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ABSTRACT
In the rapidly evolving fields of encryption and blockchain technolo-
gies, the efficiency and security of cryptographic schemes signifi-
cantly impact performance. This paper introduces a comprehensive
framework for continuous benchmarking in one of the most pop-
ular cryptography Rust libraries, fastcrypto. What makes our
analysis unique is the realization that automated benchmarking
is not just a performance monitor and optimization tool, but it
can be used for cryptanalysis and innovation discovery as well.
Surprisingly, benchmarks can uncover spectacular security flaws
and inconsistencies in various cryptographic implementations and
standards, while at the same time they can identify unique oppor-
tunities for innovation not previously known to science, such as
providing a) hints for novel algorithms, b) indications for mix-and-
match library functions that result in world record speeds, and c)
evidences of biased or untested real world algorithm comparisons
in the literature.

Our approach transcends traditional benchmarking methods by
identifying inconsistencies in multi-threaded code, which previ-
ously resulted in unfair comparisons. We demonstrate the effec-
tiveness of our methodology in identifying the fastest algorithms
for specific cryptographic operations like signing, while revealing
hidden performance characteristics and security flaws. The process
of continuous benchmarking allowed fastcrypto to break many
crypto-operations speed records in the Rust language ecosystem.
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A notable discovery in our research is the identification of vul-
nerabilities and unfair speed claims due to missing padding checks
in high-performance Base64 encoding libraries. We also uncover
insights into algorithmic implementations such as multi-scalar el-
liptic curve multiplications, which exhibit different performance
gains when applied in different schemes and libraries. This was
not evident in conventional benchmarking practices. Further, our
analysis highlights bottlenecks in cryptographic algorithms where
pre-computed tables can be strategically applied, accounting for L1
and L2 CPU cache limitations.

Our benchmarking framework also reveals that certain algorith-
mic implementations incur additional overheads due to serializa-
tion processes, necessitating a refined ‘apples to apples’ compari-
son approach. We identified unique performance patterns in some
schemes, where efficiency scales with input size, aiding blockchain
technologies in optimal parameter selection and data compression.

Crucially, continuous benchmarking serves as a tool for ongoing
audit and security assurance. Variations in performance can signal
potential security issues during upgrades, such as cleptography,
hardware manipulation or supply chain attacks. This was evidenced
by critical private key leakage vulnerabilities we found in one of
the most popular EdDSA Rust libraries. By providing a dynamic
and thorough benchmarking approach, our framework empowers
stakeholders to make informed decisions, enhance security mea-
sures, and optimize cryptographic operations in an ever-changing
digital landscape.

CCS CONCEPTS
• Security and privacy → Cryptography; • Software and its
engineering → Software libraries and repositories; Software de-
velopment process management.
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1 INTRODUCTION
Cryptography plays a pivotal role in safeguarding the integrity and
confidentiality of secure communication channels, decentralized
applications, digital identity and authentication systems, among the
others. In the last 10-15 years, the demand for secure and scalable
blockchain solutions caused an exponentially increased need for
comprehensive performance evaluations of the underlying cryp-
tographic components, such as digital signatures, zero knowledge
proofs, Merkle trees, regular or exotic encryption mechanisms,
multi-party computations and randomness beacons. It is believed
that blockchain research has advanced the cryptography space
rapidly [20], offering some of the most robust and fastest imple-
mentations that are now reused outside web3 as well.

Fastcrypto [24] is one of the most recent and modern Rust [23]
libraries focusing on high performance implementations of crypto-
graphic primitives, typically required by blockchain applications.
Although originally designed to provide all cryptographic func-
tionality for the Sui1 blockchain, it has been widely adopted by
the cryptographic community, and is currently used in at least 167
other projects2.

A few prominent examples of fastcrypto’s community usage
include the following: (1) DB3Network3, which is a lightweight, per-
manent JSON document database for Web3. It is designed to store
and retrieve data for decentralized applications built on blockchain
technology, (2) Rooch Network4, which is a fast, modular, secured,
developer-friendly infrastructure solution for building Web3 Native
applications, and (3) Fleek Network5, which facilitates the deploy-
ment and running of performant, geo-aware decentralized web and
edge services. These codebases typically use the base64, hashing,
and signature algorithms from fastcrypto.

