skip to main content
10.1145/3632047.3632073acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicbraConference Proceedingsconference-collections
research-article

Computational Study on Conus Textile Conopeptides for Mediating Ion Channel Transport

Authors Info & Claims
Published:27 February 2024Publication History

ABSTRACT

The lengthy, complex, and costly process enclosed with a high degree of uncertainty that a drug will gain market approval are challenges in drug discovery and development. With high-throughput screening and computational methods, computer-aided drug discovery can accelerate the lengthy and costly processes. The predatory cone snails of the genus Conus are specialists in neuropharmacology. In the Philippines, C. textile is reported to inhabit the tropical waters of the islands. Their conopeptide-rich venom can serve as repertoires of potential drug candidates for distinct diseases. Although isolation and activity studies have been conducted, most are tested in animal models only, and there are important distinctions between a human patient and animal prey. To investigate their human therapeutics application, we acquired the 3D structures of the conopeptides, target receptors, natural ligands, and FDA-approved drugs. We conducted a binding affinity and ligand-receptor interaction analysis. Results showed that Conorfamide Tx-1, Contryphan TxR, alpha-conotoxin TxIA, and epsilon-conotoxin TxVA have superior binding affinity compared to the target receptor's endogenous and FDA-approved drug ligand. However, conopressin and delta-conotoxin TxVIA have lower binding affinities than the positive controls. Important key residue interactions that affect binding affinities were identified that can guide future studies in peptide modification.

References

  1. Rita C. Acúrcio, Anna Scomparin, Ronit Satchi‐Fainaro, Helena F. Florindo, and Rita C. Guedes. 2019. Computer‐aided drug design in new druggable targets for the next generation of immune‐oncology therapies. Wiley Interdiscip Rev Comput Mol Sci 9, 3 (May 2019), e1397. DOI:https://doi.org/10.1002/wcms.1397Google ScholarGoogle ScholarCross RefCross Ref
  2. Layla Azam and J. Michael McIntosh. 2009. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30, 6 (June 2009), 783. DOI:https://doi.org/10.1038/APS.2009.47Google ScholarGoogle ScholarCross RefCross Ref
  3. Angel Baybayon, Jandolf C Villaruz, Enjelyn C Gomez, Lydia M Bajo, and Roger S Tan. 2018. Biological Characterization of Conus textile venom for Medical Applications.Google ScholarGoogle Scholar
  4. Daniel Bertrand and Murali Gopalakrishnan. 2007. Allosteric modulation of nicotinic acetylcholine receptors. Biochem Pharmacol 74, 8 (October 2007), 1155–1163. DOI:https://doi.org/10.1016/J.BCP.2007.07.011Google ScholarGoogle ScholarCross RefCross Ref
  5. Marco Biasini, Stefan Bienert, Andrew Waterhouse, Konstantin Arnold, Gabriel Studer, Tobias Schmidt, Florian Kiefer, Tiziano Gallo Cassarino, Martino Bertoni, Lorenza Bordoli, and Torsten Schwede. 2014. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, Web Server issue (July 2014), W252. DOI:https://doi.org/10.1093/NAR/GKU340Google ScholarGoogle ScholarCross RefCross Ref
  6. Darlene H. Brunzell, Alexandra M. Stafford, and Claire I. Dixon. 2015. Nicotinic receptor contributions to smoking: insights from human studies and animal models. Curr Addict Rep 2, 1 (March 2015), 33. DOI:https://doi.org/10.1007/S40429-015-0042-2Google ScholarGoogle ScholarCross RefCross Ref
