a median of 0.37, indicating that both

metrics deviate significantly from the maximum value. This sug-

gests a distribution pattern wherein a substantial proportion of

observations exhibit relatively low activity levels compared to the

peak request rate.

Regarding the temporal pattern of the request arrival, Figure 2

shows the number of requests per minute over time. The peak of

requests occurs in the evening — after working hours — when it is

common for demand for web services to be high. While there is a

tendency for demand to fall at daybreak, demand for services rises

again in the early hours of the morning [17].

The load is very concentrated in a small group of tenants: only

10% of tenants account for approximately 80% of all recorded re-

quests. Figure 3 illustrates the cumulative request count for each

tenant, ranked accordingly.

Tenants with a high number of requests can eventually worsen

the performance of tenants with a low number of requests. This

Figure 3: The cumulative sumof received requests, ranked by
descending number of requests by a tenant. A small number
of tenants are responsible for a large number of requests.

interference could happen when a burst of requests for new data

from tenants evicts other tenants’ popular data, so future requests

that can reuse this data will result in cache misses. Thus, tenants

with a high number of requests can quickly evict items and occupy

a big slice of the cache. This highlights the importance of the pro-

motion of fairness and mitigation of interference between tenants

in shared caches [3, 6, 13, 16].

The request load for each tenant also shows temporal variability.

This introduces an extra layer of complexity in resource alloca-

tion. Figure 4 illustrates the variation in the number of requests

over time for a sample of the biggest tenants. Some tenants exhibit

peaks in requests, indicating periods of significantly higher demand

than their usual levels. This may result from seasonal events, spe-

cial promotions, or product launches. Conversely, some tenants

maintain relatively constant activity over time, with no significant

fluctuations in request quantity. This suggests a more stable and

predictable traffic profile associated with a regular customer base.

Furthermore, some tenants may display intermittent request pat-

terns, alternating between intense activity periods and relatively

calmmoments. This oscillationmay be influenced by peak shopping

times or specific marketing actions.

These behaviors may indicate that system management could be

more dynamic and sensitive to tenants’ needs since the traditional

static resource allocation models can lead to provisioning problems.

A dynamic resource adjusts resource allocation based on the cur-

rent workload, trying to ensure that resources are neither wasted

nor insufficient. In this scenario, tenants with request peaks may

require more substantial cache allocations during these periods of

high demand. Conversely, tenants with stable request patterns may

benefit from conservative allocations.

In addition to the dynamic allocation of resources, the presence

of tenants with high demand at certain times also reinforces the

adoption of strategies to promote fairness and avoid inter-tenant

interference. This can reduce the effects caused by higher demand

in lower-demand customers.
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Figure 4: Request number variation over time for a sample
of the biggest tenants. Different access patterns emerge, with
some tenants experiencing request peaks, others displaying
fluctuations, and some exhibiting intermittent patterns.

Table 2: Frequency type distribution. There is a huge fraction
of the items that is requests only once.

Item Frequency Type Percentage

One Request 69%

Two Requests 13%

More Than Two Requests 18%

4.2 Concentration Of Access
Looking for requested items and evaluating the frequency of access,

we can see a discrepancy in popularity. Some can be classified as

"hot" itemswith a high access volume. These items are characterized

by their great popularity and constant demand. In contrast, other

items are rarely accessed and, in some cases, not accessed.

Figure 5 shows the non-uniform pattern in item referencing

behavior. Around 50% of all requests are directed at only 10% of

the distinct items in the system. This phenomenon suggests the

existence of a subset of items that are highly requested, while other

items show considerably less repetition. Braun and Claffy describe

this concentration phenomenon as a common characteristic of Web

traffic [4].

Also, as observed in Table 2, the portion of items that are accessed

only once (one-hit wonders) is very large. Items with no repeated

access could not take advantage of the cache. However, simply

ignoring an item in its first request can be a wrong choice because

this item can be re-accessed in the near future, not being a one-hit

wonder. Furthermore, the same table shows the percentage of two-

hit wonders, which must be understood if is a good choice to store

items like them too, since they will be reused only once. Therefore,

it is necessary to seek strategies that reduce the number of n-hit

wonders according to the particular cache objectives. Many policies

seek how to avoid storing unpopular items [5, 7, 8, 10, 20].

Figure 5: The cumulative sum of accesses per item, ranked
by decreasing the number of accesses. The curve experiences
rapid growth for a set of items, commonly called "hot" items.
A small number of items are accessed more frequently, while
the remaining are accessed sporadically. This pattern sug-
gests distinct popularity dynamics among the items.

4.3 Footprint
As mentioned in previous sections, the Footprint value depends on

the size of the window range chosen. For our trace, with a time

window of 10 hours, the Footprint is half the total of requests made

(tens of millions of requests). When we look at the Footprint per

tenant, we see a discrepancy in the distribution of Footprint values.

Figure 6 illustrates the distribution of Footprints among tenants,

highlighting a concentration of Footprint for a small portion of ten-

ants. In summary, the 10% of tenants represent a portion of around

75% of the total Footprint, suggesting that these entities may have

distinct usage patterns, potentially utilizing the system more in-

tensively or requiring more resources than the remaining majority.

On the other hand, the remaining 90% of tenants contribute only a

quarter of the total Footprint.

Additionally, the tenant’s Footprint varies over time, influenced

by their different workload patterns, such as changes in the number

of orders and access. As mentioned, variations in the observed time

window can lead to changes in the Footprint value. Figure 7 further

illustrates this dynamic, showing the variations in Footprint for the

six largest tenants. This emphasizes that a tenant’s Footprint can

change over time. Observing the Footprint in time windows can

help us understand the storage space requirements of each tenant

in the system over a given period.

4.4 Item Repetition Ratio
The data, with a time window of 10 hours, indicates variation in

IRR values among different tenants, suggesting that some tenants

are more adept at utilizing caching benefits, while others may not

exhibit behaviors favorable to caching. Figure 8 showsmany tenants

have low IRR. For example, around 50% of tenants have IRR less

than 40%. With low repetition, these tenants could be candidates for
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Figure 6: Cumulative distribution of Footprint. This illus-
trates the concentration of Footprint in a small portion of
tenants, around 75% of the total Footprint corresponds to 10%
of the tenants, so a small number of tenants occupy a large
slice of cached storage.

Figure 7: Footprint over time for a selected sample of the
biggest tenants by number of requests. This highlights the
variability in a tenant’s usage of resources throughout dif-
ferent periods of the day. Some tenants exhibit peaks and
valleys over time, while others consistently maintain either
a high or low usage Footprint.

not having items in the cache since their requests in a time window

are for different items, not contributing to the cache hit.

By decreasing the window size for adjacent one-hour windows,

we observe some IRR behaviors over time, as shown in Figure 9.

Some tenants show high IRR with slight variation, others low IRR

with little variation, and others show considerable variation in IRR

between windows. In addition to the tenants with a slightly variable

IRR, we also observed some that showed a large temporal oscillation.

This dynamic behavior emphasizes the importance of evaluating

the adequacy of the cache at specific time intervals. This approach

makes it possible to discern tenants whose caching behavior may

Figure 8: Cumulative distribution of Item Repetition Ratio.
Some tenants are better at reusing the cached data, taking
advantage of the cache usage. While others may not demon-
strate cache-friendly behavior, occupying memory and wors-
ening performance.

vary over time, thus requiring adaptive cache management strate-

gies for optimal performance. In this case, the system should ideally

have a mechanism for calculating IRR periodically that plays a cen-

tral role in fine-tuning cache capacity by selecting which tenant

should or should not be in the cache at a given time.

Figure 9: IRR over time for a selected sample of the biggest
tenants by number of requests. This illustrates diverse pat-
terns and variations in a tenant’s cache-friendliness.

Before entering the cache system, analyzing the tenants’ IRR

could be a strategy for allowing them in or not, section 5 will

describe this approach. For example, if the tenant’s IRR is high

and has little variation, it is a good candidate for cache entry. On

the other hand, if the IRR is low and with little variation, it is a

candidate for not entering the cache at any time.
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Table 3: MIRT statistical measures for the items.

Mean Median Max Min

0.26 0.19 1 0

4.5 Temporal Locality
The Inter-Reference Time can help us to understand the tendency

of reference to the items. Figure 10 exhibits the MIRT of the items

in the workload. As explained in Section 3, the MIRT is calculated

by finding the mean of the time intervals between references to the

same item. It is worth noting that items referenced only once lack

Inter-Reference Time values, making it impossible to calculate the

mean.

Figure 10: Percentage of items byMean Inter-Reference Time
ignoring items referenced only once. Most have MIRT lower
or equal to 150 minutes.

A significant portion of items have a MIRT lower or equal to 150

minutes, specifically 57.20% of them (including items referenced

once). Table 3 also reinforces this by showing that the measures of

central tendency (mean and median) are low. This is an indication

of good cache usage by the items. On the other hand, 42.80% of the

items have MIRT longer than 150 minutes. This indicates that many

items are idle during specific periods, taking up space in the cache.

Figure 11 shows the dynamic trend in item access patterns for

ten adjacent one-hour time windows, where each box corresponds

to an analyzed hour. The frequency of access to items changes over

different periods, indicating a dynamicity in the access patterns

over time. The first few hours have more items with low MIRT,

where the number of access is high, and the average number of hits

is concentrated mainly between 10 and 15 minutes. After that, the

number of accesses decreases and becomes increasingly dispersed,

with a reduction in items with low MIRT.

In general, we observe that the pattern of temporal locality

changes over time. This shows that tenants’ and items’ cache re-

quests are variable over time. This further reinforces the need for

dynamic management of the cache.

Figure 11: Percentage of items byMean Inter-Reference Time
for each one-hour window of items that are referenced more
than once. Showing the dynamic tendency in item access
patterns.

5 PERFORMANCE IMPLICATIONS AND
ISSUES

In this section, we discuss the possible consequences of the char-

acteristics observed in our multi-tenant trace. In particular, we

focus on adapting cache management strategies to be aware of the

tenants.

Unpopular items: A Case for Exclusion from Cache. Items

with low repetition may not justify their inclusion in the cache. Al-

locating cache resources to items with sporadic access may lead to

sub-optimal resource utilization. In this case, cache policies and sys-

tems that consider admission control like Lazy Adaptive CacheRe-

placement [10], CacheSack [21], and others [5, 7, 8, 11, 20].

One interesting possibility to explore is to consider data about

the tenants as hints to the admission control algorithm. For example,

would be useful to have more aggressive admission control policies

for tenants that have a low item popularity profile?

Item Repetition Ratio as a Filter for Tenants. As section
4 indicated, some tenants are not cache-friendly (because they

have low IRR). In addition to the item admission control, one can

consider a tenant admission control (using IRR as an indicator). To

provide a short overview of this idea, we evaluated the impact of

removing some tenants from ourmulti-tenant trace.We used a trace-

drive simulation that gives the overall hit ratio based on a given

trace capacity. Considering an optimal capacity to attend all the

tenants found on the trace as the baseline, we simulated scenarios

removing the tenants that have IRR below three different thresholds

(20%, 30%, and 50%). As Figure 12 shows, when tenants with 20% or

fewer IRR values were excluded, the optimal cache capacity was

reduced to 90% of the original capacity, resulting in an optimal hit

ratio of 61%. Similarly, imposing a stricter criterion of 30% IRR led

to an optimal capacity of 78% of the original, leading to a higher

hit rate of 64%. Excluding tenants with IRR values of 50% or less

further improved the efficiency of the cache, producing an optimal

capacity of 49% of the original capacity and a commendable hit rate

of 71%. Obviously, other trade-offs need to be analyzed, including
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the corresponding impact on the latency and server load caused by

the removal of tenants. In any case, the impact on resource usage

could be important, as indicated by this analysis.

Figure 12: Optimal hit ratio based on optimal capacity for
each one of workloads. Each line is one type of workload
(i.e. the line IRR >= 20 means that only tenants with IRR
above or equal to 20% are on the workload). This suggests
that some tenants with low IRR can be removed to reduce the
capacity while maintaining the same level of performance
or increasing it.

Cache partition. As mentioned in our characterization, a few

big tenants concentrate the most on cache usage. We also show that

the load of the tenants varies over time. It is not clear the impact a

spike in the load of a big tenant can cause on the QoS of the other

tenants (in particular, if the capacity of the cache is not too large).

One possible to avoid the interference caused by tenants sharing

the same cache is to create and enforce partitions on the shared

cache to host the tenants [3, 6, 13, 15, 16].

6 CONCLUSIONS
This paper has provided an analysis of the workload characteristics

in a multi-tenant cache environment using data from a prominent

web cache service in a large-scale ecommerce platform. The findings

revealed a significant imbalance in request distribution among

tenants, with approximately 80% of requests directed towards 10%

of them. Moreover, we observed distinct access behavior patterns,

ranging from steady loads to periodic spikes in request volumes.

Furthermore, the study highlighted that many requests concen-

trated on a small number of items (hot items). On the other hand,

a majority part of the items experienced sporadic access. Addi-

tionally, it was evident that some tenants demonstrated low cache-

friendliness, resulting in a cache hit ratio decrease due to infrequent

item retrievals.

The cache-friendliness is mainly related to tenants’ request pat-

terns and product inventory. Significant request patterns were iden-

tified in tenants’ workloads: Some tenants are more searched than

others, and this implies a more significant number of requests to

the system; can present seasonal request patterns, others sporadic

patterns; can present peaks and/or valleys in request patterns, or

can present stable patterns over time. In addition, there are tenants

with an extensive number of products, which can mean that they

need more storage space than others. In addition, we found that

access patterns vary over time, emphasizing the dynamic nature of

cache requests. This underlines the importance of dynamic cache

management to adapt to changing access patterns and optimize the

use of resources.

As the next steps in this industry collaboration, we plan to investi-

gate how can we take into consideration tenants’ profiles into cache

management policies (admission control, eviction, and partition).

Also, it is necessary to consider the mechanisms to adapt to changes

in the behavior of the tenants. Although some of these issues are

discussed in the literature, in particular for hyperscalers [21], there

are still open questions on how to support regular web caches.
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ABSTRACT
The availability of diverse applications (apps) and the need to
use many apps simultaneously have propelled users to constantly
switch between apps in smartphones. For an instantaneous switch,
these apps are often expected to stay in the memory. However,
when a user opens more apps and memory pressure increases, An-
droid kills background apps to relieve the memory pressure. When
the user switches a killed app back to the foreground, the user expe-
riences a laggy response that compromises his experience. To delay
this killing under memory pressure for a smoother user experi-
ence, we propose MemSaver, a low-cost approach for preemptively
swapping selected pages of the background apps out of memory to
avoid or postpone the killing of apps while ensuring their near-ideal
switch time. MemSaver uses pages accessed during events similar
to the switch and about the same app context for predicting the
pages to be accessed in the next switch. Evaluations on OnePlus 9
Pro using representative apps show that up to 60% of app’s memory
(RSS) can be saved while maintaining the switch time within the
acceptable range.

CCS CONCEPTS
• Software and its engineering → Memory management; •
Human-centered computing → Ubiquitous and mobile com-
puting systems and tools.
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Android, Memory reclamation, App hot launch
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1 INTRODUCTION
The explosive advancement of mobile technology has carved itself
into the daily lives of people. Combining ever-increasing compu-
tational power along with a wide variety of feature-rich mobile
applications (apps), use of smartphones have become an integral
part in one’s daily life. To accommodate their diverse needs, studies
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have shown that smartphone users usually run ten or more apps
daily [7], often requiring a large memory capacity for a smooth
user experience. However, smartphone manufacturers often have
to limit the amount of DRAM due to a trade-off with affordability
and battery capacity. This leads to high memory pressure when the
user wants to keep more apps alive in memory.

Mobile OSes, like Android OS, follow the foot steps of traditional
desktop/server OSes and support virtual memory, which is an ap-
proach that allows multiple processes to run concurrently even
with limited physical memory via page swapping. The swapping
strategy searches the space occupied by any of the in-memory pro-
cesses for pages that are less likely to be accessed and swap them
out to the secondary storage to make more free memory available.
However, this widely-accepted practice of memory usage control
becomes highly undesirable in the smartphone environment. In
a smartphone, there is only one foreground app at a time that is
actively interacting with the user and the remaining apps run in the
background. Performance of the foreground app is of the highest
priority as it directly determines user experience. In mobile devices,
the swapping strategy, despite its benefits, may potentially bring
unacceptable performance issues for the foreground app. As some
of its pages may be selected for swapping due to lack of recent
accesses, a shift of working set to access these pages again will
result in a surge of page faults and turbulent user experience. Even
worse, using the swapping approach for tackling high memory pres-
sure could lead to memory page thrashing and render the mobile
device inoperative. Disrupting use experience of the app the user
is actively interacting with should be avoided at any cost and be
used only as a last line of defence under extremely high memory
shortage.

To this end, Android chooses to relieve high memory pressure
by first killing background apps using its Low Memory Killer Dae-
mon (lkmd) [12]. To protect the foreground app from being subject
to swapping, lkmd kills the least essential app(s) to free memory as
a response to high memory pressure. Killing apps is carried out in a
selected manner where apps are assigned different priorities based
on their execution state. For example, an app that contains An-
droid Activities that are still visible to the user or runs background
services is of higher priority than apps that are not visible to the
user (background state). It is noted that the killing usually does
not affect the app’s functionalities. When an Android app correctly
implements its Activity component for saving its current state, the
state will be saved before its killing. When the user switches back to
the app, its Activity will restore all its visible state as if it remained
in the background.
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Figure 1: Hot and cold launch latencies for various apps in
OnePlus 9Pro.