In order tomeet the performance demands of a scalable blockchain
thatmust process thousands of transactions per second, fastcrypto
has been continuously and rigorously benchmarked through the
entire development process. This has informed decision-making,
in particular in the early stages of the development where many
crucial and largely irreversible choices had to be made.

This paper gives examples of some actionable insights acquired
through our benchmarking efforts while developing the fastcrypto
library. These insights have been leveraged for both the refinement
of the library itself, and the optimization of cryptographic opera-
tions within Rust and Move [11] language based blockchains. In
some cases this also led to changes in external libraries. It is our
hope that these insights may be useful for researchers or developers
working on performance critical systems.

1https://sui.io/
2https://github.com/MystenLabs/fastcrypto/network/dependents
3https://db3.network/
4https://rooch.network/
5https://fleek.network

Figure 1: Historic performance of a digital signature verifica-
tion using the ECDSA signature scheme over the secp256r1
curve.

2 METHOD
All cryptographic functions in the fastcrypto library are bench-
marked continuously as part of the library’s continuous integration
workflow6 and a report of the results are published online7. The re-
port is generated using the criterion crate [3] and when applicable,
functions are benchmarked with various input sizes and grouped
together with similar functions to enable comparisons. Benchmarks
are run sequentially and each measurement is run 100 times. The
report contains the mean and standard deviation of the observed
timings for further analysis. At the time of writing (January 2024),
the report contains 109 different benchmarks.

The report contains historic data, allowing the detection of im-
provements or regressions in performance. As an example, Figure 1
shows a plot from the published report of the performance of veri-
fying a digital signature using the ECDSA signature scheme over
the secp256r1 (aka P-256) curve. This function has been improved
several times which is reflected in the graph. These particular im-
provements are described in detail in section 3.1.3.

The data behind the report is published online in JSON format
and may be analyzed using any statistical analysis tool. We have
implemented a tool in Python8 to utilize statistical libraries such
as numpy [25] for more elaborate statistical analysis and plotting of
the data. All plots in this paper were generated using this Python
script.

6https://github.com/MystenLabs/fastcrypto/blob/main/.github/workflows/
benchmarking.yml
7https://mystenlabs.github.io/fastcrypto/benchmarks/criterion/reports/
8https://github.com/jonas-lj/fastcrypto-analyzer
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To identify bottlenecks when the cryptographic functions in
fastcrypto are used elsewhere, we have made Dummy implemen-
tations of digital signatures and hash functions. These implementa-
tions use the same interfaces as the actual cryptographic functions
and can be used in place of these. They are not cryptographically
secure but are extremely fast, so when they are used in testing they
allow a developer to identify where cryptographic operations are a
bottleneck in their implementation.

3 CASE STUDIES
The continuous benchmarks have greatly influenced the decision-
making in the development of the fastcrypto library and in how
it is used in the Sui blockchain and later in other projects. In this
section, we outline some of the insights we achieved through the
benchmarks and their consequences for the development.

3.1 Picking the right dependencies and specs
3.1.1 Signature aggregation can be catalytic. The BLS signature
scheme [13] allows multiple signatures generated under different
public keys for the same message to be aggregated into a single
signature which is valid only if all the individual signatures are
valid [12]. In a blockchain setting, this has the potential to speed
up validators’ signature verification significantly, as it is possible
to aggregate signatures and batch the verification, instead of in-
dividually submitting and verifying many independent signature
payloads.

Signature schemes such as EdDSA and ECDSA are much faster
than BLS for individual signatures (see Figure 2), but do not pro-
vide the same performance gain when signatures are batched, so
choosing the right signature scheme requires careful assessment of
performance [21].

Our benchmarks (see Figure 3) show that there are a number
of signatures where verifying an aggregated BLS signature is the
fastest option compared to EdDSA, and that using the fastest avail-
able implementations of EdDSA [26] and BLS [30], the break-even
point is around 40-45 signatures.