  7. Rajesh Chawla, Subhash Todi, and Devendra Kumar Agarwal. 2022. Hyponatremia. ICU Protocols: A Stepwise Approach (January 2022), 433–440. DOI:https://doi.org/10.1007/978-81-322-0535-7_55Google ScholarGoogle ScholarCross RefCross Ref
  8. Lourdes J Cruzs, Victoria de Santoso, Glenn C Zafaralla, Cecilia A Ramiloso, Regina Zeikusll, William R Gray, and Baldomero M Oliveras. 1987. Invertebrate Vasopressin/ Oxytocin Homologs CHARACTERIZATION OF PEPTIDES FROM CONUS GEOGRAPHUS AND CONUS STRIATUS VENOMS*. Journal of Biological Chemistry 262, 33 (June 1987), 15821–15824. DOI:https://doi.org/10.1016/S0021-9258(18)47661-2Google ScholarGoogle ScholarCross RefCross Ref
  9. Michael D'Andrea and Robert Nagele. 2006. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr Pharm Des 12, 6 (January 2006), 677–684. DOI:https://doi.org/10.2174/138161206775474224Google ScholarGoogle ScholarCross RefCross Ref
  10. Ankur Dhanik, John S. McMurray, and Lydia E. Kavraki. 2013. DINC: A new AutoDock-based protocol for docking large ligands. BMC Struct Biol 13, SUPPL.1 (November 2013), 1–14. DOI:https://doi.org/10.1186/1472-6807-13-S1-S11/FIGURES/7Google ScholarGoogle ScholarCross RefCross Ref
  11. Yanli Dong, Yiwei Gao, Shuai Xu, Yuhang Wang, Zhuoya Yu, Yue Li, Bin Li, Tian Yuan, Bei Yang, Xuejun Cai Zhang, Daohua Jiang, Zhuo Huang, and Yan Zhao. 2021. Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Rep 37, 5 (November 2021). DOI:https://doi.org/10.1016/J.CELREP.2021.109931Google ScholarGoogle ScholarCross RefCross Ref
  12. David J. Dooley, Amelie Lupp, Georg Hertting, and Hartmut Osswald. 1988. Omega-conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 148, 2 (March 1988), 261–267. DOI:https://doi.org/10.1016/0014-2999(88)90572-9Google ScholarGoogle ScholarCross RefCross Ref
  13. Sébastien Dutertre, Daniel Croker, Norelle L. Daly, Åsa Andersson, Markus Muttenthaler, Natalie G. Lumsden, David J. Craik, Paul F. Alewood, Gilles Guillon, and Richard J. Lewis. 2008. Conopressin-T from Conus tulipa reveals an antagonist switch in vasopressin-like peptides. Journal of Biological Chemistry 283, 11 (March 2008), 7100–7108. DOI:https://doi.org/10.1074/JBC.M706477200/ATTACHMENT/1D2437A2-3CE6-4414-86DB-B1E667C3C7F4/MMC1.ZIPGoogle ScholarGoogle ScholarCross RefCross Ref
  14. Sébastien Dutertre, Chris Ulens, Regina Büttner, Alexander Fish, René van Elk, Yvonne Kendel, Gene Hopping, Paul F. Alewood, Christina Schroeder, Annette Nicke, August B. Smit, Titia K. Sixma, and Richard J. Lewis. 2007. AChBP-targeted alpha-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J 26, 16 (August 2007), 3858–3867. DOI:https://doi.org/10.1038/SJ.EMBOJ.7601785Google ScholarGoogle ScholarCross RefCross Ref
  15. Jörg Eder and Paul L. Herrling. 2016. Trends in Modern Drug Discovery. Handb Exp Pharmacol 232, (April 2016), 3–22. DOI:https://doi.org/10.1007/164_2015_20Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Fatehi, S. B. Kombian, and T. M. Saleh. 2005. 17beta-estradiol inhibits outward potassium currents recorded in rat parabrachial nucleus cells in vitro. Neuroscience 135, 4 (2005), 1075–1086. DOI:https://doi.org/10.1016/J.NEUROSCIENCE.2005.07.024Google ScholarGoogle ScholarCross RefCross Ref
  17. Robert Freedman, Michael Hall, Lawrence E. Adler, and Sherry Leonard. 1995. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38, 1 (July 1995), 22–33. DOI:https://doi.org/10.1016/0006-3223(94)00252-XGoogle ScholarGoogle ScholarCross RefCross Ref
