skip to main content
10.1145/3631085.3631324acmotherconferencesArticle/Chapter ViewAbstractPublication PagessbgamesConference Proceedingsconference-collections
research-article

How to improve the quality of GAN-based map generators

Authors Info & Claims
Published:19 January 2024Publication History

ABSTRACT

Procedural Content Generation algorithms aim to create unique and variable dungeon maps, ensuring that players encounter infinite maps in the game. This capability is essential to prevent repetitive environments, keeping players engaged and providing them with new challenges and discoveries. Machine learning techniques, such as Generative Adversarial Networks (GANs), have proven effective in generating data, although they may have specific limitations. This paper proposes a GAN-based approach for generating dungeon maps and introduces three optimizations to enhance the training process. Our approach achieves remarkable results in producing valid and varied maps compared to existing methods. We demonstrate that our approach outperforms other approaches by generating more valid maps with increased variability.

References

  1. Amina Adadi. 2021. A survey on data-efficient algorithms in big data era. Journal of Big Data 8, 1 (2021), 24. https://doi.org/10.1186/s40537-021-00419-9Google ScholarGoogle ScholarCross RefCross Ref
  2. Maren Awiszus, Frederik Schubert, and Bodo Rosenhahn. 2020. TOAD-GAN: Coherent Style Level Generation from a Single Example. In Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment(AIIDE’20). AAAI Press, Article 2, 7 pages. https://doi.org/10.48550/arXiv.2008.01531Google ScholarGoogle ScholarCross RefCross Ref
  3. Daniele Fernandes e Silva, Rafael Torchelsen, and Marilton Aguiar. 2023. Dungeon level generation using generative adversarial network: an experimental study for top-down view games. In Anais do L Seminário Integrado de Software e Hardware (João Pessoa/PB). SBC, Porto Alegre, RS, Brasil, 95–106. https://doi.org/10.5753/semish.2023.229905Google ScholarGoogle ScholarCross RefCross Ref
  4. Edoardo Giacomello, Pier Luca Lanzi, and Daniele Loiacono. 2018. Doom level generation using generative adversarial networks. In 2018 IEEE Games, Entertainment, Media Conference (GEM). IEEE, 316–323. https://doi.org/10.1109/GEM.2018.8516539Google ScholarGoogle ScholarCross RefCross Ref
  5. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative Adversarial Networks. Commun. ACM 63, 11 (oct 2020), 139–144. https://doi.org/10.1145/3422622Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT Press, Cambridge, MA, USA, 2672–2680. https://doi.org/10.48550/arXiv.1406.2661Google ScholarGoogle ScholarCross RefCross Ref
  7. Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, and Tsuhan Chen. 2018. Recent advances in convolutional neural networks. Pattern Recognition 77 (2018), 354–377. https://doi.org/10.1016/j.patcog.2017.10.013Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. 2017. Improved Training of Wasserstein GANs. https://doi.org/10.48550/ARXIV.1704.00028Google ScholarGoogle ScholarCross RefCross Ref
  9. Lawrence Johnson, Georgios N. Yannakakis, and Julian Togelius. 2010. Cellular Automata for Real-Time Generation of Infinite Cave Levels. In Proceedings of the 2010 Workshop on Procedural Content Generation in Games (Monterey, California) (PCGames ’10). Association for Computing Machinery, New York, NY, USA, Article 10, 4 pages. https://doi.org/10.1145/1814256.1814266Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Andy Koesnaedi and Wirawan Istiono. 2022. Implementation Drunkard’s Walk Algorithm to Generate Random Level in Roguelike Games. International Journal of Multidisciplinary Research and Publications 5, 2 (2022), 97–103.Google ScholarGoogle Scholar
  11. Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. 2022. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and Learning Systems 33, 12 (2022), 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827Google ScholarGoogle ScholarCross RefCross Ref
  12. Yuri P. A. Macedo and Luiz Chaimowicz. 2017. Improving Procedural 2D Map Generation Based on Multi-Layered Cellular Automata and Hilbert Curves. In 2017 16th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). 116–125. https://doi.org/10.1109/SBGames.2017.00021Google ScholarGoogle ScholarCross RefCross Ref
  13. Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. https://doi.org/10.48550/arXiv.1411.1784 arxiv:1411.1784 [cs.LG]Google ScholarGoogle ScholarCross RefCross Ref
  14. Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018. Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018). https://doi.org/10.48550/arXiv.1802.05957Google ScholarGoogle ScholarCross RefCross Ref
  15. Ricardo Ferreira Padilha. 2022. Analisando o engajamento de jogadores através de mapas procedurais. Trabalho de Conclusão de Curso (Bacharelado em Ciência da Computação). Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas.Google ScholarGoogle Scholar
  16. Kuang Ping and Luo Dingli. 2020. Conditional convolutional generative adversarial networks based interactive procedural game map generation. In Future of Information and Communication Conference. Springer, 400–419. https://doi.org/10.1007/978-3-030-39445-5_30Google ScholarGoogle ScholarCross RefCross Ref
  17. Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015).Google ScholarGoogle Scholar
  18. Ruben Rodriguez Torrado, Ahmed Khalifa, Michael Cerny Green, Niels Justesen, Sebastian Risi, and Julian Togelius. 2020. Bootstrapping Conditional GANs for Video Game Level Generation. In 2020 IEEE Conference on Games (CoG). 41–48. https://doi.org/10.1109/CoG47356.2020.9231576Google ScholarGoogle ScholarCross RefCross Ref
  19. Breno M. F. Viana and Selan R. dos Santos. 2021. Procedural Dungeon Generation: A Survey. Journal on Interactive Systems 12, 1 (Aug. 2021), 83–101. https://doi.org/10.5753/jis.2021.999Google ScholarGoogle ScholarCross RefCross Ref
  20. Mariana Werneck and Esteban W. G. Clua. 2020. Generating Procedural Dungeons Using Machine Learning Methods. In 2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). 90–96. https://doi.org/10.1109/SBGames51465.2020.00022Google ScholarGoogle ScholarCross RefCross Ref
  21. Huikai Wu, Shuai Zheng, Junge Zhang, and Kaiqi Huang. 2017. GP-GAN: Towards Realistic High-Resolution Image Blending. https://doi.org/10.48550/ARXIV.1703.07195Google ScholarGoogle ScholarCross RefCross Ref
  22. Hejia Zhang, Matthew C. Fontaine, Amy K. Hoover, Julian Togelius, Bistra Dilkina, and Stefanos Nikolaidis. 2020. Video Game Level Repair via Mixed Integer Linear Programming. In Proceedings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment(AIIDE’20). AAAI Press, Article 22, 8 pages. https://doi.org/10.48550/arXiv.2010.06627Google ScholarGoogle ScholarCross RefCross Ref
  23. Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris Metaxas. 2016. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks. https://doi.org/10.48550/ARXIV.1612.03242Google ScholarGoogle ScholarCross RefCross Ref
  24. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. https://doi.org/10.48550/ARXIV.1703.10593Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. How to improve the quality of GAN-based map generators

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Article Metrics

              • Downloads (Last 12 months)10
              • Downloads (Last 6 weeks)5

              Other Metrics

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format .

            View HTML Format