Since BLS is used in the Sui blockchain to aggregate validators’
signatures, this implies that if there are more than 45 validators,
using BLS will be faster than EdDSA. At the time of writing, there
are 106 validators in Sui, meaning that verifying aggregated BLS is
about 2× faster than EdDSA, when all validators sign.

3.1.2 Hash functions - in themercy of hardware specs. In blockchains,
cryptographic hash functions are arguably the most used crypto-
graphic primitive, so even though they are relatively fast functions
they may eventually become a bottleneck.

The performance of all cryptographic hash functions are approxi-
mately linear in the input size for sufficiently large inputs, but there
are subtle differences in performance because the data is processed
in blocks of varying sizes and this difference is more noticeable for
small inputs. Sui originally used the Sha3-256 hash function that
Meta’s Libra [1] project originally utilized, but after benchmarking
alternatives it switched to Blake2b [6] which is almost 3× faster
and more zero knowledge proof friendly.

A plot of the benchmarks is shown in Figure 4. Note that Sha256
is the fastest hash function here, but this is not the case on all

Figure 2: Performance of signing and verifying a message
using various digital signature schemes. Secp256k1 and
Secp256r1 are variants of ECDSA.

Figure 3: Performance of batched verification of digital sig-
natures using the EdDSA and BLS signature schemes.
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Figure 4: Performance of cryptographic hash functions.

platforms. This is evident, for example, from the benchmarks pub-
lished by the Blake2 team9 which shows that Sha256 is more than
2× slower than Blake2b, but we have also observed this in our
benchmarks where the performance of Sha256 suddenly improved
significantly between two runs without any changes in the software.
We identified that this spike is due to recent updates in hardware
for the cloud runner, because some hardware vendors have special-
ized CPUs to support Sha256 instructions; but running purely in
software, Blake2b is faster.

We want to investigate this further and make our benchmarks
fairer and more consistent, but it emphasizes the importance of
benchmarking on a system similar to the production system be-
cause subtle differences (like CPU brand and model) can affect the
performance significantly.

3.1.3 Deserialization can be expensive in cryptography. Many mod-
ern blockchains enable cryptographic agility for account signature
key types. For instance in Sui blockchain, users may choose be-
tween a variety of signature schemes to sign their transaction10.
This allows them to pick their favorite hardware wallet or their
smartphone and store their keys securely. The default choice for the
Sui blockchain (and many others) is EdDSA [10] over the ed25519
curve which was chosen based on high performance, determinism,
adoption and standardization.

There are a few implementations of EdDSA in Rust, and compar-
ing two popular crates (libraries) ed25519-dalek [15] and ed25519-
consensus [26], which are backed by the same crypto arithmetic
library, revealed some unexpected results, namely that the prior
was much faster. Studying the source code closely showed that the
difference was almost exclusively due to the fact that public keys
in the latter are given in compressed serialized form, which is a
9https://www.blake2.net/
10https://docs.sui.io/guides/developer/sui-101/sign-and-send-txn

Figure 5: Relative performance improvement between using
𝑛 and 𝑛 − 1 random scalars to verify a batch of 𝑛 Ed25519
signatures.

representation where only one affine coordinate from the elliptic-
curve point is given, meaning that the other coordinate has to be
reconstructed before it can be used using a modular square root
computation. This decompression operation is not for free. Ac-
counting for this extra computation, the difference between the
two libraries were then negligible. Some important lessons from
this exercise are that a) we should be careful when comparing simi-
lar functions, (de)serialization can be expensive in cryptography,
and b) there is a reason why some cryptographic libraries prefer
one or the other, for instance the authors of ed25519-consensus
explained that their method is safer when receiving public keys
from the network, because the user does not need to take care of
invalid keys before invoking the signature.verify() function;
this is indeed a valid argument when keys are not cached or are
unknown (typically the case in blockchain transactions).