  18. Kevin J. Gingrich and Larry E. Wagner. 2016. Fast-onset lidocaine block of rat NaV1.4 channels suggests involvement of a second high-affinity open state. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, 6 (June 2016), 1175–1188. DOI:https://doi.org/10.1016/J.BBAMEM.2016.02.033Google ScholarGoogle ScholarCross RefCross Ref
  19. Duncan R Groebe, Judith M Dumm, Edwin S Levitan, and Stewart N Abramson. 1995. a-Conotoxins selectively inhibit one of the two acetylcholine binding sites of nicotinic receptors. MOLECULAR PHARMACOLOGY-NEW YORK THEN BALTIMORE- 48, (1995), 105.Google ScholarGoogle Scholar
  20. Simon D. Harding, Jane F. Armstrong, Elena Faccenda, Christopher Southan, Stephen P.H. Alexander, Anthony P. Davenport, Adam J. Pawson, Michael Spedding, and Jamie A. Davies. 2022. The IUPHAR/BPS guide to PHARMACOLOGY in 2022: curating pharmacology for COVID-19, malaria and antibacterials. Nucleic Acids Res 50, D1 (January 2022), D1282–D1294. DOI:https://doi.org/10.1093/NAR/GKAB1010Google ScholarGoogle ScholarCross RefCross Ref
  21. Raymond Hurst, Hans Rollema, and Daniel Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 137, 1 (2013), 22–54. DOI:https://doi.org/10.1016/J.PHARMTHERA.2012.08.012Google ScholarGoogle ScholarCross RefCross Ref
  22. Elsie C. Jimenez, A. Grey Craig, Maren Watkins, David R. Hillyard, William R. Gray, Joseph Gulyas, Jean E. Rivier, Lourdes J. Cruz, and Baldomero M. Olivera. 1997. Bromocontryphan: post-translational bromination of tryptophan. Biochemistry 36, 5 (February 1997), 989–994. DOI:https://doi.org/10.1021/BI962840PGoogle ScholarGoogle ScholarCross RefCross Ref
  23. Elsie C. Jimenéz, Baldomero M. Olivera, William R. Gray, and Lourdes J. Cruz. 1996. Contryphan is a D-tryptophan-containing Conus peptide. J Biol Chem 271, 45 (1996), 28002–28005. DOI:https://doi.org/10.1074/JBC.271.45.28002Google ScholarGoogle ScholarCross RefCross Ref
  24. Akira Kio Valdorea Kikuchi, Shealtiel William Sta. Maria Chan, Ryan Christian Mailem, Marineil Carillo Gomez, and Lemmuel Lara Tayo. 2022. In silico investigation of oxindole alkaloids from Uncaria perrottetii and Uncaria lanosa f. philippinensis for COVID-19 therapy: binding site prediction and molecular docking. 2022 12th International Conference on Biomedical Engineering and Technology (ICBET) (April 2022), 5–8. DOI:https://doi.org/10.1145/3535694.3535696Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shiva N. Kompella, Hartmut Cuny, Andrew Hung, and David J. Adams. 2015. Molecular Basis for Differential Sensitivity of α-Conotoxin RegIIA at Rat and Human Neuronal Nicotinic Acetylcholine Receptors. Mol Pharmacol 88, 6 (December 2015), 993–1001. DOI:https://doi.org/10.1124/MOL.115.100503Google ScholarGoogle ScholarCross RefCross Ref
  26. Richard T Layer and J M McIntosh. 2006. Conotoxins: Therapeutic Potential and Application. Marine Drugs 4. DOI:https://doi.org/10.3390/md403119Google ScholarGoogle ScholarCross RefCross Ref
  27. Eline K.M. Lebbe and Jan Tytgat. 2016. In the picture: Disulfide-poor conopeptides, a class of pharmacologically interesting compounds. Journal of Venomous Animals and Toxins Including Tropical Diseases 22, 1 (November 2016), 1–15. DOI:https://doi.org/10.1186/S40409-016-0083-6/TABLES/14Google ScholarGoogle ScholarCross RefCross Ref
  28. Enrico Leipold, Alfred Hansel, Baldomero M. Olivera, Heinrich Terlau, and Stefan H. Heinemann. 2005. Molecular interaction of delta-conotoxins with voltage-gated sodium channels. FEBS Lett 579, 18 (July 2005), 3881–3884. DOI:https://doi.org/10.1016/J.FEBSLET.2005.05.077Google ScholarGoogle ScholarCross RefCross Ref