As users interact only with the app displayed on the screen and
usually keep many apps in the background, frequent switches be-
tween the apps are expected. Studies have found that users switch
between apps over 100 times a day [2]. With such a high switch
frequency, switch time is highly impactful on users’ perceived smart-
phone service quality. An app may be switched from its background
state to the foreground state when it still runs in the background.
This switch is named hot launch. In contrast, a switch of an app
to the foreground after it has been killed is named cold launch. To
understand the impact of lkmd on the switch time (which turns a
hot launch into a cold launch), we select some popular apps and
experimentally compare their hot and cold launch latencies in an
Android smartphone (see Section 4 for details). These apps include
entertainment app (YouTube), social media apps (Twitter, Reddit,
Discord), utility app (Chrome), and gaming apps (Subway Surfers).
The results are shown in Figure 1. The hot launch latency of each
of the apps is much lower than its cold launch latency. As shown,
the hot launch latency is around 100 ms. Studies have suggested
that when an event’s response time is less than 100 ms people feel
that the event is instantaneous [1]. And a response time less than
150ms does not compromise user satisfaction [14]. A time that is
significantly higher than the 150 ms latency indicates a laggy re-
sponse. For example, cold launch latencies of most of the apps are
over 400 ms. Repeated cold-launch experience due to the aggressive
lkmd’s action to reclaim memory is annoying, though the effort is
currently deemed necessary and often unavoidable.

While it is known that system-wide page swapping takes the risk
of compromising foreground app’s user experience, selected killing
of background apps leads to laggy smartphone use experience. In
this paper, we propose a solution, named MemSaver, that reclaims
memory pages to ease memory pressure without killing apps or
compromising the foreground-app’s user experience. It carries out
page swapping for background apps with minimal impacts on their
hot launch latency. To this end, there are some significant challenges
to address, including how to predict pages currently in the memory
space occupied by a background app, or its RSS (Resident Set Size),
that will be (or equivalently, will not be) accessed in its next hot
launch, how to collect history access information for the prediction
without disruption of foreground app’s execution, how to store the
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Figure 2: Amount of memory swap-out and hot launch la-
tency with different LRU strategies for various apps, includ-
ing LRU-background (denoted "LRU-B") and LRU-foreground
(denoted "LRU-F").

information in a light-weight way, and how to strike a trade-off
between saving memory and keeping launch latency low.

To this end, we make a number of contributions in the paper to
address the challenges.

• We show that the commonly-used LRU-like history access
information becomes much less relevant for prediction of
pages to be used in the next hot launch.

• For the first time we found that pages accessed in the history
hot launches of a context are highly predictive of those to be
accessed in the upcoming hot launch of the same context.

• We developed a series of low-cost approaches to collect and
record the relevant history accesses.

• We implemented Memsaver into Android and extensively
evaluate its performance on six commonly-used apps. The
results show that application’s RSS can be reduced by up to
60% while keeping the hot0launch latency in an acceptable
range.

2 RELEVANT HISTORY FOR PREDICTION
In the swapping of a background app, we need to predict its pages
that are likely to be accessed in its next hot launch and only keep
them in the memory. Obviously, we have to make the prediction
based on access history. A common wisdom is to look into the
recent accesses and identify pages that have been recently and
frequently accessed - the LRU strategy used in Linux (the Android’s
kernel).

2.1 Recency-based History
The LRU policy is based on recent access history, or recency-based
history. To understand the impact of using recent access in a page
swapping strategy on an Android app, we design two controlled
experiments. When an app is in the background, a time is chosen
as its swap moment when its selected pages are swapped out of
the memory to the flash. In this study, the intended swap moment
is usually well before the available memory is to be exhausted to
keep enough idle memory in the system always available. This is
important for smooth user experience because the foreground app
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or newly started apps may need substantial amount of free memory
at any time to quickly expand its memory allocation.

The two experiments differ at how the "recently" in the LRU
policy is defined. In the first experiment named LRU-background,
only the time period fromwhen the app has completed its transition
to the background and before the swap moment is considered as
"recent". In the second experiment named LRU-foreground, the time
period starts when the app is still in its previous foreground (10
seconds before a switch to the background). That is, it covers recent
accesses in the last foreground execution. In each of the experi-
ments, only pages that are accessed during its defined recent time
period are kept in the memory in the swapping. This is a simulation
of LRU’s behavior.

We are interested in knowing (1) howmany pages can be swapped
and (2) how longer the next hot launch latency will become after
a swapping. The desired result is that significant memory can be
saved without substantial increase of the latency. Figure 2 shows
percentage of the app’s RSS that can be reclaimed and the corre-
sponding hot launch latency for various apps. We observe that in
LRU-background very few pages are accessed and most of the RSS
pages (over 90%) can be swapped. However, this large memory
saving comes with an unacceptably high hot launch latency. For
example, for YouTube the latency is increased by over 6X over its
120ms ideal latency (with no swapping). In contrast, LRU-foreground
has little increase over the latency. However, it saves much less
memory (LRU-background can swap 2.1X-6.5X as many pages as
LRU-foreground from the memory). However, the experiments sug-
gest that making the choice by adjusting the recency does not lead
to a solution with both goals (large memory swapout and low hot
launch latency) well achieved. The key to a success relies on the
accurate prediction of pages to be accessed in the upcoming hot
launch.

2.2 Event-based History
While the recency-based history is not well indicative of pages
required in the next hot launch (aka hot-launch pages), we need
to turn to more relevant history. Similar to process scheduling,
an app’s hot launch involves a fixed set of operations and data
accesses to re-establish its previous execution state. Accordingly,
the set of pages in different hot launches are likely to bear some
similarity, and provide a clue on which pages should be retained
in the memory. As a hot launch is a user-triggered event, we are
defining and exploiting a locality based on the same type of events
in the history.

To observe whether such similarity exists across the hot launches
in an app’s execution, we examine and compare the pages accessed
in consecutive hot launches of YouTube. To assess the potentially
maximal similarity, we consider an app’s activity context in the
investigation. An app usually has a number of predefined activity
contexts, such as video, shorts, search, and library in YouTube. A
hot launch resumes its foreground execution in the same context
as the one it stayed in immediately before its switch to the back-
ground. Resuming the execution in different contexts may require
different context-specific pages. Therefore, in this experiment we
only conduct the comparison between hot launches of the same
context.

0%

10%

20%

30%

40%

50%

60%

Video Shorts Search LibrarySettings

%
	o

f	R
SS

Hot-Launch	1	(H1)
Hot-Launch	2	(H2)

H1∩H2

(a) Consecutive hot launch
page’s overlap

	0

	50

	100

	150

	200

	250

	300

Video Shorts Search LibrarySettings

Ho
t	L
au
nc
h	
La
te
nc
y	
(m
s)

Based	on	Last	Hot-Launch	Pages
Without	Swapping

(b) Hot launch latency with and
without swapping

Figure 3: Overlap of hot launch pages between two consecu-
tive hot launches (H1 and H2) with the same context as well
as impact of using the last hot-launch pages for swapping on
the hot launch latency.

Figure 3a shows the size of hot-launch page set as a percentage
of its RSS for each of the two consecutive hot launches of a specific
context. The RSS represents the amount of memory held by the
app in the background. The figure also presents size of the inter-
section of the two sets. As shown, the two sets contain about 80%
of common pages, suggesting that accesses in a recent hot-launch
event are predictive of that in the next hot launch. The hot launch
pages are almost all in the memory before a swapping. This is the
reason why a background app has a satisfactory hot launch latency
if no swapping was conducted. If we only keep the last hot launch
pages in the memory (about 30-45% of the RSS), about 55-70% of
the memory pages can be swapped. The potential memory saving
is significant. Meanwhile, Figure 3b shows next hot launch latency
with or without swapping based on the event-based history. The
time increase is about 10-30 ms, which is moderate and stays in the
acceptable range.

2.3 Challenges of Exploiting History
While we reveal the more relevant locality in the event-based his-
tory, there are a number of challenges on translating this finding
into an online system design. First, it can be too expensive to on-
line detect pages accessed during a hot launch. A straightforward
approach for the detection requires two scans of the app’s entire
page table: in the initial scan reset reference bits in the PTEs (Page
Table Entry) and then check them in the following scan when the
launch is completed. Each of the full-table scans can be very ex-
pensive. The cost is especially problematic for the first one, as it
takes place when the user initiates the app’s hot launch. It would
essentially block user’s interaction during the scan.

The second challenge is on the cost of recording the detected
pages. Following the conventional wisdom, it is tempting to con-
sider introducing a new data structure to accurately record the
pages. However, this approach would carry significant time and
space overheads. In particular, the data structure for tracking all
accessed pages would increase the memory usage, which is in con-
flict with the goal of this work for reducing memory footprint. In
addition, it may be necessary to record multiple sets of pages, each
about a different history event/context, which further inflates the
costs.
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Figure 4: Representative events in an app’s life time.

Third, assuming that a light-weight approach for detecting and
storing hot-launch pages is available, we may have multiple hot-
launch page sets recorded during an app’s execution, each for one
recent history hot launch. These hot launch events are of differ-
ent recency, and may be associated with different contexts. It is
unknown which of the page sets should be used in the decision of
page swapping for more memory saving and lower launch latency.
For example, in a situation where a hot launch of the same context
hasn’t been recorded, or the most recent hot launch is about a dif-
ferent context, it is not straightforward to understand the impact of
using the sub-ideal history data and to make the best page swapping
decision. The design of MemSaver addresses the challenges.

3 THE MEMSAVER DESIGN
An ideal design should have a light-weight approach to accurately
detect history pages, along with an efficient way to store the pages.
Such approach should also ensure that history information is uti-
lized in a manner such that app’s RSS is effectively reduced and does
not lead to undesirable latency in the next hot launch. In this sec-
tion we present MemSaver, an efficient design for identifying and
recording pages that are likely to be accessed in an app’s upcoming
hot launch and selectively retaining them in memory and swap-
ping the remaining pages to the flash. We dive into various design
choices and take a close look at their corresponding performance
implications. As MemSaver is deployed in Android, the design is
tailored to the smartphone’s hardware and software designs.

3.1 Phases in an Android App’s Execution
It is necessary to know the phases and relevant events experienced
during an app’s execution that are relevant to the MemSaver’s
design. As illustrated in Figure 4, the app constantly alternates
between the foreground state (the red zone in the figure) and back-
ground state (the green zone). In the red zone, any substantial over-
head added by the external facility is likely to be felt by users and
compromises their use experience. In contrast, a green zone allows
such overhead without users’ notice. Therefore, all MemSaver’s
operations are carefully carried out in the green zones.

As the swapping takes place at a moment during the background
execution, we need to understand the memory usage during the
time period to select the moment. In Android, after an app is sent
to the background, within the first few seconds (about 5 seconds)
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we observe that the app’s resident memory space (RSS) remains
about the same as that of the app during its foreground execution,
as shown in Figure 4. After this it reduces to a smaller size by re-
leasing its allocated space and then stays at the memory footprint.
We name these two time periods in the background as the tran-
sition and stable states, respectively. In the two states the size of
actively accessed memory space (aka working set size or WSS) is
very different. Figure 5 shows the change in the WSS of various
apps over time after the app is sent to the background. During
the transition state, the Android app is in the onPause() life-cycle
activity state, a state where Android OS expects the app likely to go
back to onResume() activity state (re-launch back to the foreground)
soon. Consequently, an app’s RSS is observed to remain the same
as that of in the foreground to continue its normal execution in
the background for a short time period in anticipation of a possible
quick switch back. After this period WSS is dramatically reduced
and stabilized as the app continues its execution into the stable
state. This uniqueWSS/RSS behaviour of Android apps is one of the
necessary elements the design of MemSaver will take into account.
Integrating Android specific functionality along with careful design
enables MemSaver to efficiently detect, collect, and use hot launch
pages.
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3.2 Detection and Storage of Hot-Launch Pages
To allow access prediction based on prior hot-launch events, Mem-
Saver needs to collect pages accessed during a hot launch (hot
launch pages). As a hot launch needs to be associated with an activ-
ity context, MemSaver integrates itself with Android OS to identify
the current context when user interacts with the app in the fore-
ground. As only the last context before a switch to the background
will resume its execution in the next hot launch, MemSaver appends
the last context’s name before the app goes into the background
to the next hot launch. That is, the context of a set of history hot
launch pages is known when they are used for deciding swappable
pages.

When MemSaver is informed by Android of an app’s hot launch,
MemSaver starts to collect accessed pages during the launch. As
we have mentioned, the two full-scan approach requires a traversal
of an app’s entire address space, whose cost is unacceptable. As an
example, for YouTube it represents a coverage of a 17GB address
space, much larger than its RSS at the time of the hot launch (about
400MB). Accordingly, the time spent on one scan is about 100ms,
which is too expensive.

In an app’s address space, there are two types of pages: anony-
mous and file-backed pages. Since they have different properties,
we design different light-weight approaches for access detection.
As anonymous pages are more scattered in a larger space, it’s not
effective to identify a much reduced scope for efficient scanning.
Instead, MemSaver artificially generates minor page faults to reveal
what pages are accessed in a hot launch. Specifically, we leverage a
Linux facility – zRAM– that is enabled in Android by default. zRAM
is an in-memory compression-based swap space. When the app is
in the background, MemSaver swaps out all its anonymous pages
to the zRAM using madvise() syscall with the MADV_PAGEOUT
flag. At this time the hot launch has not yet started. The swapout
cost during the background execution is not felt by the user

During the hot launch, any accessed page will trigger a page
fault for loading it from the zRAM. Consequently, MemSaver can
identify the hot-launch pages by intercepting page faults during
their handling in Linux. As page faults in zRAM do not involve any
flash I/O operations, and only decompression of anonymous pages
instead, the cost is moderate. Compared to that of true page faults
from the flash, this cost is close to that of minor page faults.

The approach of using zRAM for generating page faults cannot
be applied to the file backed pages, as these pages would only be
swapped to the file system on the flash. To address the issue, we
choose to narrow the scan scope. This is made possible by the
observation that file-backed pages (1) are often clustered and (2) are
mostly also accessed in the foreground phase. The idea is to collect
the VMAs (the data structure the Linux kernel uses to manage
contiguous virtual memory areas) covering file backed pages that
have been accessed in the foreground. This set of VMAs will be the
focused scope where MemSaver will look for accessed file-backed
pages in the next hot launch.

However, detection of the VMAs for accessed file-backed pages
during the foreground execution is intrusive to the foreground
app’s execution. To address this issue, we leverage the unique WSS
behaviour of Android apps, which is the existence of the transition
state. The brief pseudo background period is in the green zone but

retains foreground’s access behavior. Therefore, MemSaver moves
its detection of the focused scope from the foreground to this special
background period. As this operation, named transfer collection, is
in the green zone, it is affordable to use two scans to identify the
VMAs that have been accessed. The VMAs will then be the scope for
the two-scan operation in the next hot launch for file-backed pages.
To further reduce the scope we use the 2MB aligned memory region
in a VMA as the unit (representing 512 4KB-pages) for tracking file-
back accesses. All detected VMA regions are recorded in an index
(the scope index) for quick access. Within this focused page-scan
scope, the two scans in the reduced scope takes only about 1 ms.
This time overhead becomes acceptable even in the red zone.

Instead of using a data structure to store the detected hot launch
pages, MemSaver records them in the unused PTE bits (bits 60-63)
in the page table. At the time when an accessed page is detected,
its PTE is likely to be the CPU cache. The cost for updating the
PTEs is negligible. To determine pages for swapping, MemSaver
does need to scan the page table to know the recorded hot launch
pages. However, this will take place only when the app is in the
background. Furthermore, using the idle PTE bits avoids inflating
memory usage. The availability of four bits for recording accesses
in the history presents MemSaver with choices of tracking multiple
selected events. As a page swapping policy, MemSaver needs to
know the specific events whose page accesses should be collected
and which of the history events should be involved in a swapping
decision making. To this end, we adopt a heuristic approach whose
design is driven by targeted experiments (to be discussed).

3.3 Incorporating Working Sets in the Recent
History

We have suggested retaining history hot launch pages in memory
during the swapping. In the meantime, there are two sets of actively
accessed pages (working sets) that may need to be kept in memory.
One of them is that right before the app switches to the background.
A hot launch is essentially a resumption of the last foreground
execution. Pages in the working set at the end of the foreground
phase is likely to be accessed at the beginning of the next foreground
phase (i.e., the hot launch time period). The other working set
is the one during the stable state in the background. Its pages
need to be kept in memory even after the swapping to support its
background execution. One challenge is that the detection of pages
in the foreground working set would take place in the red zone in
Figure 4. Its cost is simply not acceptable during the foreground
execution. Fortunately, the existence of the transition state right
after the switch to the background makes a non-intrusive detection
of the pages possible. As it is in the background, we can use the two-
scan approach to get its working set. Because the app maintains its
foreground activities in the transition state, the working set right
after the switch can be an approximation of the one before the
switch. We denote this background working set 𝐵1. In contrast, the
working set in the stable state is denoted 𝐵2.

MemSaver initiates its swapping during the background execu-
tion after the transition state. To understand the impact of addi-
tionally keeping 𝐵1 and/or 𝐵2 on the swapping efficacy in terms of
swap-out memory amount and hot launch latency, we experiment
with keeping different combinations of the working sets along with
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Figure 6: Impact of Background Active pages on RSS reduction and Hot launch latency

the set of pages accessed in the last hot launch in memory (denoted
as 𝐻1). Note that we assume the app stays in the same context
across the events. Apparently, it is necessary to keep 𝐵2 in memory,
as pages in 𝐵2 continue to be accessed after the swapping (during
the background execution period). The question is whether 𝐵1 also
needs to be considered. In the first experiment, we leave out 𝐵1.
Figure 6a shows the amount of swap-out memory (as a percentage
of its RSS at the time of the swapping) and the corresponding hot
launch latency after swapping any pages in the RSS that are not
in either 𝐻1 or 𝐵2 for various apps. As seen, though an app’s RSS
can be effectively reduced (up to 60%), the hot launch latency is
much higher than the ideal hot launch latency (the one without
swapping). As it is necessary to maintain an acceptable hot launch
latency, it is not sufficient to only consider 𝐵2 in the swapping
decision.