3.1.4 Asymptotic complexity does not always tell the truth. EdDSA
has a batched verification mode, where multiple signatures may be
verified in a batch, giving some speed-up if enough signatures are
verified together (see also section 3.1.1). While benchmarking this,
we found an untapped potential optimisation: Typically, batch veri-
fication of 𝑛 EdDSA signatures requires sampling 𝑛 random scalars,
but we found that 𝑛 − 1 is actually sufficient. For a small number
of signatures, this gives a small speed-up as shown in Figure 5;
this might make sense when we verify sponsored or atomic-swap
transactions, where two accounts sign over the same transaction
bytes.

3.2 Mix and Match Optimizations
3.2.1 Optimize ECDSA over the P-256 curve. As discussed in section
3.1.3 above, clients are allowed to choose among many signature
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schemes when signing their transactions, but it turns out that some
schemes are slower than others so to avoid that verifying signa-
tures of a particular scheme becomes a bottleneck for the entire
system, the signature schemes are benchmarked continuously. The
information from the benchmarks may be used to encourage users
to use the faster schemes, for example by using these schemes as
default choice in wallet implementations, but also to identify where
optimising an implementation will have the largest effect.

As an example, the ECDSA signature scheme [2] may be re-
alised over different elliptic curves. Two commonly used curves are
secp256k1 which is used by the Bitcoin11 and Ethereum blockchains
[31] and the secp256r1 or P-256 curve which was specified by NIST
and is used, for example, by the secure hardware on iPhone12. Both
of these are supported by the Sui blockchain and may be used by
clients to sign their transactions.

Besides the choice of curve, there is no difference in the proto-
cols for ECDSA over the two curves, but our benchmarks revealed
that the fastest implementation of ECDSA over secp256k1 [27] is
significantly faster than the fastest implementation of ECDSA over
P-256 [28]. This motivated us to develop a new implementation of
ECDSA over P-256 which uses a combination of faster elliptic curve
arithmetic from Arkworks library [4] with a new, fast multi-scalar
multiplication algorithm which requires some pre-computation.
The optimised implementation verification for ECDSA over the
P-256 curve is 5.5× faster, and is currently the fastest Rust imple-
mentation of ECDSA over the P-256 curve available.

Choosing the right number of pre-computed points for the multi-
scalar multiplication required careful benchmarking, see figure 6.
More pre-computed points (at least up to a certain limit) gives better
performance but takes time and space. For our implementation, we
use 256 points (each taking up 64 bytes) as default which gives a
68% improvement compared to not using multi-scalar multiplica-
tion at all and a 17.5% improvement compared to pre-computing
only 16 points. Increasing the precomputation further to, say, 512
points would only give an 1.3% performance improvement, and for
1024 points, performance regresses, so 256 points was chosen as
a compromise for our implementation. See Figure 6 for a plot of
performance over number of pre-computed points.

3.2.2 A faster Poseidon hash function. The Poseidon hash function
[16] is a hash function which is commonly used in zero-knowledge
applications because it is easy to compute inside a zero-knowledge
circuit. The Poseidon hash function is defined over a specific curve
construction, and you need to use the same construction as for the
zero-knowledge proof it is used in to get the performance benefit.

There are a few Rust implementations of the Poseidon hash,
but not all implementations support all curve constructions. For
our purpose, we needed to use the BN254 curve construction for
zkLogin13 [7] and only the poseidon-ark [5] crate supported this
construction.

Benchmarking the zkLogin flow end-to-end revealed that com-
puting the Poseidon hash took about 40% of the time so we decided

11https://en.bitcoin.it/wiki/Secp256k1
12https://developer.apple.com/documentation/cryptokit/p256/signing/
ecdsasignature
13https://sui.io/zklogin

Figure 6: Performance of windowed multi-scalar multipli-
cation with two points on Secp256r1 where one is known
in advance over the number of precomputed points. As a
reference, a naive computation without any precomputation
takes 175 µs.

to see if we could optimise it. We found that there are faster imple-
mentations of the Poseidon hash function in Rust in particular the
neptune [22] crate, but at the time the neptune crate only supported
the BLS12-377 curve construction and not the BN254 construction
we needed in zkLogin. Using neptune over BN254 required a few
changes to the implementation which we contributed by submit-
ting code to the official repository 14 before we could use it. The
resulting implementation is almost 70% faster cutting of 25% of the
total end-to-end flow for zkLogin (Figure 7).