  29. Richard J. Lewis and Maria L. Garcia. 2003. Therapeutic potential of venom peptides. Nature Reviews Drug Discovery 2003 2:10 2, 10 (October 2003), 790–802. DOI:https://doi.org/10.1038/nrd1197Google ScholarGoogle ScholarCross RefCross Ref
  30. Ryan Christian Mailem, Shealtiel William Sta. Maria Chan, Akira Kio Valdorea Kikuchi, Marineil Carillo Gomez, and Lemmuel Lara Tayo. 2022. In silico investigation of oxindole alkaloids from Uncaria perrottetii and Uncaria lanosa f. philippinensis for COVID-19 therapy: a ligand affinity and characterization study. 2022 12th International Conference on Biomedical Engineering and Technology (ICBET) (April 2022), 21–25. DOI:https://doi.org/10.1145/3535694.3535699Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. M. Maillo, M. B. Aguilar, E. Lopéz-Vera, A. G. Craig, G. Bulaj, B. M. Olivera, and E. P. Heimer De La Cotera. 2002. Conorfamide, a Conus venom peptide belonging to the RFamide family of neuropeptides. Toxicon 40, 4 (2002), 401–407. DOI:https://doi.org/10.1016/S0041-0101(01)00176-3Google ScholarGoogle ScholarCross RefCross Ref
  32. Anaísa Martins Marques, Bárbara Silva Linhares, Rômulo Dias Novaes, Mariella Bontempo Freitas, Mariáurea Matias Sarandy, and Reggiani Vilela Gonçalves. 2020. Effects of the amount and type of carbohydrates used in type 2 diabetes diets in animal models: A systematic review. PLoS One 15, 6 (June 2020), e0233364. DOI:https://doi.org/10.1371/JOURNAL.PONE.0233364Google ScholarGoogle ScholarCross RefCross Ref
  33. J. G. McGivern and J. F. Worley. 2007. Ion Channels – Voltage Gated. Comprehensive Medicinal Chemistry II 2, (January 2007), 827–875. DOI:https://doi.org/10.1016/B0-08-045044-X/00066-3Google ScholarGoogle ScholarCross RefCross Ref
  34. Simon K. Michael, Howard K. Surks, Yuepeng Wang, Yan Zhu, Robert Blanton, Michelle Jamnongjit, Mark Aronovitz, Wendy Baur, Kenichi Ohtani, Michael K. Wilkerson, Adrian D. Bonev, Mark T. Nelson, Richard H. Karas, and Michael E. Mendelsohn. 2008. High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci U S A 105, 18 (May 2008), 6702–6707. DOI:https://doi.org/10.1073/PNAS.0802128105/SUPPL_FILE/0802128105SI.PDFGoogle ScholarGoogle ScholarCross RefCross Ref
  35. Neil S. Millar and Patricia C. Harkness. 2008. Assembly and trafficking of nicotinic acetylcholine receptors (Review). Mol Membr Biol 25, 4 (May 2008), 279–292. DOI:https://doi.org/10.1080/09687680802035675Google ScholarGoogle ScholarCross RefCross Ref
  36. Sigrid Noreng, Arpita Bharadwaj, Richard Posert, Craig Yoshioka, and Isabelle Baconguis. 2018. Structure of the human epithelial sodium channel by cryo-electron microscopy. Elife 7, (September 2018). DOI:https://doi.org/10.7554/ELIFE.39340Google ScholarGoogle ScholarCross RefCross Ref
  37. Raymond S Norton and Baldomero M Olivera. 2006. Conotoxins down under. Toxicon 48, 7 (2006), 780–798. DOI:https://doi.org/https://doi.org/10.1016/j.toxicon.2006.07.022Google ScholarGoogle ScholarCross RefCross Ref
  38. Baldomero M. Olivera. 1997. E.E. Just Lecture, 1996: Conus Venom Peptides, Receptor and Ion Channel Targets, and Drug Design: 50 Million Years of Neuropharmacology. Mol Biol Cell 8, 11 (1997), 2101. DOI:https://doi.org/10.1091/MBC.8.11.2101Google ScholarGoogle ScholarCross RefCross Ref