In an attempt to reduce the hot launch latency, we add the 𝐵1
to the set of pages that are kept in memory (i.e., 𝐵1, 𝐵2, and 𝐻1)
in the swapping decision. Figure 6b shows its swapout memory
amount and the corresponding launch latency. As expected, the
amount of swapout memory is reduced. However, the reductions
represent small percentages of respective RSSes. In the meantime,
the hot launch latencies become close to their respective ideal ones.
To know if it is still necessary to consider 𝐵2 after 𝐵1 is included,
we then remove 𝐵2 (i.e., only 𝐵1 and 𝐻1 pages are not swapped
out). Figure 6c shows that both the memory swap-out amount
and the hot launch latency do not have any substantial changes.
Examining background active pages, we observe that some of the
𝐵1 pages continue to be active over the execution of the app in
the background and consequently cover about 95% of 𝐵2 pages.
Figure 7 shows the overlap of 𝐵1 and 𝐵2 for various apps. For this
reason, regarding 𝐵1 and 𝐵2, 𝐵1 MemSaver only collects 𝐵1 pages
of an app and retains these pages in memory (if they have been in
memory before the swapping).
3.4 Incorporating Context-aware Hot-launch

Pages
As discussed, the set of pages that have been accessed during the
prior hot launch is a potentially strong indicator of pages to be
used in the upcoming hot launch. Multiple such prior page sets
may have been recorded, and they may be associated with different
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Figure 8: Hot launch latency when different history hot
launch page set is used for the swapping before the hot
launch.

app contexts. Intuitively, the most relevant one among all possibly
recorded page sets is the one about the most recent hot launch and
of the same context as the one for the upcoming hot launch. To
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Table 1: Apps and Contexts

App Context1 Context2
YouTube Video Shorts
Twitter Search Tweet
Chrome Web page Tabs
Reddit Message Search

Subway Surfers Game Pause Shop

have a sensible design, we need to experimentally confirm or dis-
confirm this conjecture and the impact of different sets of history
hot launches. In the interest of clarity, the set of pages accessed in
a history hot launch (𝐻 ) is denoted 𝐻𝑐𝑥𝑡

𝑘
, where 𝑐𝑥𝑡 is the context

when the hot launch take places,𝑘 indicates how recently the launch
is. For 𝑘 = 1, it is the most recent one, or the last one, and for 𝑘 = 2,
it is the second to the last one, and so on. Figure 8 shows the hot
launch latency when different history access information was used
for a swapping in the background before the hot launch for various
apps. The latency is compared with the ideal latency, the one when
swapping is not conducted. In the experiment, two contexts were
selected for each of the apps (Youtube, Twitter, Chrome, Reddit,
and SubwaySurfers), namely context1 and context2. Table 1 depicts
the contexts for each of the apps. In the experiments, context1 is
designated as the current background context, which is also the one
for the upcoming hot launch. Context2 is a context appearing in the
past. In a swapping, we keep pages in the most recent background
working set 𝐵1 (with context1) and pages in an 𝐻 set. As shown in
the figure, if the history 𝐻 is 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 (the assumed most relevant
𝐻 ), or pages in the 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 are retained in memory,
the next hot launch latencies stay in the acceptable range (about less
than 200ms). Admittedly, some of them are substantially higher than
the ideal one (e.g., Reddit). In practice, smartphone use experience
is more impacted by the unexpectedly long latency than by latency
variations within an acceptable range.

While an 𝐻 is associated with a context, we need to understand
how strongly it is correlated with its context. This is important
because sometimes a history 𝐻 with context1 (the current context)
is not available. In the situation, MemSaver may have to choose an
𝐻 whose context is different from context1 for its swapping decision.
Figure 8 also shows the hot launch latency after retaining pages in
𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡2
1 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 in memory during the swapping. Using an 𝐻

with an unmatched context (context2), the hot launch latency can
increase to an unacceptable level (370ms for YouTube). The latency
for Reddit also increases to over 250ms. These drastic increases
do not take place for all the apps (e.g., the increases for Twitter
and SubwaySurf are moderate.). To be a reliable design, memSaver
chooses to be conservative by not carrying out swapping if an 𝐻

with a matched context has not yet been recorded.
A more common situation is that a history 𝐻 with a matched

context does exist but it is not the most recent one. To understand
the impact of the recency on the swapping effectiveness, we ex-
periment with the case where pages in 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

2 𝑈𝐵𝑐𝑜𝑛𝑡𝑒𝑥𝑡11 are
retained in memory. Figure 8 also shows its hot launch latency. As
shown, using 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

2 produces the hot launch latency almost
the same as that using 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 . This observation suggests that
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Figure 9: Comparison of swapout memory and hot launch
latency for YouTube between using its three recent 𝐻s and
using only one recent 𝐻 . All 𝐻s are associated with the same
context (’video’).
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recency, or time-defined locality, is less relevant for identifying use-
ful access history. This is consistent with the rationale of adopting
event-based history in this study. Therefore, MemSaver chooses to
use the latest 𝐻 with the matched context (if available), whether
it is for the latest hot launch or not, in its recorded history for
swapping out the app’s memory.

The last design question is on the choice of 𝐻 when there are
multiple 𝐻s with the matched context in the recorded history. One
might expect that using all the ’qualified’ 𝐻s would help to keep
more pages to be used in the next hot launch in memory and thus
further reduce the hot launch latency. To understand its impact,
we carried out swapping for YouTube with ’video’ as context1 (the
current context) and using either one or three history 𝐻s of the
same context1. Figure 9 shows their respective hot launch latency
and number of swapout pages. Using additional 𝐻s doesn’t help
to further reduce the hot launch time. It is not necessary to con-
sider more than one (earlier) 𝐻s. Furthermore, using multiple 𝐻s
has a side effort. As shown, using three 𝐻s reduces the number
of swapout pages by about 32%. Figure 10 shows overlap of each
of the four earlier 𝐻s with the 𝐻1 (all 𝐻s are associated with the
same context). The overlap is consistently about 75%. This sug-
gests that this 75% subset represents an invariant that persists over
the different hot launches. It is this invariant that contributes to
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Figure 11: RSS reductions and hot launch times with different swapping methods for apps at different contexts.

MemSaver’s effective prediction. The remaining 25% subsets in the
respective 𝐻s are not essential for the prediction. This corroborates
the finding shown in Figure 8 about using a non-most-recent 𝐻 . As
long as it is an 𝐻 of the same context, the 𝐻 can effectively serve
the purpose. For this reason, as an optimization MemSaver doesn’t
have to collect and record 𝐻 for every hot launch.

3.5 A Summary of MemSaver Policy
MemSaver consists of two operations: access collection and page
swapping. There are four bits for each page in an app’s page table
entry for recording history, each for one history event. Because
of limited number of bits and cost of access collection, MemSaver
follows this collection policy.

(1) One bit is reserved for the 𝐵1 pages. 𝐵1 is collected with
each switch to the background (during the transition phase);

(2) The remaining three bits are used for up to three 𝐻s. They
are logically organized as an LRU stack. The most recently
recorded 𝐻 is at the stack top. The one at the bottom is to
be replaced by recording of a new 𝐻 ;

(3) For a new hot launch with context1:
(a) If there hasn’t been an 𝐻 of context1 recorded in the stack,

collect its accessed pages and place the corresponding 𝐻
at the stack top (by replacing the one at the bottom);

(b) Otherwise, an 𝐻 of context1 exits in the stack. In the case,
if it’s in the stack bottom, collect a new𝐻 to replace it. Oth-
erwise, skip the collection for this hot launch. This is for
three reasons. (1) A history 𝐻 of the same context is still
usable; (2) Making fewer collections helps improve effi-
ciency. And (3) an 𝐻 earlier than two other 𝐻s of different
contexts is updated for freshness.

In the meantime, MemSaver follows this swapping policy.
(1) If there are not any 𝐻 of the matching context, do not swap.

(2) Otherwise, use the 𝐻 of the matching context and 𝐵1 to
decide the pages that will be retained in the memory and
swap out other in-memory pages.

4 ADDITIONAL EVALUATION RESULTS
To understand the efficacy of MemSaver, we implemented and eval-
uated it in Android using various representative apps (YouTube,
Twitter, Subway Surfer, Chrome, and Reddit). We compared its hot
launch latency after an app’s RSS has been reduced against the hot
launch latency of all-in-memory apps (the ideal case). The evalua-
tions were performed on a OnePlus 9 Pro phone with Qualcomm®
Snapdragon™ 888 processor containing 12GB RAM and running
Android version 11.

As mentioned, MemSaver has two objectives for a background
app, which are to reduce its memory footprint and keep its hot
launch latency within an acceptable range. While MemSaver uses
different methods for detecting hot-launch pages (page faults from
zRAM for anonymous pages vs. page table scans in a reduced scope
for file-backed pages), we break down their impacts in the exper-
iments. For each app, we assume availability of 𝐻𝑐𝑜𝑛𝑡𝑒𝑥𝑡1

1 with
various current contexts (context1). Figure 11 shows the RSS re-
duction in percentage and the corresponding hot launch latency
when swapping is applied only on anonymous pages or on both
anonymous and file-backed pages. It also shows the ideal hot launch
latency.

There are some interesting observations. First, RSS can be sub-
stantially reduced. With only anonymous pages are considered, up
to 48% of the memory can be saved with an average of 23%. If file-
based pages are also considered, up to 60% of memory can be saved
with an average of 34%. Second, the increase of hot launch latency
is mostly in the range of 10-50 ms, leaving the latency usually under
150 ms and thus making users mostly feel it as an instantaneous
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launch. This is an impressive result. As an example, with an average
of 33% memory saving, a smartphone that currently can hold 10
background apps in the memory without being killed will be able
to keep 15 apps alive in the background with MemSaver. For a user
whose number of actively used apps is moderately over existing
limit, with MemSaver his bumpy app switch experience is removed.
Third, additionally considering file-backed pages for swapping ei-
ther doesn’t increase the launch time substantially or sometime
even reduce the time. This is because file-backed pages are usually
sequentially accessed and prefetching could be activated. Four, we
do observe that for some apps (e.g., Figure 11b and Figure 11e) at
some contexts (e.g, search and image) MemSaver may occasionally
produce a hot launch latency as high as 200-300 ms due to exces-
sive number of page faults. In summary, in general MemSaver can
reduce apps’ RSS while maintaining near-ideal hot launch latency.
In a few cases the latency can be high when compared to the ideal
time. However, if compared to the often much higher cold launch
times (see Figure 1), the time still represents an improvement.

5 RELATEDWORKS
User experience is often dictated by the availability of memory in
smartphones. Prior works have focused on improving user expe-
rience on many fronts including improving app’s memory man-
agement and launch performance. To improve app switch time,
ASAP [13] uses multiple threads to prefetch pages that are likely
to be accessed during a switch. IORap [4] in Android 11 predicts
data required by an app ahead of time by profiling its I/O in several
cold runs. FALCON [15] uses information including user location
and temporal access patterns to predict an app’s launch time and
preload its data.

Under high memory pressure Android triggers lkmd [9] to kill
background apps to ease memory pressure. To avoid the killing,
Marvin [6] swaps out memory that is less likely to be used in the
object granularity with ahead-of-time swap, which requires An-
droid Run Time (ART) modifications. In contrast, MemSaver swaps
out pages unlikely to be used in an app’s upcoming hot launch
in an attempt to postpone the inevitable killing. It doesn’t require
any modification of apps themselves. SmartSwap [16] predicts least
likely used app using information like location and usage history
to swap out pages of those apps. Rather than predicting which app
will be relaunched, MemSaver only considers app’s event-based
access history to selectively swap pages out of memory. To avoid
disruption of foreground app, Acclaim [8] frees pages from back-
ground apps and provide them to foreground apps. A2S [5] inte-
grates process-level kill approach and page-level swap approach by
using a threshold to decide processes for killing and by estimating
page lifetime to decide pages for swapping out. Instead of predict-
ing which pages to swap out or prefectch or predicting apps as a
whole [10, 11], MemSaver uses more intricate information of app-
specific context to reduce app’s RSS while maintaining near-ideal
hot launch time. A more extensive coverage and analysis of related
efforts on the improvement of app launch time can be found in the
survey paper [3]. It helps to further understand that MemSaver’s
unique approach and techniques represent a step forward in the
improvement of smartphones’ use experience.

6 CONCLUSIONS
In this paper we present MemSaver, a low-cost approach for pre-
emptively swapping selected pages of the background apps out of
memory while ensuring their near-ideal hot-launch time. Different
from conventional LRU-like strategies for selecting memory pages
for swapping, MemSaver uniquely resorts to event-specific history
to accurately determine the pages for swapping. Evaluation of an
implementation of MemSaver in Android shows that up to 60%
of application’s RSS can be reduced while ensuring that its hot
launch time remains in the range friendly to users for real apps of
representative types.
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ABSTRACT
Alibaba’s 2021 and 2022 microservice datasets are the only publicly
available sources of request-workflow traces from a large-scale
microservice deployment. They have the potential to strongly
influence future research as they provide much-needed visibility
into industrial microservices’ characteristics. We conduct the first
systematic analyses of both datasets to help facilitate their use by
the community. We find that the 2021 dataset contains numerous
inconsistencies preventing accurate reconstruction of full trace
topologies. The 2022 dataset also suffers from inconsistencies, but
at a much lower rate. Tools that strictly follow Alibaba’s specs for
constructing traces from these datasets will silently ignore these
inconsistencies, misinforming researchers by creating traces of the
wrong sizes and shapes. Tools that discard traces with inconsisten-
cies will discard many traces. We present Casper, a construction
method that uses redundancies in the datasets to sidestep the
inconsistencies. Compared to an approach that discards traces with
inconsistencies, Casper accurately reconstructs an additional 25.5%
of traces in the 2021 dataset (going from 58.32% to 83.82%) and an
additional 12.18% in the 2022 dataset (going from 86.42% to 98.6%).

CCS CONCEPTS
• Computer systems organization → Cloud computing;
Reliability; • Software and its engineering→ Traceability.
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Distributed tracing, Cloud Computing, Mitigating data loss
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1 INTRODUCTION
Today, organizations build distributed applications using a mi-
croservice architecture [5, 10]. This architecture—which involves
decomposing applications’ functionalities into many lightweight
services that coordinate over well-defined APIs to process user
requests—has many advantages. It facilitates development teams’

This work is licensed under a Creative Commons Attribution-
ShareAlike International 4.0 License.

ICPE ’24, May 7–11, 2024, London, United Kingdom
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0444-4/24/05
https://doi.org/10.1145/3629526.3645043

independence, increases deployment velocity, and enables fine-
grained scaling [8, 20]. But, apart from this shared understanding,
microservice deployments’ concrete characteristics are invisible out-
side of their respective organizations. This lack of visibility depresses
research into microservices. Especially affected are efforts on sched-
uling, problemmitigation, and debugging, which rely on knowing
deployments’ scale and emergent properties of how and which ser-
vices interact to process requests. Published microservices research
on these topics [9, 12, 23, 26, 27, 29] are often informed by simple
testbeds [4, 10, 30], making their applicability to the large-scale
organizations that benefit most frommicroservices questionable.

Large-scale organizations, such as Alibaba [16], Google [24],
and Meta [13] recently published quantitative analyses of their
respective microservice architectures. These published studies
provide much needed insight into the scale and complexity of the
architectures as well as detailed studies of request workflows within
them—i.e., how services interact to process requests. Many research
efforts are using these analyses to inform their work [3, 7]. Unfor-
tunately, these studies do not provide the raw datasets used for their
analyses [24] or only provide summary statistics [13]. This prevents
the community from independently verifying results, finding new
insights themselves, or using the datasets directly in their work.

To address this concern, Alibaba released two datasets capturing
traces of request workflows observed in their microservice architec-
ture [1, 2]. Traces are call graphs, where nodes are services and edges
indicate caller/callee relationships between them. Additional anno-
tations on nodes and edges include (but are not limited to) response
times, communication protocols used, and service instance ID. The
datasets store traces in tabular formwith rows corresponding to calls
betweenservice.The2021dataset coversa12-hour time-period, total-
ing20million traces.The2022dataset coversa13-dayperiod, totaling
over 13 billion traces (estimated). These datasets are treasure troves
for research and they are already being used extensively [15, 17, 18,
31]. But, without independent analyses to verify datasets’ fidelity,
researchers run the risk of basing theirwork on inaccurate trace data.

This paper provides the needed independent analysis.We analyze
the entire 2021 dataset and a 12-hour period of the 2022 dataset.
We find that numerous 2021 traces are stored in the dataset in
ways inconsistent with Alibaba’s specifications. The 2022 traces
also exhibit inconsistencies, but at a lower rate. As a result of
these inconsistencies, trace graphs built from the datasets will not
represent requests’ workflows, misleading users. We find that the
inconsistencies can be explained by two types of events within the
distributed-tracing infrastructure [16] responsible for capturing
traces: data-loss and context-propagation errors. The former occurs
when log messages (or parts of them) representing individual calls
are dropped. The latter occurs when services fail to differentiate
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different calls made on behalf of a single request.
To mitigate these inconsistencies, we present Casper, a trace

construction toolkit that uses hidden redundancies in the datasets
to recover from data loss and disambiguate merged calls. We show
that Casper creates larger and wider traces than other construction
methods—e.g., ones that operate unaware of the inconsistencies
or which discard traces with inconsistencies.

We present the following contributions:
(1) We identify and systematize cases where trace data stored

in the datasets is inconsistent with the stated specifications.
Specifically, 99.48% of traces in the 2021 dataset suffers from
these inconsistencies and 85.77% of traces the 2022 dataset suffer
frommissing calls, contradicting values within rows, and rows
that appear more times than expected. We discuss how these
inconsistencies affect traces’ shapes.

(2) We describe how many of these inconsistencies are explained
by: 1) data-loss events and: 2) services incorrectly propagating
trace context to differentiate inter-service calls. We show
how redundancies between rpcid values in trace context
and caller/callee names within datasets’ rows allow many
inconsistencies to be circumvented.