3.2.3 Combining dependencies for optimal performance. Fastcrypto
supports non-interactive zero-knowledge proofs using the Groth16
zk-SNARK construction [18] over two popular curves, namely the
BN254 and BLS12-381 [8] curve constructions. Arkworks [4] have
implementations of Groth16 for both of these constructions, but
for the BLS12-381 construction the blst crate [30] provides a much
faster implementation of the curve arithmetic, but does not provide
any implementation of Groth16.

In fastcrypto we have combined Arkworks’ implementation
of Groth16 with the elliptic curve arithmetic from the blst crate to
create a Groth16 implementation over BLS12-381 that is almost 2×
faster than Arkworks implementation. To make this implementa-
tion efficient it was important to benchmark all steps of the algo-
rithm independently, in particular the data conversions necessary
to combine the blst and Arkworks libraries, to ensure that these con-
versions did not introduce a significant overhead. A performance

14https://github.com/lurk-lab/neptune/pull/236
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Figure 7: Performance of computing the Poseidon hash over
the BN254 curve construction for 0-16 input points using the
fastcrypto implementation compared with the arkworks-rs
crate.

comparison of our implementation with Arkworks’ implementa-
tion is shown in Figure 8. Note that a full verification of a Groth16
zk-proof consists of processing the verification key and verifying
the proof, but the processing of the verification key only have to
happen once per circuit.

3.3 Errors and inconsistencies in dependencies
3.3.1 Bug in base64 implementations. Fastcrypto contains func-
tions to encode data to and from base64 which is a very commonly
used method to map binary data to ASCII characters, for example
for use for serialization purposes. Implementing this, we tested out a
few potential Rust crates to wrap in fastcrypto and benchmarked
them on different input sizes.

The benchmarks revealed unexpectedly significant differences in
performance between different libraries, and a closer study found
that the difference was caused by some of the libraries not handling
padding correctly. This inconsistency causes some libraries for
base64 encoding to be incompatible, which is very unfortunate
since base64 is often used for serialization and thus depends on
portability. It also allows an attack vector on some systems because
an attacker may utilize that different base64 strings are decoded into
the same data to leverage an attack. This finding and a thorough
description of the potential consequences has been published [14].

3.3.2 Exploitable vulnerability in EdDSA libraries. As previously
mentioned, fastcrypto compares many implementations of the
same signature schemes and then wraps the fastest or uses mix
and match or applies extra expert optimizations. We realized that
some exposed public functions for EdDSA signingwere significantly
slower than other implementations even when the libraries where

Figure 8: Performance our implementation of Groth16 zk-
proof verification vs. Arkworks’ implementation. The per-
formance is independent of the input size, as the plot also
shows.

backed by the same back-end arithmetic dependency. A closer look
resulted in identifying one of the most spectacular exploitable cryp-
tography vulnerabilities, not only in Rust, but as a domino effect in
dozens of cryptographic libraries, a potential vulnerability that was
featured in the news [9] and for which a RUSTSEC fix was issued
[29]. In short, many libraries, including the popular ed25519-dalek
expose a sign function that additionally takes the public key as an
input, and not only the private key and the message, which is the
typical architecture in digital signature APIs. The reason behind this
implementation design is speculated to be related to performance
optimizations, because that addition allowed the function to avoid
computing the public key (from the private) internally, and hence it
was faster due to avoiding deserialization and other operations we
highlighted in section 3.1.3. Note that exploiting such a function
could result in private key leakage, an attack that we published
as “Double Public Key Signing Function Oracle Attack on EdDSA
Software Implementations” [17].