  39. Xiaojing Pan, Zhangqiang Li, Qiang Zhou, Huaizong Shen, Kun Wu, Xiaoshuang Huang, Jiaofeng Chen, Juanrong Zhang, Xuechen Zhu, Jianlin Lei, Wei Xiong, Haipeng Gong, Bailong Xiao, and Nieng Yan. 2018. Structure of the human voltage-gated sodium channel Nav1.4 in complex with β1. Science (1979) 362, 6412 (October 2018). DOI:https://doi.org/10.1126/SCIENCE.AAU2486Google ScholarGoogle ScholarCross RefCross Ref
  40. Diana E. Pankevich, Bruce M. Altevogt, John Dunlop, Fred H. Gage, and Steve E. Hyman. 2014. Improving and Accelerating Drug Development for Nervous System Disorders. Neuron 84, 3 (2014), 546–553. DOI:https://doi.org/https://doi.org/10.1016/j.neuron.2014.10.007Google ScholarGoogle ScholarCross RefCross Ref
  41. Peng Yuan, Manuel D. Leonetti, Alexander R. Pico, Yichun Hsiung, and Roderick MacKinnon. 2010. Structure of the Human BK Channel Ca2+-Activation Apparatus at 3.0 Å Resolution. Science (1979) 329, 5988 (July 2010), 182–186. DOI:https://doi.org/10.1126/SCIENCE.1190414Google ScholarGoogle ScholarCross RefCross Ref
  42. BY Pranjalinannajkar, Advisor Lorraine Marsh, and Joseph Morin Cecilia Kovac. 2006. IDENTIFICATION OF THE LIGAND-BINDING SITE OF HUMAN VASOPRESSIN RECEPTOR (VlaR) USING PHYLOGENETIC AND HOMOLOGY MODELING TECHNIQUES 4 fie lot Date SPONSORING COMMITTEE. (2006).Google ScholarGoogle Scholar
  43. Marianna Ranieri, Annarita di Mise, Grazia Tamma, and Giovanna Valenti. 2022. Vasopressin Type 2 Receptor Agonists and Antagonists. Comprehensive Pharmacology (January 2022), 656–669. DOI:https://doi.org/10.1016/B978-0-12-820472-6.00148-1Google ScholarGoogle ScholarCross RefCross Ref
  44. Iván Restrepo-Angulo, Cecilia Bañuelos, and Javier Camacho. 2020. Ion Channel Regulation by Sex Steroid Hormones and Vitamin D in Cancer: A Potential Opportunity for Cancer Diagnosis and Therapy. Front Pharmacol 11, (February 2020), 152. DOI:https://doi.org/10.3389/FPHAR.2020.00152/BIBTEXGoogle ScholarGoogle ScholarCross RefCross Ref
  45. Alan C. Rigby, Estelle Lucas-Meunier, Dário E. Kalume, Eva Czerwiec, Björn Hambe, Ingrid Dahlqvist, Philippe Fossier, Gérard Baux, Peter Roepstorff, James D. Baleja, Barbara C. Furie, Bruce Furie, and Johan Stenflo. 1999. A conotoxin from Conus textile with unusual posttranslational modifications reduces presynaptic Ca2+ influx. Proc Natl Acad Sci U S A 96, 10 (May 1999), 5758–5763. DOI:https://doi.org/10.1073/PNAS.96.10.5758Google ScholarGoogle ScholarCross RefCross Ref
  46. S Sardari, Yeganeh Sebti, Soroush Sardari, Hamid Mir, Mohammad Sadeghi, Mohammad Hossein Ghahremani, and Giulio Innamorati. 2015. Study of V2 vasopressin receptor hormone binding site using in silico methods. Res Pharm Sci 10, 4 (2015), 294. Retrieved July 17, 2022 from /pmc/articles/PMC4623618/Google ScholarGoogle Scholar
  47. Andreas Scholz. 2007. Nav1.4 Voltage - Gated Sodium Channel. xPharm: The Comprehensive Pharmacology Reference (January 2007), 1–7. DOI:https://doi.org/10.1016/B978-008055232-3.60410-6Google ScholarGoogle ScholarCross RefCross Ref
  48. Christina I Schroeder and David J Craik. 2012. Therapeutic potential of conopeptides. Future Med Chem 4, 10 (June 2012), 1243–1255. DOI:https://doi.org/10.4155/fmc.12.70Google ScholarGoogle ScholarCross RefCross Ref
  49. Ki Joon Shon, Baldomero M. Olivera, Maren Watkins, Richard B. Jacobsen, William R. Gray, Christina Z. Floresca, Lourdes J. Cruz, David R. Hillyard, Anette Brink, Heinrich Terlau, and Doju Yoshikami. 1998. mu-Conotoxin PIIIA, a new peptide for discriminating among tetrodotoxin-sensitive Na channel subtypes. J Neurosci 18, 12 (June 1998), 4473–4481. DOI:https://doi.org/10.1523/JNEUROSCI.18-12-04473.1998Google ScholarGoogle ScholarCross RefCross Ref