(3) We present Casper, a trace construction algorithm that
circumvents the inconsistencies1. For the 2021 dataset, Casper
creates traces that have average sizes, max depths, and max
widths that are: 1.14x, 1.22x, and 1.08x larger than a construction
method that blindly ignores inconsistencies and 2.71x, 1.32x, and
2.02x larger than a method that discards inconsistent traces. It
creates an additional 25.5% of traces with complete connectivity
between services for the 2021 dataset (increasing the total to
83.82%) and an additional 12.18% with complete connectivity
for the 2022 dataset (increasing the total to 98.6%).

2 ALIBABAMICROSERVICEDATASETS
This section describes the Alibaba datasets’ tabular format and the
specifications describing traces that are stored within in them (§2.1).
We also describe how traces can be constructed from the tabular
data using the specifications (§2.1). §3 discusses how the datasets
are inconsistent from the specifications and their impact on traces
constructed assuming consistency.

We start with a brief description of Alibaba’s distributed-tracing
infrastructure,whichwas responsible for capturing the traces. Please
seeLuoet al. [16] and thedatasetsREADMEs [1, 2] for amoredetailed
descriptionof the tracing infrastructure and thedatasets respectively.

Alibaba’s distributed-tracing infrastructure for capturing
request-workflow traces: Like most distributed-tracing infras-
tructures [14, 21, 25], Alibaba’s infrastructure works by propagating
context with requests’ execution. For Alibaba, context includes
a per-request unique ID (traceid) and a per-call path unique ID
(called the rpcid). The traceid uniquely identifies calls made on
behalf of a single request. The rpcid uniquely identifies calls and
their depth within the trace call graph. It is specified as a series of
delimiter ’.’ + IDs. Each service adds a delimiter and adds a unique
ID before calling a downstream service. The number of delimiters is
equal to the depth of the call. When requests execute log messages,
records of them are enriched with context and stored in long-term

1Source code and sample data: https://doi.org/10.7910/DVN/SS9SIY

storage. The trace datasets are comprised of the subset of these logs
indicating caller/callee relationships.

2.1 Tabular format & storage specifications
Format: Figure 1a shows a simplified version of the tabular format,
which is largely the same for both datasets. It also shows the graph
representation of the trace in Figure 1b. Various columns provide
information needed to create the trace topology (nodes and edges)
and add annotations. Rows represent log messages or edges of
the trace graph—i.e., communication calls between an upstream
service (caller) and downstream service (callee). Up to two rows
may correspond to a single communication call.

Specifications: The traceid, rpcid, UM, and DM columns encode
traces’ topological information. The first three fields are propagated
in context as described above. For a given call the UM and DM
fields identify the corresponding upstream service (caller) and
downstream service (callee).

The remaining columns are used to annotate trace nodes or
edges. We discuss only ones relevant to our analyses. The rpctype
column describes the protocol used for a given call. It can be either
RPC,HTTP,mc (Memcache),mq (Message queue), or db (database).
The rt column describes the call’s response time and ts denotes
a timestamp indicating when the row was recorded by a service.
There are two rows for each RPC andHTTP-based call. The first row
records the end-to-end response time as measured by the upstream
service. The second row records the processing time of the request
within the downstream service—i.e., the latency between receiving
the request and sending a reply.

Differences between 2021 and 2022 datasets In the 2021 dataset,
the row corresponding to end-to-end latency records a positive
response time whereas the row corresponding to downstream
processing records a negative one [1]. Both response-time values are
positive in the 2022 dataset [2]. The 2022 dataset includes additional

Topology Annotations

ts traceid rpcid UM DM rpctype rt

166370 1 0 A B http 8
166374 1 0 A B http -7
166376 1 0.1 B C db 0
166372 1 0.2 B D mc 0

(a) An encoded trace in tabular form

0

0.1 0.2

Legend
Call

Microservice

0.1 rpcid

A

B

DC
(b) Corresponding constructed trace

Figure 1:A trace in tabular form& its constructed version.Not
all annotations are shown in the tabular version. Annotations
are omitted from the graph. Table follows the 2021 data
format.
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annotation fields.

2.2 Constructing traces
The construction process described below is general to accommo-
date traces that start at any arbitrary point of request workflows’
execution (i.e., not necessarily at frontend services whereworkflows
typically originate). Responses to questions about the datasets from
Alibaba indicate such intermediate starting points are possible [11].
Figure 1b shows the trace that would be constructed from the
tabular data in Table 1a.

To build a trace: 1) Extract all rows of the table with the same
traceid. 2) Group rows with the same rpcid together as they
represent the same call. 2) Find roots, which are named by the UM
or DM field of calls with the fewest number of ’.’ delimiters in their
rpcid values. The UM is the root if it is defined, else DM is the root.
The former accommodates intermediate starting points and the
latter frontends. 3) Find calls made by roots, which have the same
rpcid prefix as roots with one extra ’.’ delimiter, and attach their
DM values as children. 4) Repeat step 3 recursively for all leaves in
the trace until there are no remaining calls left. Nodes and edges
can be optionally annotated during this process.

3 TRACE INCONSISTENCIES
We identified four types of inconsistencies in the Alibaba trace
datasets that invalidate the assumptions mentioned in §2. We found
these inconsistencies to be prevalent within the datasets with almost
all traces having at least one inconsistency. For the remainder of this
section, we discuss inconsistencies within the context of a single
trace. We focus mainly on the 2021 trace dataset since it has higher
error rates, but all inconsistencies discussed were also observed in
the 2022 dataset.

Analysis of Alibaba’s responses to questions about the
datasets [6, 19, 28] indicate that these inconsistencies are explained
by data loss and context-propagation errors (CPEs). Data loss results
in rows being dropped or fields in rows missing values. Context
propagation errors occur when a user does not correctly increment
the rpcid, assigning the same rpcid tomany calls. This non-unique
rpcid is propagated downstream, resulting in downstream calls
also having non-unique rpcids. The last subsection (§3.5) gives an
example on how many of these inconsistencies may arise given a
context propagation error.

Table 1 lists the percentage of unique traces affected by each
inconsistency. We next describe each inconsistency in detail.

3.1 Missing rows
There are many missing rows in the trace datasets. We categorize
missing rows into two groups: missing duplicate rows and missing
rpcids. The duplicate row (i.e. the call or reply) for two-way
communication (http or rpc) is often missing, leaving only one row
with either a positive or negative rt value. Most traces are missing
a duplicate row in both datasets.

A missing rpcid is defined to be when we are missing all rows
for a rpcid. Since rpcids encode topological information about the
request workflow, we know all rows for a rpcid are missing when
we are missing a rpcid that is ancestrally between two captured
rpcids and is needed to form a call path. We call these missing

Inconsistency 2021 2022

Missing duplicate row 99.48% 85.77%
Missing rpcid 35.23% 11.42%

Unexpected row 30.16% 6.86%

Contradicting UM 33% 7.94%
Contradicting DM 26.84% 2.56%

Missing value 94.2% 67.05%

Table 1: Inconsistency frequencies. The portion of traces that
have at least once occurrence of each inconsistency.

rpcids internal rpcids (since they are internal nodes in a call
graph). A trace may have missing rows before the smallest rpcid
or after the largest rpcid, but there is no way to detect this.

Example: Table 2 gives an example of a missing row and rpcid.
We are missing the negative rt row for the http request 0.2.
Additionally, we are missing all rows for the rpcid 0.2.1, which is
the connection between 0.2 and 0.2.1.1.

Implication: Missing duplicate rows does not impact the shape of
the trace since the remaining row contains the call path information.
Weonly lose thert for onedirectionof communication.Whenweare
missing rpcids in a trace, naive rebuilding (using the assumptions
outlined in §2) would result in a disconnected trace, under-counting
the number of calls and not preserving the true topology.

How to address the inconsistency: Data loss causes us to lose rows,
which can present as either a missing duplicate row or a missing
rpcid. We can use redundant information about the structure of
a trace in the rpcids to replace missing internal rpcids, when it’s
available. For example, in Table 2, the missing rpcid 0.2.1 should
have UM B and DM C to form a valid call path.

3.2 Additional unexpected rows
As described in Section 2, rpcids are assumed to be unique for each
call in the system.We expect to see one row per message sent; for
two-way communication, there should be two rows (call& reply) and
for one-way communication there should be one row. Additionally,
when we have a reply row for an rpcid, all structural information
(e.g. UM, DM, rpctype) should be identical since it references a single
call. Despite this assumption, we often see additional rows past
these thresholds for a single rpcid. In the 2021 traces, 42.18% of
traces have at least one rpcidwith unexpected rows.

Example: Table 3 shows an example of additional unexpected
rows where 0.3.1 is repeated many times. We have four rows to DM
C (counting both the + and - rt rows) and one row to DMD.

rpcid UM DM rpctype rt

0.2 A B http +
0.2.1.1 C D db +

Table 2: Missing rpcids. The rpcid 0.2.1 is missing from the
table since it’s needed to connect 0.2 and 0.2.1.1. Additionally,
a duplicate row ismissing for the http request 0.2.
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rpcid UM DM rpctype rt

0.3 A B http +/-
0.3.1 B C rpc +/-
0.3.1 B C rpc +/-
0.3.1 B D mq +
0.3.1.1 C E mq +

Table 3: Unexpected rows. rpcid 0.3.1 is repeated above the
expected threshold for the rpctype. +/- rt is used to indicate
we have both the positive and negative rows.

Implication: The assumption that rpcids are unique is invalidated
and rebuilding the trace naïvely would under-count the number
of unique calls. Additionally, when there are multiple UM, DM pairs,
it’s not clear which should be used for the rpcid.

How to address the inconsistency Additional unexpected rows are
caused by context propagation errors (CPEs), where the user of the
tracing infrastructure did not increment the rpcid for each unique
call. This appears in the table as additional rowswith the same rpcid
and UM, but potentially different DMs. In Table 3, the CPE originates
from service B, which makes at least two calls to service C and
one to D. The non-unique rpcids are passed downstream, creating
more non-unique rpcids (and call paths) further downstream. For
example, 0.3.1.1 (in Table 3) has UM C, but we do not know which
of B’s calls to C made the subsequent call to E.

3.3 Contradicting Values
There are inconsistencies in the datasets where rows that should
contain identical values have conflicting values (e.g. the two rows
corresponding to the call and reply for a two-way communication
call should have the same UM and DM). We categorize contradicting
values into two groups: contradicting DMs are when all rows with
a UM has multiple DMs and contradicting UMs are when one or more
of the UMs for an rpcid don’t match the upstream call’s DM (i.e. not
forming a valid call path). Contradicting UMs are independent of
the DM value. A single rpcid can have both types of contradicting
values in their rows. A large portion of the 2021 traces (26%) have at
least one rpcidwith contradicting DM values and 37% of the traces
have contradicting UMs.

Example: Table 4 shows two rows for rpcid 0.3.1.1. There is
conflicting UM and DM information in the two rows. Since there
are multiple UM values, at least one of the rows may not connect
upstream resulting in an invalid path.

Implication: Naïvely rebuilding trace with contradicting values
could create invalid call paths, depending on which row’s infor-
mation is added to the trace topology. Since each unique rpcid is
assumed to have one UM and one DM, naïvely rebuilding would not
check for this inconsistency.

How to address the inconsistency Contradicting values are the
result of context propagation errors. Contradicting DMs appear
when the user does not increment the rpcidwhenmaking calls to
different downstream services. Upon cursory inspection, we found
contradicting UMs are either downstream from CPEs or seem to have
an incorrect rpcid that could be remedied by adding a ’.’ followed
by an integer to connect the call one level downstream. We can
use redundant information about the call paths to help determine

rpcid UM DM rpctype rt

0.3.1.1 C E mq +
0.3.1.1 D F mq +

Table 4: Contradicting values.

accurate UMs and DMs (or if the rpcid is not unique).

3.4 Missing Values
Many values in the datasets are missing or contain ’(?)’/UNKNOWN
as the value. In fact, most traces in both datasets contain at least
one missing UM or DM value (94.2% and 69%).

Implication: Naïvely rebuilding traces with missing values misses
opportunities to uncover the true value, resulting in skewed metrics
about the frequency of specific microservices.

How to address the inconsistency Missing values are the result
of data loss, which is not uncommon in large distributed systems.
For two-way communication, there is often a duplicate row for
the rpcid which contains the missing information. If there is no
duplicate row, these missing values can be recovered using call path
information from an upstream or downstream call.

3.5 Combination of inconsistencies
Context propagation errors (CPE) often show up as a combination
of the inconsistencies.We always see unexpected rows for CPEs, but
this is typically combined with contradicting values. For example
Table 3 showed both DM values C and D, which are contradicting.

Downstream from CPEs, the same rpcid is used as a seed for
downstream calls. In the Table 3 example, 0.3.1 is the seed rpcid for
all downstream calls made from C and D. If we added an additional
row to this example with rpcid 0.3.1.1.1, UMX and DM Y, we would
have a contradicting path (since X is not the same as upstream call
0.3.1.1’s DM E). To make things more complicated, the contradicting
path inconsistency would no longer exist if we assumed we were
missing its’ upstream rpcid (which could have DM X). The point
here is that CPEs cause many inconsistencies since they invalidate
the assumption that rpcids are unique. This makes it challenging
(and sometimes impossible) to decipher the trace topology.

4 CASPER
We introduce Casper, which aims to create the largest accurate re-
questworkflowtopologies. Buildingon the intuition in§3,wediscuss
which inconsistencies can be circumvented (e.g., are recoverable),
and how to recover from them (§4.1). We also discuss when incon-
sistencies are not recoverable (§4.2). We then present Casper’s algo-
rithm for rebuilding the traces (§4.3). We conclude with limitations
of our approach (§4.4). Casper is implemented in 711 lines of Python
code. It takes as input all rows for a trace and outputs the constructed
trace in Alibaba tabular or OpenTelemetry JSON [21] format.

4.1 Recoverable inconsistencies
4.1.1 Data loss. Missing internal calls: Observing missing
internal calls due to data loss, we can determine the exact number
of missing calls on the call path using the rpcid structure. We find
the call that is missing its upstream call and recursively drop the
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trailing ’.’ from the rpcid until we reach an existing rpcid. Each
new rpcidwe create by dropping a ’.’ becomes a call in the trace.

Example: In figure 2, (1) shows how rpcids 0.1.1 and 0.1.1.1 are
added to the trace to fill the hole between the existing rpcids.

Missing values captured in redundant rows: We use
information captured in duplicate rows or through call paths to fill
in missing UMs and DMs.

Example: In figure 2, (2) shows a recovered (missing) rpcid 0.2.1,
which was added to connect the existing rpcids. In table format,
we can refill 0.2.1’s UMwith DM B (from its upstream call) and DM C
(from its downstream call).

4.1.2 Context propagation errors (unique paths). Context prop-
agation errors (CPEs) can be fixed at the source: As stated in
§3, a CPE originates from a service which incorrectly uses the same
rpcid for different calls. We call a CPE’s origin the source of the
error. By differentiating each rpcid, we can always rebuild the trace
structure at the source of a CPE.

First,we calculate thenumberof unique calls thatwere incorrectly
assigned the same rpcid. The 2021 traces and 2022 traces use rts dif-
ferently, so we handle each case independently. The 2021 traces use
negativerts for reply rows.When thert is belowa certain threshold,
it is rounded down to 0 (both for the call and reply edges). The call
rt includes the child execution time plus the network latency while
the reply rt is only the child execution time, so the reply edges must
have art less thanor equal to the callrt.Weuse these characteristics
to calculate the number of calls for a given rpctype to each DM. For
one-way communication, thert values should all be positive (mostly
0), so the number of calls is equivalent to the number of rows.

For two-way communication in the 2021 dataset, we calculate
number of calls as follows:

𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠 = ⌊ (𝑟𝑡 ==0)
2

⌋

𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤 = (𝑟𝑡 ==0)%2
𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠 =max(−rt,𝑎𝑏𝑠 (+rt−𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤))

𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀 =𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠+𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠

(1)

-rt is the number of rows with negative response times and +rt
is the number of rows with non-zero positive response times. Since
two-way communication should have one positive and one negative
row, where the negative row could be 0, we get the minimum
number of unique calls if wemaximize the number of +/- pairs made.
𝑛𝑢𝑚_𝑓 𝑎𝑠𝑡_𝑐𝑎𝑙𝑙𝑠 counts the pairs of rowswith 0 rt. 𝑒𝑥𝑡𝑟𝑎_𝑓 𝑎𝑠𝑡_𝑟𝑜𝑤
is 1 if there is an odd number of rows with 0 rt. We try to pair any
leftover 0 rt rows with +rt rows. 𝑛𝑢𝑚_𝑠𝑙𝑜𝑤_𝑐𝑎𝑙𝑙𝑠 tries to match
the 0 rt row with a positive rt row (taking the absolute value when
there are no positive rt rows), and then counts the pairs between
the remaining + rt rows and - rt rows. Taking themax gives us the
total number of pairs and the remaining unpaired rows. Finally, we
add the fast and slow calls to get the total number.

The 2022 traces only have positive rts, the number of calls is
calculated by:

𝑛𝑢𝑚_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀 =𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑟𝑡/2) (2)

for two-way communication calls (and is the number of rows for
one-way communication).

Figure 2: CASPER example trace. Regions of the trace that
are corrected are highlighted in yellow and regions that are
fundamentally unfixable are highlighted in red.

Since we can always be missing rows, the true number of unique
calls is unknown. These calculations determine the minimum
number of unique calls.

Using the minimum number of calls to each DM, we can fix the
topology at the source of a CPE. We do this by updating the rpcids
to be unique for each call. Wemodify the rpcids to be of the form
𝑟𝑝𝑐𝑖𝑑 −𝐷𝑀 −𝑖 where 𝑖 is between 1 and the minimum number of
calls to the DM.

Example: In figure 2, (3) shows how the rpcids are updated to
be unique for a CPE. The tabular version of this data (table 3) has
five rows for the rpcid 0.3.1. We calculate that there are two calls
to C and one to D.We update the rpcids to be: 0.3.1-C-1, 0.3.1-C-2,
and 0.3.1-D-1.