3.3.3 Unwanted parallelization for BLS verification. As with the
base64 bug described above, surprising benchmark results are often
a hint that some libraries are behaving unexpectedly. In an earlier
version of fastcrypto, both BLS signature verification [13] over
the BLS12-381 and the BLS12-377 constructions [8] were supported.
However, BLS12-377, which used the Arkworks [4] implementation,
was significantly slower than BLS12-381 which uses the blst [30]
crate. Analysing this further, we noticed that blst by default allows
multi-threaded computations. However, when allowing BLS12-377
to do the same, we got a regression in performance. It is unclear
why this was the case, but the benefit of using multiple threads for
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BLS signatures is small (around 25% for blst), so if the threads are
not managed tightly the small potential improvement from using
multiple threads will be lost and performance will regress instead.

In our case, where the primary usage is to verify transaction
signatures on the Sui blockchain, we decided to only allow single-
threaded verification, because Sui is already a multi-threaded ap-
plication, and allowing multiple threads for signature verification
alone will complicate the thread management for Sui.

3.3.4 Unwanted parallelization for Groth16 proving. An important
dependency for zkLogin is rapidsnark [19], a software library that
leverages assembly code to speed up the process of generating a
Groth16 zero-knowledge proof. It is well known that proving is
one of the main remaining bottlenecks for zero-knowledge proofs.
In order to optimize as much as possible, rapidsnark provides a
server-like interface to process several requests at once. However,
our testing revealed that the results returned by the prover under
simultaneous requests was often erroneous. This was likely due to
improper handling of state between threads resulting in one of the
threads over-writing results of another.

Further inspection revealed that rapidsnark already utilizes avail-
able parallelism to generate a single zero-knowledge proof. Given
this scenario, we decided to modify the library to disable the multi-
request feature. We adopt a simpler strategy to handle simultaneous
requests: scale the deployment horizontally by adding multiple ma-
chines.

We leave it for future work to conduct thorough benchmarks to
identify if processing simultaneous requests on a single machine is
actually useful. We suspect that it may only be useful on machines
with a lot of parallelism or cores. Also note that when the number of
cores is not high, then there is a risk of performance regression, that
is, processing a request takes more time if there are simultaneous
requests than otherwise, which is undesirable in most user-facing
applications.

3.4 Continuous benchmarks
The life cycle of our primitives, from initial prototyping to pro-
duction readiness, extends over several months. The initial imple-
mentation is typically unoptimized, emphasizing simplicity and
accompanied by basic unit tests. Subsequent cycles focus on refin-
ing the primitive until it reaches a state suitable for performance
measurements. Various evaluations are integral to this process:

• Local Benchmarks. These involve extensive testing with a
diverse range of inputs. These benchmarks serve dual pur-
poses—facilitating rapid development and ensuring progress
across optimization cycles.

• Continuous Integration (CI) Tests. These tests are vital for
ensuring that any future changes do not introduce perfor-
mance regressions. They act as a safeguard against unin-
tended setbacks in the optimization journey. This step is
crucial as recent changes in sub-components of the library
can impact the performance of primitives implemented and
benchmarked in the past.

Continuous tests also guarantee accurate and up-to-date bench-
mark outcomes. They ensure that the latest performance measure-
ments are reported, even in primitives implemented and bench-
marked long ago.

4 CONCLUSION AND FUTUREWORK
In the development of the fastcrypto library, continuous bench-
marking has been a crucial tool in identifying bottlenecks and in
qualifying the decision-making, notably when choosing what proto-
cols and software libraries to use, but the benchmarks have in some
cases also revealed unexpected insights into the inner workings of
dependencies and even revealed critical bugs.

The benchmarks are published online and may also be used
by developers to compare implementations or to compare with
their own implementations. We have published a Python script
to analyse the published data 15, and we hope to integrate this
script with our continuous integration workflow, e.g. to detect
performance regressions automatically. The measurements show a
large variation, probably because they are run on a cloud service,
and we would also like to explore how to make measurements more
consistent.

All in all, continuous benchmarks are more than a performance
metric tool, it can be an excellent tool to identify vulnerabilities
and allow for novel protocol designs and even world record imple-
mentations.
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