  50. Susan C. Su, Jinsoo Seo, Jen Q. Pan, Benjamin Adam Samuels, Andrii Rudenko, Maria Ericsson, Rachael L. Neve, David T. Yue, and Li Huei Tsai. 2012. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 75, 4 (August 2012), 687. DOI:https://doi.org/10.1016/J.NEURON.2012.06.023Google ScholarGoogle ScholarCross RefCross Ref
  51. Qianhui Sun and Peter Sever. 2020. Amiloride: A review. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System 21, 4 (November 2020). DOI:https://doi.org/10.1177/1470320320975893Google ScholarGoogle ScholarCross RefCross Ref
  52. Lemmuel L Tayo, Bingwen Lu, Lourdes J Cruz, and John R Yates 3rd. 2010. Proteomic analysis provides insights on venom processing in Conus textile. J Proteome Res 9, 5 (May 2010), 2292–2301. DOI:https://doi.org/10.1021/pr901032rGoogle ScholarGoogle ScholarCross RefCross Ref
  53. Amber S. Tippens. 2007. Mibefradil. xPharm: The Comprehensive Pharmacology Reference (January 2007), 1–5. DOI:https://doi.org/10.1016/B978-008055232-3.62182-8Google ScholarGoogle ScholarCross RefCross Ref
  54. Oleg Trott and Arthur J. Olson. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31, 2 (January 2010), 455. DOI:https://doi.org/10.1002/JCC.21334Google ScholarGoogle ScholarCross RefCross Ref
  55. Sameer Velankar, Younes Alhroub, Anaëlle Alili, Christoph Best, Harry C. Boutselakis, Ségoléne Caboche, Matthew J. Conroy, Jose M. Dana, Glen van Ginkel, Adel Golovin, Swanand P. Gore, Aleksandras Gutmanas, Pauline Haslam, Miriam Hirshberg, Melford John, Ingvar Lagerstedt, Saqib Mir, Laurence E. Newman, Tom J. Oldfield, Chris J. Penkett, Jorge Pineda-Castillo, Luana Rinaldi, Gaurav Sahni, Grégoire Sawka, Sanchayita Sen, Robert Slowley, Alan Wilter Sousa da Silva, Antonio Suarez-Uruena, G. Jawahar Swaminathan, Martyn F. Symmons, Wim F. Vranken, Michael Wainwright, and Gerard J. Kleywegt. 2011. PDBe: Protein Data Bank in Europe. Nucleic Acids Res 39, Database issue (January 2011), D410. DOI:https://doi.org/10.1093/NAR/GKQ985Google ScholarGoogle ScholarCross RefCross Ref
  56. Andrew C. Wallace, Roman A. Laskowski, and Janet M. Thornton. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 2 (February 1995), 127–134. DOI:https://doi.org/10.1093/PROTEIN/8.2.127Google ScholarGoogle ScholarCross RefCross Ref
  57. Richard M. Walsh, Soung Hun Roh, Anant Gharpure, Claudio L. Morales-Perez, Jinfeng Teng, and Ryan E. Hibbs. 2018. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 7704 (May 2018), 261–265. DOI:https://doi.org/10.1038/S41586-018-0081-7Google ScholarGoogle ScholarCross RefCross Ref
  58. Hoau Yan Wang, Daniel H.S. Lee, Coralie B. Davis, and Richard P. Shank. 2000. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 75, 3 (2000), 1155–1161. DOI:https://doi.org/10.1046/J.1471-4159.2000.0751155.XGoogle ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Computational Study on Conus Textile Conopeptides for Mediating Ion Channel Transport

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICBRA '23: Proceedings of the 2023 10th International Conference on Bioinformatics Research and Applications
      September 2023
      226 pages
      ISBN:9798400708152
      DOI:10.1145/3632047

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 February 2024

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)8
      • Downloads (Last 6 weeks)4

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format