Unique call paths downstream from CPEs: When there is
only one call to a DM at the source of a CPE, there is a possibility that
we can rebuild the trace downstream from this service. If there are
multiple calls to a DM, we cannot determine which instance of the
DMmade which downstream calls.

All downstream rpcids from CPEs are not assumed to be unique
because they share a non-unique rpcid in their ancestry. As a result,
we can only rely on the call depth information from rpcids as being
accurate. We can use UM and DM information to rebuild call paths
downstream fromCPEswhen the call path is 1) unique (i.e. the chain
of UM,DM, andcalldepth information formsasinglevalidcallpath)and
2) complete (there is no data loss or unknown values in the call path).

Example: In figure 2, (5) shows a unique path downstream from
a CPE that we can connect to the trace. Table 4 shows the tabular
version of this portion of the trace, where there is a row for 0.3.1.1
with UMD, connecting to the single D node in the trace. We update
the rpcid to be unique by changing its non-unique ancestor to be
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unique (e.g. 0.3.1.1→ 0.3.1-D-1.1).

4.2 Unrecoverable inconsistencies
4.2.1 Data loss. Data loss that has no redundancies: Most
instances of data loss have redundancies in the dataset. However,
there are some instances where there are no redundancies and the
data is unrecoverable. For example, when sequential rpcids are
missing, not all UM and DM information is recoverable.

Example: In figure 2, (1) shows that we are able to recover the
missing rpcids 0.1.1 and 0.1.1.1, but we cannot determine the
service name for the additional node.

4.2.2 Context propagation errors (non-unique paths). Non-unique
call paths downstream from CPEs: We cannot remedy calls
downstream from CPEs when they do not form unique call path. In
the presence of data loss, it is fundamentally not possible to replace
the missing calls since we cannot determine a unique ancestry to
reconnect via. When we have missing UM or DM values, they are not
recoverable since there are often many unique possible values.

Example: In figure 2, (4) shows how the rpcid 0.3.1.1 (from
table 3) cannot be uniquely connected to the trace. Since we cannot
definitively connect this edge to the existing trace, we remove it and
all rows downstream from it. Figure 2 (6), which visually represents
the data in table 5, is affected by data loss. We are missing a row
for the rpcid 0.3.1.1.1, which is needed to determine if the node X
connects uniquely to the trace via the node F or non-uniquely to
the trace via node E.

Conflicting paths, where the UM does not connect upstream:
As described in section 3.3, conflicting UMs have a special case where
they are not downstream from a CPE. In this case, there is only
one service upstream. Any rows with UMs that do not match the
upstream’s DM are dropped as they form invalid call paths.

4.3 Casper algorithm
The Casper algorithm performs a best case reconstruction of the
trace topologies and guarantees that the edges in the resulting
graphs are accurate. We keep track of the number of unrecoverable
rpcids that are omitted from the traces. Casper begins with general
preprocessing of the data including filling missing values with
duplicate rows. The meat of the program is in handling data loss
and CPEs, which is outlined below.

At a high-level, Casper performs a breadth first search (BFS)
traversal over the rpcids in each trace. When it identifies data loss
upstream from a rpcid, it recursively fills in missing calls until it
connects upstream.When it identifies a CPE, it fixes the error at the
source and attempts to reconstruct the rpcids downstream from the
CPE (algorithm 2) before returning to the BFS traversal (algorithm 1).

For each trace, Casper is initialized by sorting the rpcids in
BFS order and identifying all root rpcids, which have no upstream

rpcid UM DM rpctype rt

0.3.1.1.1.1 X Y db +
0.3.1.1.1.2 X Z db +

Table 5: Unrecoverable call paths downstream from CPE,
affected by data loss.

Algorithm 1 Casper algorithm for a single trace
1: 𝑟𝑝𝑐𝑖𝑑𝑠←𝐵𝐹𝑆 𝑠𝑜𝑟𝑡𝑒𝑑 𝑟𝑝𝑐𝑖𝑑𝑠 𝑓 𝑜𝑟 𝑡ℎ𝑖𝑠 𝑡𝑟𝑎𝑐𝑒

2: 𝑟𝑜𝑜𝑡_𝑟𝑝𝑐𝑖𝑑𝑠←𝑎𝑙𝑙𝑟𝑜𝑜𝑡𝑠

3: for rpcid in rpcids do
4: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 = 𝑟𝑝𝑐𝑖𝑑.𝑟𝑠𝑝𝑙𝑖𝑡 (′ .′,1) [0];
5: if Data loss then
6: while𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 not in trace do ‘
7: Add edge for𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 ;
8: 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑← next𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 ;
9: endwhile
10: end if
11: if Context propagation error then
12: 𝐷𝑀𝑠← unique DMs for rpcid;
13: forDM in DMs do
14: 𝑚𝑖𝑛_𝑐𝑎𝑙𝑙𝑠_𝑡𝑜_𝐷𝑀←𝑚𝑎𝑥 (𝑅+,𝑅−);
15: for i in min_calls_to_DM do
16: Add edge for 𝑟𝑝𝑐𝑖𝑑_𝐷𝑀_𝑖;
17: end for
18: end for
19: Rebuild downstream CP rpcids (Alg 2);
20: end ifAdd edge for 𝑟𝑝𝑐𝑖𝑑 ;
21: end for

rpcids (alg 1, lines 1–2). It then iterates over the rpcids in BFS
order from each root and performs:

(1) Check for data loss: if the rpcid is not a root, drop the trailing
’.’ and check for a𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 (alg 1, lines 4–5).
(a) If the𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚_𝑟𝑝𝑐𝑖𝑑 does not exist, recursively add calls

(with UM/DM values when possible) until we connect to the
trace (alg 1, lines 6–9).

(2) Check for CPE: Calculate the minimum number of calls made
by this rpcid. If there are more than the expected number
of rows (alg 1, line 11):

(a) Extract the list of unique DMs called by the UM. For
each DM, calculate the number of calls to the DM. Create
a unique rpcid for each call to the DM of the form
rpcid=rpcid−DM−𝑖 where i ranges from 1 to the number
of call (alg 1, lines 12–18).

(b) Extract all rpcids downstream from the CPE and rebuild
independently. These rows have different assumptions
(i.e. that the rpcid is not unique) so must be handled
separately (alg 1, line 19).

(3) Add edge to the trace, if no errors (alg 1, line 20)
Algorithm 2 describes howwe remedy rpcids downstream from

CPEs. At a high-level, Casper first identifies and removes subtrees
in the trace that are downstream from data loss (i.e. disconnected
subtrees). Next, Casper performs call path validation, filtering out
non-unique call paths. Algorithm 2 is initialized with only the
rpcids downstream from the source of a CPE, which are sorted in
BFS order (alg 2, lines 1–2).

(1) Check for downstream data loss: For each rpcid, check if
it has a dangling tree below it. If the rpcid has no direct
children, but has descendants (alg 2, lines 3–4):

(a) Get the list of descendant rpcids and delete all rows with
these rpcids (alg 2, line 5–6).
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(2) Foreach row that isdownstreamfromtheCPEandnotaffected
by data loss, calculate the number of calls this row connects
to upstream. This is done by generating the 𝑝𝑎𝑟𝑒𝑛𝑡_rpcid,
filtering the parent rows that connect to this row’s UM, and
calculating thenumberof calls for those rows (alg 2, line 9–10):

(a) If this row connects to a unique call path: update it’s rpcid
to be unique, by replacing its ancestry rpcid with its
corrected 𝑝𝑎𝑟𝑒𝑛𝑡_rpcid (alg 2, line 11–12).

(b) If this row connects to a multiple call paths: delete the
row and any connecting downstream call paths. (alg 2,
line 13–14)

Algorithm 2 supports fixing sequential CPEs as long as the call
paths are unique.

Algorithm 2 Casper rebuild calls downstream from CPE
1: 𝑟𝑜𝑤𝑠← rows with rpcids downstream from CPE;
2: 𝑟𝑝𝑐𝑖𝑑𝑠←BFS sorted rpcids downstream from CPE;
3: for rpcid in rpcids do
4: if No child rpcid exists but exists descendents then
5: 𝑑𝑒𝑐𝑒𝑛𝑑𝑒𝑛𝑡_𝑟𝑝𝑐𝑖𝑑𝑠←𝑟𝑝𝑐𝑖𝑑.∗ from rpcids;
6: delete rows for 𝑑𝑒𝑐𝑒𝑛𝑑𝑒𝑛𝑡_𝑟𝑝𝑐𝑖𝑑𝑠 ;
7: end if
8: end for
9: for row in rows do
10: 𝑛𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔_𝑐𝑎𝑙𝑙𝑠← num calls row connects upstream

to;
11: if 𝑛𝑢𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔_𝑐𝑎𝑙𝑙𝑠 ==1 then
12: update rpcid in row;
13: else
14: delete row & connecting downstream rows;
15: end if
16: end for

4.4 Limitations
Missing rpcids before or after all recorded rpcids: Missing
rpcids that are smaller than the smallest rpcid in the table or
larger than the largest rpcid in the table. As mentioned in [6], root
rpcids can be anything (although it’s most commonly 0 or 0.1).
Additionally, we found there can be multiple roots in a single trace.
When the root rpcid is larger than 0.1 (i.e. starting at a ’depth’ of
greater than 2), it could be the true root of the trace or it could be
missing rpcids before it.

Corrupted values: We must make assumptions about the
trace data that allow us to rebuild the topology. In addition to the
assumptions provided byAlibaba, we assume traceids are accurate.
If traceids (or any other fields for that matter), are corrupted in
unpredictable ways, we cannot guarantee we will identify it and
can remedy it.

5 EVALUATIONOF CASPER
We seek to answer the following regarding Casper’s efficacy in
circumventing inconsistencies in the Alibaba datasets.

Q1: How are traces generated by Casper different from traces
generated with other approaches? More specifically, what trace

topological characteristics change using different reconstruction
approaches?

Q2 How much do the recovery mechanisms in Casper impact
trace topologies?

Q3Howmany additional complete traces doesCasper reconstruct
compared to filtering out all traces with any inconsistencies?

The answers toQ1 are a cautionary tale to researchers using the
Alibaba trace dataset that reconstructing traces ignoring errors
will lead to vastly skewed results that may impact the design or
evaluation of their research artifacts. The answers to Q2 evaluate
the effectiveness of the recovery mechanisms in Casper. The answer
to Q3 informs us howmuch the built-in side-channel redundancies
in the Alibaba traces are able to help correct the inconsistencies
without dropping communication calls or filtering entire traces.

For all of these analyses, we use a randomly sampled 10.8%
(2,240,550) of the 2021 trace data and 1% (5,079,746) of the 2022 trace
data. We use a lower sampling rate for the 2022 dataset because
it contains many more traces than the 2021 version. We used
six r6.xlarge instances to split the datasets as per traceid and
one c5a.23xlarge EC2 instance w/90 threads to run the Casper
algorithm and other construction approaches described in this
section. The other construction methods are variants on the Casper
implementation and run inline with its execution.

5.1 Comparing constructionmethods
5.1.1 Methodology. We consider three alternative approaches
to Casper for constructing traces without deep knowledge of the
inconsistencies in the datasets: naive-rpcid, naive-accurate,
and partial. Figure 3 illustrates how the four approaches differ
when reconstructing one example trace that has inconsistencies.
We describe the alternative rebuild modes below.

naive-rpcid: keeps the first occurrence of a unique rpcid in the
table and neither detects nor recovers any inconsistencies (similar
to construction process in §2). Figure 3 shows the first row for each
rpcid represented as a graph. The trace is disconnected since rpcid

rpcid UM DM rpctype rt

0.1 A B rpc +/-
0.1.1.1 C D rpc +/-
0.1.1.1 C E db +

(a) Trace Example

(b) Modes
Figure 3: Trace building modes. Four different modes for
building trace graphs, eachhas adifferentmethodofhandling
errors and inconsistencies.
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Figure 4: Trace sizes for differentmodes

0.1.1 is missing. Additionally, we are missing node E since it was
not captured in the first row for its rpcid.

naive-accurate: detects inconsistencies and ignores the entire
trace if an inconsistency is identified. Figure 3 shows once the
missing rpcid 0.1.1 is detected, all rows for the trace are deleted.

partial: keeps calls in the traces that are not affected by an
inconsistency. When an inconsistency is identified, the entire
downstream call path is removed from the trace. partial traces
preserve the accurate portions of traces. Figure 3 shows once the
missing rpcid 0.1.1 is detected, all downstream rows are deleted.

Casper: as described in section 4. Figure 3 shows how Casper
fixes the missing call 0.1.1 and the CPE at 0.1.1.1, updating the
repeated rpcid to be unique for each call.

For naive-accurate and partial, we allow inconsistencies
that are trivial to fix (e.g. missing values andmissing duplicate rows)
since they do not affect the trace topology.

To compare the four approaches, we analyze the following
topological characteristics of the reconstructed traces: trace size,
call depth, and width. Trace size represents the total number of
microservices in the trace. A microservice can be called many
times within a trace and each call is included in the trace size. Call
depth is the maximum depth of the call paths in the traces. Width
is the maximum number of calls made by a single microservices. In
graph form, this is the largest fan-out. We compare the cumulative
distribution functions (CDFs) for all metrics.

5.1.2 Results. Overall, we find that Casper traces are larger, wider,
and deeper than all other methods of constructing traces for
both the 2021 and 2022 datasets. The 2022 traces are smaller (size,
depth, and width) than the 2021 traces. The 2022 traces have less
inconsistencies, so Casper’s impact on the trace topology compared
to naive-rpcid is less significant.

Trace size: For both the 2021 and 2022, Casper builds larger traces
than all other approaches by correcting data loss and CPEs. Figure 4
shows the CDF of trace sizes for both years. For 2021, at the 50th per-
centile (P50), a Casper trace is the same size as naive-rpcid traces.
However, Casper produces larger traces at P75 than all other modes.
On average, Casper traces have size 33.08 whereas the size is 12.22,
15.50, and 29.11 for naive-accurate, partial and naive-rpcid re-
spectively. For 2022, Casper traces have similar, the same or slightly
bigger, size compared to all other modes at all percentiles. Traces
from2022 are overall smaller than those from2021. The average trace
size naive-accurate is 12.22 in 2021, but is decreased to 4.98 in 2022.

Call depth: For both the 2021 and 2022, Casper builds deeper
traces than all other approaches by reconnecting call paths that
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Figure 5: Maximum trace depth for differentmodes
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Figure 6: Maximum trace width for differentmodes

have missing rpcids. Figure 5 shows the CDF of the maximum
call depth of a trace for both years. For 2021, at P50, Casper traces
have the same depth as the other modes. However, Casper produces
deeper traces at P75 than all other modes. On average, Casper
traces have depth 6.40 whereas the depth is 4.84, 4.56, and 5.26
for naive-accurate, partial and naive-rpcid respectively. For
2022, Casper traces have the same depth or slightly deeper than all
othermodes at all percentiles. Traces from2022 are overall shallower
than those from 2021. The average depth for a naive-accurate
trace is 4.84 in 2021, but is decreased to 3.01 in 2022.

Width: For both the 2021 and2022,Casper buildswider traces than
all other approaches by differentiating repeated rpcids generated
by CPEs. Figure 6 shows the CDF of maximumwidth of a trace for
both years. For 2021, P25 and P50, a Casper trace has similar width
as the other modes. At P75, Casper traces are wider. On average,
Casper traces have width 10.73 whereas the width is 5.30, 5.91, and
8.97 for naive-accurate, partial and naive-rpcid respectively.
For 2022, Casper traces are similarly wide or slightly wider than all
othermodes at all percentiles. Traces from 2022 are overall narrower
than those from 2021. The average width for naive-accurate
traces is 5.30 in 2021, but is decreased to 1.92 in 2022.

5.2 Impact of recoverymechanisms
5.2.1 Methodology. WebreakdownCasper’s recoverymechanisms
(described in §4.3) into four parts and quantify their impact. 1) Adds
missing calls counts the number of new calls added to a trace. 2) Fills
inmissing values counts the originally unknownmicroservice names
that Casper recovers. 3)Updates rpcids at a CPE sourcemeasures the
number of rpcids addedwhen differentiating calls at the first occur-
rence of a CPE in a call path. 4) Recovers rpcids downstream from a
CPE source counts the number of calls Casper identified as uniquely
connected to the trace downstream from the first CPE in the call path.
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Casper collects metrics for each of the recovery mechanisms
when reconstructing the traces. We calculate the number of traces
that are affected by each recovery and its impact within the trace.

5.2.2 Results. Adds missing calls: Casper recovers all missing
internal calls in a trace. For 2021, 30.47% of traces have at least one
missing internal rpcid, with the average number of calls 10.7 (std:
23.79, P99: 115). For 2022, 8.77% of traces have at least one missing
call added by Casper, with average 3.57 (std: 13.12, P99: 30). Casper
reconnects broken traces, resulting in longer call paths.

Fills inmissing values: Casper fills in missing DM values using
duplicate information stored in rows or call paths. For 2021 traces,
we are able to recover at least one DM in 99.98% of traces. On average,
traces have 2.84 recovered DM names (std: 5.61, P99: 27). For 2022
traces, we are able to recover at least one DM in all traces. On average,
traces have 2.61 recovered DM names (std: 6.99, P99: 34).

Updates rpcids at aCPE source: Given a call path starting from
the root call, the first occurrence of a CPE is a CPE source. Casper
modifies rpcids to be unique to differentiate different calls that orig-
inally shared the same rpcid. This modification may preserve more
branches and yield wider traces. For 2021 traces, Casper modifies on
average 2.77 rpcids per CPE source (std: 2.65 and P99: 11). For 2022
traces, Casper modifies on average 2.02 rpcids at a CPE source (std:
0.18 and P99: 3).

Recovers rpcids downstream from a CPE source: Casper
connects unique call paths downstream from aCPE source, updating
their rpcids to be unique which may preserve longer call path
and yields deeper traces. We measure this impact by counting the
number of such updated rpcids per CPE source. For 2021 traces,
Casper modified on average 3.08 downstream rpcids (std: 11.22
and P99: 48). For 2022 traces, Casper modified on average 1.11
downstream rpcids (std: 32.97 and P99: 19). Note that additional
CPEs can occur downstream, but they are rare. For 2021, the average
number downstream CPEs is 0.23, (std: 1.5 and P99: 6). For 2022, the
average number downstream CPEs is 0.14, (std: 2.71 and P99: 3).

5.3 Additional complete traces
5.3.1 Methodology. We evaluate Casper’s effectiveness at rebuild-
ing complete traces bymeasuring the number of additional complete
traces output by Casper (when compared to naive-accurate). A
trace is complete if there are no unrecoverable rpcids (explained
in Section 4.3).

5.3.2 Results. For 2021, 58.32% of the traces have complete
topology without needing to remedy any inconsistencies. Casper
reconstructs an additional 25.5% of the traces, totaling to 83.82%.

For 2022, 86.42% of the traces have complete topology without
needing to remedy any inconsistencies. Casper reconstructs an
additional 12.18% of the traces, totaling to 98.6%.

6 DISCUSSION
Recommendation for consumers of the Alibaba datasets and
related research papers: Users of the datasets should always
specify their methodology for identifying and mitigating inconsis-
tencies in their analyses. They should prefer the 2022 dataset, which
contains fewer total inconsistencies. But, it is unclear if traces in the
2022datasetwere collected from the sameapplications or application

versions as the 2021 dataset. Themaximum trace sizes andmaximum
widths differ significantly between both years regardless of rebuild
mode. As such, consumers may wish to use both datasets to test
their work against a range of request-workflow characteristics.

We recommend caution when interpreting research that uses
the 2021 dataset without specifying a methodology for handling
inconsistencies. Readers should carefully consider if changes in
trace characteristics or connectivity would affect the results. Of
particular note is the Alibabamicroservice analysis by Luo et al. [16].
This analysis uses a 7-day dataset of which the 2021 public release
is a subset. But, does not specify whether the authors knew about
the inconsistencies or whether they addressed them. As such, the
presented graphs of trace characteristics, clustering results, and
distributions suggest for the artificial trace generatormay be suspect.

Exploring tradeoffs in capturing redundancies within
trace data: Casper’s functionality is possible because Alibaba’s
tracing infrastructure stores redundant data in caller/callee log
messages. Namely, rpcid uniquely locates a call in the trace,
allowing call-graph connectivity between services when interme-
diate calls are lost. But, rpcids’ expressiveness results in larger
context and larger network message sizes. Context-propagation
errors can be circumvented by using chains of UM / DM fields. In
contrast, the popular open-source model for distributed-tracing,
OpenTelemetry [21], does not capture any redundancies. Spans
(e.g., service executions) can be dropped if services’ are too resource
starved [22], leading to traces with (silent) missing nodes. Research
is needed to explore how to encode redundancies in trace data or
context and the overhead tradeoffs of doing so.

Tools to identify context-propagation errors: Capturing
high-fidelity traces that represent their workflow relies on correct
context propagation. Worse, context propagation errors can
propagate downstream, making it difficult to identify the offending
service. Tools, similar to lint, are needed that can detect whether
services are propagating context correctly. These tools should be
used prior to deploying new services or new versions.

7 SUMMARY
We systematized inconsistencies found in Alibaba’s distributed
tracing data and identified two root causes for these inconsistencies:
data loss and context propagation errors. We built Casper, an toolkit
which can remedymost inconsistencies in the trace data, building
the largest accurate topologies. We evaluated Casper against other
methods of constructing traces and show that our topologies are
larger and more complex than other methods.
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ABSTRACT
Modern cloud-native applications are adopting the microservice
architecture in which applications are deployed in lightweight con-
tainers that run inside a virtual machine (VM). Containers running
different services are often co-located inside the same virtual ma-
chine. While this enables better resource optimization, it can cause
interference among applications. This can lead to performance
degradation. Detecting the cause of performance degradation at
runtime is crucial to decide the correct remediation action such as,
but not limited to, scaling or migrating. We propose a non-intrusive
detection technique that differentiates between degradation caused
by load and by interference. First, we define an operational zone
for the application. Then we define a disambiguation method that
uses models to classify interference and normal load. In contrast
to previous work, our proposed detection technique does not re-
quire intrusive application instrumentation and incurs minimal
performance overhead. We demonstrate how we can design effec-
tive Machine Learning models that can be generalized to detect
interference from different types of applications. We evaluate our
technique using realistic microservice benchmarks on AWS EC2.
The results show that our approach outperforms existing interfer-
ence detection techniques in 𝐹1 score by at least 2.75% and at most
53.86%.
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1 INTRODUCTION
DevOps practice encourages the use of microservice architecture,
where a traditional monolithic application is broken down into
a collection of easier-to-manage smaller services. Benefits of mi-
croservice architecture include better scalability, easier continuous
delivery support, data decentralization, and improved fault isola-
tion. Due to these advantages, more application developers are
adopting the microservice architecture recently. Microservices are
deployed as cloud-native applications on public cloud platforms
with each service encapsulated within a container running inside a
virtual machine (VM). Containers have risen in popularity for their
faster deployment speeds and their ability to allow applications
to run in complete isolation from one another without incurring
extra overhead. Container orchestration platforms such as Docker
[25] and Kubernetes [7] are increasingly gaining popularity and
are commonly used in public cloud platforms such as Amazon Web
Services (AWS) [3] and Google Cloud Platform [4].

Multiple microservices are generally consolidated on a single
VM. This is done to improve resource consumption levels inside
a VM and thereby optimize cloud costs. When multiple microser-
vices are deployed on the same VM, they can often compete with
each other for shared host-level resources. Such shared resource
contention can alter application behavior and make it deviate from
the development time specifications and performance. We refer
to application performance degradation due to shared resource
contention as performance interference. Performance interference
has been observed before in applications running on public cloud
environments [17, 20, 21, 23, 28–30, 36].

Detecting and disambiguating performance interference anom-
alies from other causes of performance degradation is very im-
portant for application runtime self-management and for avoiding
outages. For example, a performance degradation due to legitimate
workload surge can be automatically mitigated by horizontal scal-
ing whereas interference might be mitigated though application
redeployment and relocation. Another use case where detection
interference anomalies is important is in reducing the number of
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alerts the IT operators have to deal with. It is estimated that the
an IT operator faces 80-100 alerts per system [35]. We need to de-
tect if there is interference, and disambiguate if the performance
degradation is from interference or from normal behavior. There-
fore, it is important that an application detects when its execution
environment is perturbed significantly by other applications.

Automatically detecting runtime interference in cloud-native
applications is a challenging task. Application workload variability
and unpredictability can produce the same effects as interference,
and hence it is difficult to distinguish between them. Researchers
have looked, with limited success, into instrumenting applications
[11], recording their mean request response times, and comparing
them against their baseline response times to detect the presence
of interference. Continuously instrumenting application code and
monitoring the response times of running services [19] can sig-
nificantly increase the cost of development and maintenance. In
addition, continuous monitoring of service metrics can incur a
prohibitive overhead when the service is facing a heavy workload
[10, 18]. Furthermore, interference detection techniques that model
the baseline behavior may not generalize well to scenarios where
the interfering application changes at runtime.

To address some of the above challenges, we propose a light-
weight method that uses a small number of deployment and runtime
performance metrics to automatically disambiguate interference
and workload effects on performance. The method involves build-
ing or training a model such as queuing, regression, or machine
learning models prior to deployment. By using interference for
training when using machine learning models, we are no longer
dependent on costly response time instrumentation. At runtime, we
can use the model and readily available performance data to detect
the interference. The method is non-intrusive and does not require
any application performance profiling. We use resource utilization
metrics that can be easily collected at runtime from within each
application container along with simple application level metrics
such as request throughput or response time. The assumption is
that an autonomic manager is application specific, has access only
to managed application metrics and does not see the other applica-
tion metrics, only their effect on the managed application metrics.
The basis of this assumption is that the environment is dynamic
and collocated applications might be deployed after the target ap-
plication. This is in line with the current practice when we develop
autoscalers for each application. We also make the assumption that
the ML model can be trained as a DevOps process activity and
then used at runtime within an AIOps (Artificial Intelligence for IT
Operations) platform for interference detection and mitigation.

The paper addresses the following research questions:
RQ-1: How severe is the impact of performance interference in

cloud-native applications deployed on public cloud? To address this,
we performed experiments to characterize the impact of interfer-
ence on a microservice benchmark, Acme [1], hosted on the AWS
EC2 cloud platform. The results indicate that the response time of
Acme can be severely impacted by interference by at least a factor
of 39% and at most a factor of 6955% at moderate CPU utilization
levels.

RQ-2: How well does a disambiguation method perform when
the interfering workloads used for model training and deployment

are similar? To answer RQ-2, we develop and train models to de-
tect interference caused by applications with similar performance
characteristics. Results show that ML models outperform state-of-
the-art regression based and threshold based interference detection
techniques by at least 0.67% and at most 23.29%. Furthermore, our
method incurs minimal overhead of only 1% to 2% on the service
response time at runtime.

RQ-3:Howwell does our disambiguation method perform when
the interfering workloads used for model training and deployment
are not similar? This question covers a common case when we do
not know a priori what applications might share the infrastruc-
ture with our managed application. To address RQ-3, we show that
we can develop and train models to detect interference caused by
an arbitrary application that stresses the same resources as used
by the target application. In addition, this model generalizes well
for detecting interference from different containerized interfering
applications. Lastly, we evaluate scalability by using our model
to detect interference against a large multi-tired microservice ap-
plication. As presented in our results, our technique outperforms
state-of-the-art regression based and threshold based interference
detection techniques by at least 2.75% and at most 53.86%.

The paper makes the following contributions:

(1) We introduce a formal definition of cloud-native application
interference disambiguation, rooted in queuing theory.

(2) We introduce an interference detection method that gen-
eralizes across interference scenarios and outperforms the
state-of-the-art.

(3) We evaluate the method using several model types, including
queuing and machine learning models.

(4) We validate the method on four industrial strength applica-
tions and show that it scales to large deployments and works
in public clouds.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 details the motivation and method-
ology. Section 4 describes experimental setup. Section 5 presents
the results of RQ-1, RQ-2, and RQ-3. Section 6 details threats to
validity. Section 7 is the conclusion and discussion of future work.

2 RELATEDWORK
2.1 Interference Definitions
Koh et al. [23] investigate the impact of VM-level performance in-
terference from co-located workloads and characterize interference
impact on low level system metrics. They cluster workloads by
interference type and construct performance prediction models for
co-located workloads using weighted means and regression analy-
sis. Paul et al. [30] similarly characterize performance interference
in co-located VMs and further measure the application performance
degradation and impact on low-level system metrics. The authors
highlight types of workloads that perform well or not when co-
located. In contrast to these work, we characterize the impact of
interference among containerized microservices.
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2.2 Interference Measurement and
Classification

Jha et al. [20] measured intra-microservice and inter-microservice
interference using four benchmark microservices. The results of
their experiments showed significant container interference present
in both intra-container and inter-container cases. Garg, and Lak-
shmi. [17] ran experiments using well-known containerized bench-
marks to detect microservice interference and accordingly iden-
tified the shared resources subject to contention in these scenar-
ios. Novaković et al. [29] propose DeepDive to mitigate VM-level
performance interference. Their approach detects interference by
comparing low-level system metrics against a workload’s baseline
values and migrates VMs to other physical machines as needed.
Wang et al. [36] present Vmon, a system that detects and quantifies
VM-level performance interference. Vmon profiles an application
running on a VM to observe how Hardware Performance Counters
correlate with application performance. DeepDive and Vmons de-
tect VM-level interference through use of low-level system metrics
whereas our work detects microservice interference using metrics
that are readily available and do not pose prohibitive overhead
in collecting. Additionally, our work is differentiated in that we
evaluate the effectiveness of model re-use across different scenarios.

2.3 Interference Regression
Joshi et al. [21] propose Sherlock, a method for detecting long-lived
performance interference in containerized services caused by co-
located VMs. The authors employ a regression detection technique
to model performance interference using VM and application-level
metrics at runtime. Kang and Lama [22] predict microservice inter-
ference using Gaussian Process models trained at runtime using a
sliding window technique. Baluta et al. [12] predict microservice
interference using AutoML models trained at runtime using a slid-
ing window technique. Our work differentiates from these as we
explore the reuse of pre-trained interference detection models in
varying environments.

3 DEFINITIONS, MODELS AND
METHODOLOGY

Assume that at deployment time, we profile the performance of an
application and the interference effects in the space (U, 𝜆, R), where
U is the utilization, R is the response time and 𝜆 is the workload
(arrival rate of requests) of the application and infrastructure. That
profile is captured in a model and the profile is defined over a large
workload space and interference levels.

In Figure 1, we illustrate interference in a simplified two-
dimensional space, U and R. The blue area is the baseline profile for
one workload ([𝜆=𝜆1]). The response time of application, with no
interference, falls within 95 percentile Confidence interval, denoted
[𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 ]. With the help of tunable slack variable, 𝛼 , we
define a 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑧𝑜𝑛𝑒 around the operational area (gray area).
This parameter is application-dependent and defined by the appli-
cation owner and can be derived from Service Level Agreements.
Interference zones are those areas in the space (U, 𝜆, R) where
response time is outside the interval [𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 -𝛼 , 𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒+𝛼]
but cannot be explained through the change of the workload. For
example, red areas in the figure are interference anomalies, whereas

Figure 1: Interference Range

green areas depict normal behaviour, non-interference, caused by
workload. Although the anomaly depicted in red can be explained
by other causes (bugs, misconfigurations, etc.), in this paper we
focus on interference anomalies. Δ𝑈 is the utilization step size
between non-interference and what is classified as interference.
Although both are outside the operational zone, it is important to
know what causes the shift in the operation region. Different root
causes of anomalies can be mitigated through different runtime
actions.

In Section 3.1, we formulate interference as a Queuing Network
problem. In Section 3.2, we motivate the use of Machine Learning
to address interference. In Section 3.3, we describe our methodol-
ogy including data collection and pre-processing, as well as model
training and deployment.

3.1 Queuing Network Models and Interference
Modeling

In this section, we explain how interference can be formulated as
Queuing Network Models (QNM). To begin, we consider a con-
tainerized application 𝑎 running inside a VM without interference,
as seen in Figure 2. We assume that the application 𝑎 stresses a
single resource 𝑘 in the VM so as to incur an utilization of 𝑈𝑎,𝑘 on
the resource. We assume a request arrival rate of 𝜆𝑎 to application 𝑎.
If, at runtime, we had a way to measure service demand 𝐷𝑎,𝑘 of ap-
plication 𝑎 at resource 𝑘 , we could then predict the no-interference
mean request response time 𝑅𝑎 of application 𝑎 as:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑘

(1)

where𝑈𝑘 is the total utilization incurred at resource 𝑘 in the VM.
Since in a no-interference scenario, the only application stressing
resource 𝑘 is our monitored application 𝑎, 𝑈𝑘 = 𝑈𝑎,𝑘 . Finally, we
substitute 𝑈𝑘 with𝑈𝑎,𝑘 in eqn. 1 to obtain the response mean time
𝑅𝑎 of application 𝑎 in a no-interference environment as given by:

𝑅𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑎,𝑘

(2)
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Figure 2: Effect of Interference on Resource Utilization

By considering the forced and utilization laws as well as steady
state, we have

𝑅𝑎 =
𝐷𝑎,𝑘

1 − 𝐷𝑎,𝑘 ∗ 𝜆 (3)

and this allows us to extrapolate the response time outside of an
operational point and for any workload 𝜆 (cf. green areas in Figure
1).

To illustrate interference, consider another application 𝑏 running
inside the same VM, as seen in Figure 2. Application 𝑏 incurs an
utilization of𝑈𝑏,𝑘 on resource 𝑘 inside the VM. Accordingly, from
eqn. 1, the new response time 𝑅𝑛𝑒𝑤𝑎 of application 𝑎 when it faces
interference from application 𝑏 is:

𝑅𝑛𝑒𝑤𝑎 =
𝐷𝑎,𝑘

1 −𝑈𝑛𝑒𝑤
𝑘

(4)

where𝑈𝑛𝑒𝑤
𝑘

represents the total utilization of resource 𝑘 , i.e. the
sum total of the utilization incurred by both applications 𝑎 and 𝑏 at
resource 𝑘 given by:

𝑈𝑛𝑒𝑤
𝑘

= 𝑈𝑎,𝑘 +𝑈𝑏,𝑘 (5)
Equations 2 and 5 explain interference (cf. Figure 1, red zones).

3.1.1 QNMMethodology. We tune QNM following the approaches
in [14, 38]. Since we work under the assumption that we do not
have access to the metrics of other applications and we consider
the system is a product form network [13], we can use Eq. 3 to
estimate the response time 𝑅 and compare it with the measured
response time. If the measured response time is outside the bounds
[𝑅-𝛼 , 𝑅+𝛼] then we label it as affected by interference, otherwise
we consider the deviation as caused by application load.

3.2 Machine Learning Classification and
Interference Modeling

Based on eqn. 2 and eqn. 4, we observe that a point [𝜆𝑎 , 𝑅𝑎 , 𝑈𝑘 ] is
transposed to [𝜆𝑎 , 𝑅𝑛𝑒𝑤𝑎 ,𝑈𝑛𝑒𝑤

𝑘
] in the same tri-dimensional space

under the impact of interference. Based on this observation, we
aim to use resource and application metrics to train ML models
that can classify two distinct classes of response time values, one
class denoting the no-interference scenario represented by 𝑅𝑎 , and
the other denoting the interference scenario represented by 𝑅𝑛𝑒𝑤𝑎

(corresponding to red and green zones in Figure 1). We note that
it appear more practical to use ML models instead of QNMs for
interference detection since it is infeasible to accurately measure re-
source service demands for all containers belonging to a monitored

microservice application serving different kinds of workloads. Fur-
thermore, multiple levels of virtualization involved in a cloud-based
microservice container can involve estimating service demands for
unknown virtualized resources [27], which can be difficult. In con-
trast, ML models use resource utilization and throughput metrics
that are easy to collect at the container and VM levels.

We use our understanding of QNMs as motivation for applying
machine learning to detect interference. From eqn. 4, since the new
response time 𝑅𝑛𝑒𝑤𝑎 of application 𝑎 is only impacted by the total
utilization 𝑈𝑘 incurred at resource 𝑘 , it follows that 𝑅𝑛𝑒𝑤𝑎 remains
unchanged even if𝑈𝑘 is incurred by different types of applications
as long as the levels of total utilization incurred at resource 𝑘 are
similar. Consequently, we aim to use this logic as motivation for
training our ML models to predict interference classes with one
type of benchmark application which can then be used at runtime
to classify similar interference from other types of applications.

Figure 3: Overview of Interference Detection Technique

3.3 Machine Learning Methodology
In this section, we present our methodology focused on ML models
since they are central to our work. Section 3.3.1 defines the assump-
tions of our technique. Section 3.3.2 details data generation and
pre-processing. Section 3.3.3 describes the methodology to train an
ML model for interference detection. Section 3.3.4 details the use
of an ML model for interference detection at runtime.

3.3.1 General Methodology. We refer to the in-production applica-
tion as the target application. The application owner deploys their
target application on managed cloud services. In doing so, the ap-
plication owner delegates management of physical servers or even
VMs to the cloud provider. Consequently, the application owner
only has guaranteed visibility into the target application’s contain-
ers and access to VM level metrics. Our target application consists
of multi-tiered microservices, each bundled inside a container. It is
typical for microservice applications to be distributed over several
VMs, with each VM hosting one or more microservice containers.
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In our study, we consider an interfering application as one that runs
on the same VMs as the target application and competes for shared
VM resources.

Our detection technique monitors resource utilization data from
inside the VM and the application containers metrics that are easy
to collect. We record container utilization metrics at each target
application container along with VM utilization metrics collected
at a sampling interval of 𝑡 seconds. We also record the overall
application throughput and the response time, at each sampling
interval. The sampling interval needs to be tuned for each target
application so as to incur minimal levels of performance overhead
on the system.

3.3.2 Data Collection and Pre-Processing for ML. Figure 3 presents
the high level overview of our interference detection technique.
As seen in the figure, our technique runs in two phases. The first
phase is the training phase where we run controlled experiments
to train our ML model in an offline model training environment.
In the training phase, we run our target microservice application
in a controlled cloud environment where its response time is not
impacted by performance interference. This is done by running the
target application in isolation on the 𝑛 VMs hosting the microser-
vice without any interfering application present. The objective is
to obtain baseline metrics when no interference is present. To this
end, we increase the arrival rate of the application workload to
the target application in steps to incur a wide range of resource
utilization observed at each application container. This is done
through aWorkload Generator tool running inside a Detector VM
which resides alongside the application VMs, as seen in Figure 3.
We ensure that our workload generation setup is free from internal
software bottlenecks and network latency issues by following the
approach detailed in past work [28]. Since application owners can
only access metrics from the VM and their own application con-
tainers, we omit including metrics of any other kind in our data
set for ML model training. To this end, a Metric Monitor tool from
inside our Detector VM, as shown in Figure 3, collects measurable
metrics from the target application and its environment such as
application response time and throughput, and container and VM
resource usage. Although we choose the average request response
time of a target application as our performance metric, other met-
rics such as the mean throughput values can also be used. Using
only the application throughput and response time along with VM
and application resource utilization metrics as input allows for a
smaller feature set that is easy to monitor, collect and does not incur
prohibitive monitoring overhead at runtime.

We repeat each step of workload generation 𝑁 times to obtain
𝑁 estimates of the average application request response time 𝑅𝑏𝑎𝑠𝑒
at each step. We refer to 𝑁 as the number of workload repetitions.
We use this data to construct the 95% Confidence Interval (CI) of
the baseline application response time at each step. The upper and
lower limits of this CI are denoted as𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 and𝑚𝑖𝑛𝑅𝑏𝑎𝑠𝑒 , re-
spectively. To mitigate against performance variability inherent in
public cloud platforms, we repeat each step, i.e. set the value of 𝑁
in our training phase such that the width of our CI is within 5% of
its sample mean at each step. Alternatively, if the cloud platform
has significant performance variability, the application owner may
consider deploying the application containers inside dedicated VMs

which have same specification as general VMs and are offered by
public cloud platforms to provide stable performance. Although
dedicated VMs are more expensive than general VMs, the applica-
tion owners only need to use them for a short period of time to
collect training data for ML models.

Once we obtain the 95% CI of the application’s baseline response
time, we next introduce interference into the system. For this pur-
pose, we run a controllable interfering probe along with the target
application on the 𝑛 VMs hosting the target application as shown
in Figure 3. Doing so imposes additional stress on shared resources
which is expected to increase response time as depicted in Equation
4. Similar to before, we send the same step-wise increasing work-
load to our target application from our workload generator tool
from inside the Detector VM. We also simultaneously vary load
on the interfering probe to diversify its degree of shared resource
contention and introduce different levels of performance interfer-
ence on our target application at each step. We record the average
request response time 𝑅𝑡 of the target application along with VM
and container utilization metrics collected by the Metric Monitor
tool when the interfering probe is also running. This is done at
our sampling interval of 𝑡 seconds continuously for a duration of 𝑥
seconds to obtain the training data set to be used in the ML model.
The application throughput, response times, and container and VM
utilization metrics for each sampling interval represent a single
record in the training data set of our ML model.

We use the baseline response time data obtained in the training
phase to label the ML data set in our offline model training. As
mentioned before, our ML model outputs binary classification with
2 labels, where label 1 indicates interference and label 0 indicates
no-interference. To this end, we compare the value of 𝑅𝑡 at each
record in this set with its corresponding value of𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 obtained
at the same step of workload. As depicted in Figure 1, if 𝑅𝑡 exceeds
𝑚𝑎𝑥𝑅𝑏𝑎𝑠𝑒 , we infer that the application response time suffers from
performance interference and accordingly assign the label 1 to the
record. Otherwise, the record is assigned with label 0. Once the
training data set is labeled, we remove the associated response time
pairing from each record to construct the final input data set to the
ML model.

3.3.3 ML Model Training. AutoML [15, 24, 32] has gained popular-
ity as an effective solution for training well-performing ML models.
The AutoML framework evaluates several ML models trained on
the same data set against one another and outputs the best perform-
ing model. We leverage the H2O AutoML framework [24] in our
ML model construction. This framework can be easily integrated
with the DevOps feedback loop to automate runtime interference
detection.

The framework trains multiple models including but not limited
to XGBoost and Stacked Ensemble Models. An ensemble model
is composition of several ML models and their predictions. The
framework automatically tunes ML algorithm hyper-parameters
using random grid search over a predefined range of possible hyper-
parameter values. H2O AutoML iteratively evaluates models under
these varying hyper-parameter configurations and outputs the best
performing model. In addition, the H2O AutoML framework em-
ploys 5-Fold cross validation by default to promote models general-
izing well to unseen data. We employ an 80-20 stratified train-test
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set split while preserving class ratios. We evaluate our models by
Precision, Recall, and 𝐹1 score.

When amodel makes positive predictions indicating interference
as present, the precision score measures how often interference is
truly present in the environment. Recall on the other handmeasures
how well a model identifies true instances of interference relative to
all positive predictions made by the model. 𝐹1 score is the harmonic
mean of precision and recall and summarizes their joint behavior
in a single metric.

3.3.4 ML Model Runtime Deployment. Once ML model construc-
tion is complete, we move on to the second phase, i.e., the runtime
phase, where we deploy the ML model to detect container interfer-
ence at runtime as seen in Figure 3. In this phase, we continuously
monitor throughput, VM and container resource utilization at run-
time as the microservice serves client traffic. Subsequently, this data
is fed as input to the ML model, which in turn classifies the current
runtime state of the target application as either ‘interference’ or
‘no-interference’.

4 EXPERIMENTAL VALIDATION
The experiments are designed to answer research questions RQ-1
to RQ-3 for a range of deployments and interference types. We
consider: a) multiple target and interference applications; b) dif-
ferent deployments for the target and interference applications; c)
different types of interference. In this section, we show the design
of the experiments and the implementation setup. Section 5 details
the results of these experiments.

4.1 Target and Interference applications
In the experiments, we use ‘in-production’ applications such as
ACME Air and Boutique as our Target application. Acme Air emu-
lates transactions for an airline website and consists of 2 microser-
vices, a NodeJS Web server, and a MongoDB database. Acme Air
is a well known and frequently used benchmark [33, 34]. We run
these 2 microservices in their own Docker containers. We refer to
these containers as the Acme-Web and Acme-Db containers respec-
tively. Online Boutique [6] is a popular open-source benchmark
application developed by Google. The e-commerce application is
composed of multiple microservices deployed on Kubernetes, an
open-source container orchestration system.

As interference applications, we use stress-ng and Air Quality
Monitor. Stress-ng [9] is a linux stress tool that allows the user to
stress the CPU, memory, disk and other resources. We use stress-ng
as a configurable artificial application benchmark which can be
used to generate a wide range of resource utilization levels. Air
Quality Monitor [2] is an Internet of Things (IoT) application that
processes air quality sensor data.

4.2 Interference Types
We consider the following interference types:

(1) Correlated and similar workloads (CSI). In this use case, we
consider that the interference is generated by applications
in which the load at different VMs is correlated with the load
of an ingress service/gateway). The interfering applications
belong to the same class as the in-production application,

therefore the workloads of the in-production and interfering
application are similar. We consider e-commerce applica-
tions, like ACME, for both training and inference.

(2) Correlated but dissimilar workloads (CDI). Here, we consider
that the interfering applications belongs to a different class
than the in-production target application. We use ACME as
the in-production application and the Air Quality Monitor
application, [2] which is an Internet of Things (IoT) applica-
tion, as the interference.

(3) Non-correlated and dissimilar workloads (NDI). We consider
that interference can happen at any VM, independently (un-
correlated). Also, the interference is not similar to the load
of the in-production application. We use stress-ng [9] for
training and inference. Prior work [16] has used the stress-
ng benchmark to incur varying level of resource utilization
by stressing the system under study.

4.3 Deployment types
We want to show that we can distinguish the interference from
normal load in multiple application configurations. For that we con-
sider several deployment types for the in-production application.

4.3.1 Single Virtual Machine (1VM). In this deployment, we consol-
idate our in-productionmicroservice application and the interfering
load on the same VM. We run experiments where the interfering
application is either 1.) stress-ng (NDI scenario), 2.) another copy of
Acme Air (CSI scenario), or 3.) Air Quality Monitor application (CDI
scenario). We use our workload generator tool to send a workload
to Acme Air while also running our interfering application to incur
a wide range of resource utilization and interference levels on our
target application.

4.3.2 Dual Virtual Machine (2VM). Here, Acme Air application is
distributed across two VMs. This is done to motivate distributed
use cases where a microservice application like Acme Air is hosted
in containers running across different VMs. In this scenario, we run
the Acme-Web and Acme-Db containers on 2 separate VMs respec-
tively. We run NDI, CSI, and CDI scenarios, similar to the single VM
experiments. In each of these scenarios we run 1 interfering appli-
cation container on each of the 2 VMs hosting the Acme-Web and
Acme-Db containers respectively. Workloads to these two copies
are varied to incur a wide range of resource utilization.
4.3.3 At-scale Deployments. To demonstrate the scalability of our
methodology, we selected Online Boutique, a large 11-tier microser-
vice e-commerce application. In our experimentation, we deploy
Online Boutique on an Amazon EKS (Elastic Kubernetes Service)
Cluster with 4 cluster nodes using an EC2 node group composed
of EC2 m5.large VMs. Our Amazon EKS uses Amazon Linux 2 and
Docker as the container runtime. We have a total of 14 Kubernetes
pods of Online Boutique distributed between the 4 Cluster Nodes.
For our interference application, we selected Acme-Air and stress-
ng from our previous experiments. For the Acme-Air deployment,
we distributed Acme-Air and MongoDB pods on two of our EKS
nodes where the Boutique front-end pods reside. This deployment
pattern is also repeated with two stress-ng pods. We have in total 9
pods responsible for monitoring our cluster at the container, node
and application level.
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4.4 Experimental Setup and Methodology
Our experiments were run in the AWS EC2 Cloud. We use multiple
m5.large EC2 VMs residing in the same availability zone on the
EC2 cloud platform. These VMs run Ubuntu 16.04 and each have 2
VCPUs, 8GiB of RAM, and 64GiB of Elastic Block Storage. We used
Docker version 19.03.13 as the containerization platform on our
EC2 VMs.

4.4.1 Workload Characteristics. We use httperf [26] as the Work-
load Generator tool to send workload to our target Acme Air ap-
plication. The httperf client runs inside a separate VM and is not
containerized. We use the httperf tool to submit the default work-
load obtained from the official Acme Air project [1] as the workload
transaction mix submitted to Acme Air.

We use the number of concurrent connections and inter-request
arrival time settings in httperf to drive a wide range of application
resource utilization. Acme Air workload has a step size increase
of approximately 12.5% CPU utilization. stress-ng has a step size
increase of 20% CPU utilization. The Air Quality Monitor has a step
size increase of 20% CPU utilization.

The workloads were chosen such that comparable Acme Air uti-
lization levels are generated with and without interference present.
Otherwise, lacking overlap between interference and non-interference
scenarios, a simple utilization threshold algorithm could detect in-
terference with ease. Next, we set the number of workload repeti-
tions 𝑁 = 40 to capture variance. Finally, for the purpose of this
study, we set the workload duration 𝑥 = 120 seconds.

For our at-scale deployment, we use Locust, a python-based
workload generator [5], to generate the workload on Online Bou-
tique. The workload generator increases the utilization on each of
the nodes by 15% increments, ranging from 15% to 80% utilization
on the Kubernetes Cluster. We use the same workloads of Acme
Air and stress-ng in the previous experiments as the interference
workload while the Boutique Workload is running for our experi-
ments.

4.4.2 Metrics Monitoring. To monitor the applications and their
environment, we leveraged prominent industry solutions for the
Metric Monitor. Prometheus is an open-source monitoring solution
that integrates with multiple metrics exporters [8]. Additionally,
application metrics averages were output in httperf logs. The appli-
cation metrics are joined with the container and VM metrics from
Prometheus by timestamp. These metrics are used in analysis, data
labelling, and ML model construction.

4.4.3 RQ-2 Setup. We conduct experiments to compare our in-
terference detection technique with baseline and state-of-the-art
techniques. To this end, we first set up experiments where we com-
pare our technique against a simple utilization-threshold detection
technique used in previous work [31]. This serves as a baseline
technique where we monitor the resource utilization metrics from
the Acme-Web and Acme-Db containers at runtime, and indicate
the presence of interference if these metrics exceed pre-defined
threshold values. We set the pre-defined thresholds of CPU and
memory utilization in Acme-Web to 38% and 1.5%, and in Acme-Db
to 18% and 38% respectively. We chose these pre-defined threshold
values since we observed in earlier experimentation that at these
utilization levels, the baseline response time of Acme Air without

interference is 3 ms, which is the average baseline response time
recorded over all utilization levels incurred by Acme Air. We com-
pare the container utilization metrics of Acme to see if they exceed
the pre-defined utilization thresholds. If so, interference is inferred.
In addition to the threshold model, we evaluate Queuing Network
Models to provide another baseline.

We also conduct another set of experiments to compare our
interference detection technique with a state-of-the-art detection
technique used in current research [21]. We chose this technique
as a regression based approach commonly used in interference and
anomaly detection. We adopt the detection method outlined in [21]
to construct logistic regression models for interference detection at
runtime. Logistical regression predicts the probability of occurrence
of a binary classification by using a logistic function. The regression
models are fit on the same datasets that were constructed and used
for our ML approach as described in section 3.3.2. At runtime, we
use the regression model in our single and dual VM experiment
setups to predict whether interference is present or not in our Acme
Air application. We compare the performance of our QNM and ML
approach with the logistical regression model. We evaluate the
Precision, Recall, and 𝐹1 score when these baseline technique are
applied in our experiments.

4.4.4 RQ-3 Setup. We run experiments to evaluate the effective-
ness of ML models in detecting performance interference when the
interfering application class at runtime is different from training
time. State-of-the-art techniques considered are the same Regres-
sion and Threshold based techniques as introduced in the RQ-2
Setup. QNMmodels are omitted as they explicitly define interfering
applications whereas in these experiments we assume no knowl-
edge of the interfering application class at runtime. To train our ML
models, we use the same methodology as described in section 3.3.3.
For these environments, we choose one of our three applications
to serve as the interfering probe benchmark application in the ML
model training. These three applications correspond to the NDI, CSI,
and CDI scenarios. Next, we deploy these trained ML models in the
runtime phase as described in section 3.3.4. However, at runtime,
we evaluate the resultant ML models where a different interfering
application is present in the environment than as seen at training
time. Accordingly, a different interference scenario is encountered
at runtime than training time. The goal is to evaluate the model
performance against an interfering application class not yet seen
by the ML model. To measure the effectiveness of our generalized
ML model, we evaluate our method against state-of-the-art models
of the logistic regression and simple threshold techniques described
in the RQ-2 Setup. The logistic regression model follows a similar
methodology as our ML model in that the interference scenario
encountered at runtime is different than that used at training time.

5 RESULTS AND DISCUSSION
In this section, we evaluate the interference scenarios for our re-
search questions and present our findings.

5.1 RQ-1 Results: How Severe is the Impact of
Interference?

5.1.1 Single VM Experiments Results Analysis. Tables 1, 2, and 3
shows the target Acme Air application’s utilization values along
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Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 14.36% 1.31% 7.56% 41.18% 1.33 1.34 0.75%
469.4 28.66% 1.35% 13.65% 41.83% 1.91 1.93 1.05%
631.49 37.68% 1.39% 18.09% 41.99% 2.58 2.87 11.24%
937.03 53.66% 1.51% 27.88% 42.00% 9 12.53 39.22%

Table 1: NDI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 17.93% 1.25% 9.19% 26.65% 1.22 2.66 118.03%
469.29 34.15% 1.41% 16.90% 27.35% 1.78 24.74 1289.89%
631.48 41.80% 1.44% 21.99% 27.66% 2.4 104.13 4238.75%
673.49 45.95% 1.49% 23.18% 28.01% 7.35 518.53 6954.83%

Table 2: CSI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 15.38% 1.43% 10.04% 20.56% 2.38 8.1 240.34%
469.39 28.08% 1.32% 17.25% 20.64% 2.98 31.83 968.12%
631.4 37.19% 1.40% 23.28% 20.86% 4.16 135.66 3161.06%
938.97 54.04% 1.50% 36.50% 20.78% 16.48 590.88 3485.44%

Table 3: CDI Interference in Single VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

469.39 26.03% 1.56% 11.82% 45.20% 1.11 1.81 63.06%
631.48 34.83% 1.61% 15.56% 45.39% 1.57 2.80 78.34%
937 48.88% 1.66% 21.90% 45.39% 3.02 12.23 304.97%

1099.85 54.63% 1.66% 24.29% 45.78% 5.66 24.10 325.80%
Table 4: NDI Interference in Dual VM

the impact of interference on the average request response time of
Acme Air. Accordingly, Web CPU and Web Mem refer to the target
Acme Air’s Web server. Similarly, DB CPU and DB Mem refer to
the target Acme Air’s Database server. 𝑅𝑏𝑎𝑠𝑒 and 𝑅𝑡 refer to the
baseline response time of our target Acme Air application with-
out interference and the runtime response time of Acme Air with
interference respectively. As seen in the tables, depending on the
resource utilization and workload levels, the average response time
of Acme Air is heavily impacted by different levels of performance
interference. Even at comparatively light interference levels, the
response time of Acme Air more than doubles, as seen in the first
row in Table 2.

5.1.2 Dual VM Experiments Results Analysis. Tables 4, 5 and 6
shows the impact of interference on the average request response
time of Acme Air in dual VM scenarios. For the dual VM NDI
Scenario, the impact of interference on the average response time of
Acme Air can be significant. In the worst case, the average Acme Air
response time increases from 5.66 ms to 24.1 ms, a 325.8% increase.
For the dual VM CSI Scenario, the response time of Acme degrades
significantly when running alongside a second copy of the Acme
application. In the worst case scenario, the response time of Acme
increases from 3.46 ms to 202.47 ms. For the dual VM CDI scenario,
Acme’s response time degrades significantly in this scenario as well.

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 17.52% 1.31% 9.81% 33.70% 1.11 2.46 121.62%
469.34 33.16% 1.44% 17.60% 33.94% 1.33 12.91 870.68%
631.5 41.92% 1.49% 22.22% 34.28% 1.55 28.47 1736.77%
907.29 57.11% 1.56% 30.12% 34.67% 3.46 202.47 5751.73%

Table 5: CSI Interference in Dual VM

Req/s Web
CPU

Web
Mem

Db
CPU

Db
Mem

Rbase
(ms)

Rt
(ms)

R%
Change

238.9 14.18% 1.42% 9.35% 26.19% 1.24 5.46 340.32%
469.4 25.98% 1.33% 15.22% 26.44% 1.23 13.67 1011.38%
631.5 34.42% 1.38% 20.74% 26.52% 1.45 26.68 1740.00%
939.21 49.55% 1.49% 30.97% 26.54% 2.32 90.22 3788.79%

Table 6: CDI Interference in Dual VM

In the worst case, the response time of Acme increases from 2.32
ms to 90.22 ms.

RQ-1: Through extensive experimentation, we characterize in-
terference through its impact on container utilization metrics.
Results show significant impact of interference on the response
time of in-production applications for all interference types con-
sidered. For both single and dual VM deployments, response time
degrades by at least a factor of 39% and at most a factor of 6955%
when the normal CPU utilization levels are between 40% and
60%. We also conclude that the higher the utilization, the higher
the impact of interference.

5.2 RQ-2 Results: When Interfering Workloads
for Model Training and Deployment are
Similar

In this section, we evaluate the performance of ML, QNM and
state-of-the-art models to detect interference when the interfering
application load is known in the training phase. The applications
used for the interfering workloads are the same for both model
training and deployment for the RQ-2 results. This is indeed an ideal
case, however, it is important in defining a baseline.We compare the
effectiveness of three different approaches for all our application
scenarios; Regression, QNM and ML.

Figure 4 presents a 𝐹1 score box-plot for ML approach compared
to the other state-of-the-art approaches described in Section 4.4.3.
On the box-plot, the horizontal bar represents the median 𝐹1 scores
across all scenario types and VM deployments. The higher the me-
dian, the shorter the box, the better the performance. The Threshold
model has the lowest performance and the Regression model has
high variability of 𝐹1 scores, showing that the Regression has diffi-
culty consistently detecting interference across different scenarios
and deployment types. We performed the ANOVA test on our data
to to confirm the significant differences between the approaches
(f-value = 16.343801, p-value = 0.000013). Overall, we observe from
the box-plot that our ML approach outperforms all state-of-the-art
methods with the highest 𝐹1 scores and lowest variability.

Table 7 captures a closer look on the details of the performance
of ML approach and state-of-the-art techniques described in Section
4.4.3. The Threshold and QNM approaches performs the worst in all
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Figure 4: Performance of ML versus State-of-the-Art Models

Scenario Approach F1 Score Precision Recall
NDI in 1VM Threshold 30.75% 22.69% 47.69%
NDI in 1VM Regression 15.04% 40.0% 9.26%
NDI in 1VM QNM 60.0% 46.15% 85.71%
NDI in 1VM ML 81.64% 100.0% 68.98%
CSI in 1VM Threshold 16.67% 87.5% 9.21%
CSI in 1VM Regression 97.99% 100.0% 96.05%
CSI in 1VM QNM 80.0% 80.0% 80.0%
CSI in 1VM ML 98.67% 100.0% 97.37%
CDI in 1VM Threshold 0.00% 0.00% 0.00%
CDI in 1VM Regression 89.59% 92.79% 86.6%
CDI in 1VM QNM 81.25% 100.0% 68.42%
CDI in 1VM ML 87.46% 100.0% 77.71%
NDI in 2VM Threshold 41.94% 46.43% 38.24%
NDI in 2VM Regression 73.85% 77.42% 70.59%
NDI in 2VM QNM 66.67% 66.67% 66.67%
NDI in 2VM ML 97.14% 94.44% 100.0%
CSI in 2VM Threshold 40.13% 89.85% 25.84%
CSI in 2VM Regression 99.24% 99.27% 99.21%
CSI in 2VM QNM 77.78% 77.78% 77.78%
CSI in 2VM ML 99.91% 99.82% 100.0%
CDI in 2VM Threshold 19.27% 86.45% 10.84%
CDI in 2VM Regression 91.5% 95.44% 87.87%
CDI in 2VM QNM 73.68% 87.5% 63.64%
CDI in 2VM ML 87.97% 100.0% 78.52%

Table 7: Performance of ML vs. State-of-the-Art Models

the scenarios. The Regression approach overall has a significantly
better performance compared to the Threshold and QNM in the
CSI and CDI scenarios. However, the Regression model showed
significant performance degradation in the NDI scenario with a 𝐹1
score of 15.04 %, being on par with the Threshold model. Compared
to the Regression model 𝐹1 score in all the other scenarios in both
VM deployments, this can be considered an outlier. The poor perfor-
mance of the QNMmodel when detecting performance interference
might be impacted by the lack of precision in estimating alpha and
assuming ideal arrival rates and service time distributions. The
ML approach outperforms all the models in each of the scenarios.
The Regression model does outperform out ML approach in the
CDI scenario by 2.13 % and 3.53 %. However, the ML approach is
more consistent in performance with a high F1-score, Precision
and Recall across all the scenarios, unlike the Regression approach.
This demonstrates that the ML approach can consistently classify

Scenario Approach F1 Score Precision Recall
NDI in 4VM QNM 40.45% 34.05% 49.81%
NDI in 4VM Regression 85.71% 81.03% 90.98%
NDI in 4VM ML 99.12% 99.25% 99.00%
CSI in 4VM QNM 42.5% 36.31% 51.24%
CSI in 4VM Regression 90.14% 87.48% 92.98%
CSI in 4VM ML 99.17% 99.0% 99.26%
CDI in 4VM QNM 0% 0% 0%
CDI in 4VM Regression 97.57% 95.82% 99.38%
CDI in 4VM ML 99.79% 99.79% 99.79%

Table 8: Boutique subject to Interference

interference with high accuracy on a variety of different types of
applications and deployments.

Table 8 show the 𝐹1 score, Precision and Recall for the Boutique
deployment experiments. Since the Threshold model performance
was the lowest of the models, we omitted it from our experiments.
The 𝐹1 score for the ML approach has less variability than the
regression method which shows that the ML approach is more
consistently able to detect performance interference for large at-
scale deployments. Our QNM model performed the worst when
detecting interference for at-scale deployments. Specifically, the
CDI scenario demonstrates the limitation of the QNM approach
and it’s inflexibility in handing variability and incomplete metrics
which caused the QNM approach unable to classify interference.
Overall our ML approach outperforms the other approaches from
2.22% up to 13.41%.

Scenario Best ML
Model

F1 Score Precision Recall

NDI in 1VM GBM 81.64% 100.0% 68.98%
NDI in 2VM Ensemble 97.14% 94.44% 100.0%
CSI in 1VM Ensemble 98.67% 100.0% 97.37%
CSI in 2VM Ensemble 99.91% 99.82% 100.0%
CDI in 1VM GBM 87.46% 100.0% 77.71%
CDI in 2VM GBM 87.97% 100.0% 78.52%
Table 9: Top Performing ML Model Per Scenario

Interference
Base Utilization

Interference
Step Size 𝐹1 Score Precision Recall

20 % 10 % 97.95% 100% 96%
10 % 6 % 91.30% 100% 84%
6 % 2 % 89.36% 91.30% 87.50%

Table 10: ML Accuracy with Different Interference Step Size

As the ML approach has the best overall performance, we then
investigated the step size of the workload and it’s effect on the
performance of the ML approach. Since the same workload is used
across all the experiments, we investigate how the 𝐹1 score of the
ML approach are affected with different workload step sizes. Table
10 shows differing workloads of the interfering application with the
Base Utilization as the starting point of the interfering application
and its respective step size. A higher base utilization and step size
increases causes the ML model to classify the interference with
more ease. As the step size of the workload is reduced to smaller
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Env Training / Run-
time Scenarios

Approach F1 Score Precision Recall

1VM NDI / CSI Threshold 10.3% 94.15% 5.45%
1VM NDI / CSI Regression 21.91% 1.0% 12.31%
1VM NDI / CSI ML 75.77% 99.26% 61.27%
1VM NDI / CDI Threshold 0.0% 0.0% 0.0%
1VM NDI / CDI Regression 53.8% 1.0% 36.8%
1VM NDI / CDI ML 82.77% 78.18% 87.93%
1VM CSI / CDI Threshold 0.0% 0.0% 0.0%
1VM CSI / CDI Regression 87.46% 83.68% 91.61%
1VM CSI / CDI ML 90.21% 82.17% 100.0%
2VM NDI / CSI Threshold 39.88% 88.04% 25.78%
2VM NDI / CSI Regression 91.81% 93.91% 89.8%
2VM NDI / CSI ML 89.53% 98.5% 82.1%
2VM NDI / CDI Threshold 17.8% 85.43% 9.93%
2VM NDI / CDI Regression 78.63% 93.3% 67.95%
2VM NDI / CDI ML 82.62% 93.86% 73.79%
2VM CSI / CDI Threshold 17.8% 85.43% 9.93%
2VM CSI / CDI Regression 90.98% 84.41% 98.67%
2VM CSI / CDI ML 94.37% 91.68% 97.22%

Table 11: Evaluation of Training/Runtime Interference

values, the F1-score decreases. However even at very minimum
step size increases of 1.5 - 3 %, the ML approach has an 89.36 %
F1-Score with relatively high precision and recall when classifying
interference.

Finally, we report the ML models with highest 𝐹1 Score for both
the single and dual VM experiments in Table 9. Scenarios repre-
sented in this table are described by the number of VMs in the
environment as well as the characteristics of interfering application.
As seen in the table, GBM models performs best for interference
detection in all single and dual VM CSI scenarios. In the dual VM
NDI scenario, a stacked ensemble model performs best. In all CDI
scenarios, a stacked ensemble model also performed the best.

RQ-2: We evaluated interference detection techniques on dif-
ferent deployment and interference types where the interfering
load is the same in the training and runtime phases. ML mod-
els outperform logistic regression, QNM and simple threshold
techniques in each of our evaluation experiments in 𝐹1 score
by at least 0.67% and at most 23.29%. The high ML performance
is maintained at-scale deployments and we can conclude ML
models can better handle the variability of the cloud.

5.3 RQ-3 Results: When Interfering Workloads
for Model Training and Deployment are
Different

Cloud environments of scale are subject to frequent change. Con-
tainerized microservices may be co-located and scaling actions may
introduce additional containers that in turn stress the underlying
VMs. It is impractical to train an interference model for every possi-
ble deployment combination. Accordingly, we attempt to construct
a ML model that performs well when our target application is sub-
ject to a different interference scenario in the runtime phase as
opposed to its training phase.

Threshold Regression ML
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Figure 5: Evaluation for Unknown Interference

Training / Run-
time Scenarios

Approach F1 Score Precision Recall

NDI / CSI Regression 86.19% 88.54% 83.96%
NDI / CSI ML 98.44% 98.69% 98.18%
NDI / CDI Regression 86.05% 99.19% 75.99%
NDI / CDI ML 99.10% 99.50% 98.72%
CSI / CDI Regression 80.18% 99.57% 67.12%
CSI / CDI ML 97.64% 99.48% 95.87%
NDI + CDI / CSI Regression 83.20% 94.25% 74.46%
NDI + CDI / CSI ML 97.11% 99.19% 95.12%
NDI + CSI / CDI Regression 80.72% 99.58% 67.86%
NDI + CSI / CDI ML 99.65% 99.47% 99.83%

Table 12: Boutique Training/Runtime Interference

Table 11 and Figure 5 shows our results from the experiments
conducted in Section 4.4.4. Table 11 denotes the interference sce-
nario encountered at training time aswell as the interfering scenario
present at runtime. In this way the ML models were evaluated in
scenarios where the interference scenario is unknown and previ-
ously unseen. Notably, ML outperformed state-of-the-art methods
in both single VM and dual VM environments. In each scenario,
ML obtained the highest 𝐹1 score when compared to state-of-the-
art techniques. As seen in Figure 5, the ML approach consistently
able to classify interference and significantly outperformed the ML
and Regression. We performed the ANOVA test on the data to to
confirm the significant differences between the approaches (f-value
= 24.650731, p-value = 0.000018).

It’s also notable that the models trained in CSI scenarios and
tested at runtime with CDI interference resulted in a better 𝐹1 score
than the models with NDI interference at training time. Models
where the interference scenario is the same at training and runtime
perform substantially better over their counterparts where inter-
ference scenarios are different. However, using a model trained for
use with different interference scenarios does not suffer from long
pre-deployment or training phases.

For the large at-scale deployment, we compared the highest
performing approaches in the previous experiments. When the in-
terfering application is unknown with large at-scale deployments,
Table 12 shows the Regression approaches begin to struggle in
detecting the performance interference. Our ML approach outper-
forms the 𝐹1 score of the regression up to 20.57%.
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RQ-3: We evaluated ML versus the state-of-the-art interference
detection techniques where the interference scenario is different
in the training and runtime phases. The ML models outperform
state-of-the-art techniques in 𝐹1 score by at least 2.75 % and
at most 53.86 % for all but one interference types and different
deployments. We can conclude that training with interfering
applications yields better performance than if we train with
random interference (NDI with stress-ng). The performance of
the ML approach (𝐹1 score), although lower than in the case
of RQ-2, is high enough and scales well so it can be applied in
production.

6 THREATS TO VALIDITY
We identify threats to validity of our work as per Wohlin et al [37].
We note as an external threat that our ML model training approach
might not detect interference from unknown interfering applica-
tions well if the resource utilization signature of the benchmark
interfering application is significantly different from the interfer-
ing application used at runtime. If the interfering application used
in the training phase and the interfering application at runtime
stresses different VM-level resources, our technique may be unable
to classify interference. Furthermore, as another external threat, in
multi-VM deployment strategies frequently used for microservice
deployment, if the VM characteristics at runtime change relative to
what was used in the training phase, our ML models may not be
successful and will need to be re-trained.

7 CONCLUSIONS AND FUTUREWORK
In this work, we propose a runtime performance interference detec-
tion technique that leverages Machine Learning. Our ML models
are trained on microservice resource utilization metrics subject to
varying environments and different interfering applications. Our ap-
proach does not require expensive service instrumentation and does
not pose prohibitive monitoring overhead. Our proposed technique
is effective in detecting performance interference for a realistic mi-
croservice benchmark running on the EC2 cloud platform and also
outperforms baseline and state-of-the-art interference detecting
techniques. Our ML models are also effectively used in varying
cloud environments where the interference characteristics change
at runtime. In the future, we plan to investigate model maintenance
over time with respect to an application’s behavioural drift through
continuous learning or time series techniques. Furthermore, we
will integrate our ML Models into an AIOps platform that takes
deployment actions to mitigate performance interference.
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