skip to main content
10.1145/3633637.3633652acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccprConference Proceedingsconference-collections
research-article

Real-time Human-machine Interface for Ultrasensitive Detection of SO2F2 in SF6 Decomposition Product based on TiO2-NiS Heterojunction

Published: 28 February 2024 Publication History

Abstract

SO2F2 is a typical gas in SF6 discharge decomposition components. The detection of SO2F2 gas can reflect the operation state of the SF6 gas insulation equipment. SO2F2 also is a toxic and harmful gas that can cause harm to human body. In this paper, the TiO2-NiS heterojunction model was established by using computer technology through the first principles of density functional theory (DFT) simulation, and its gas sensitivity to SO2F2 was studied. The successful preparation of TiO2-NiS heterojunction was demonstrated by XRD. The SO2F2 sensor attached to the robotic hand can expand its application in remote sensing. The human-machine interface for the SO2F2 gas detection is designed through LabVIEW technology, which can display the gas concentration of SO2F2 in real time and give early warning. In the event of an early warning, the staff can operate the robot arm through the human-machine interface to reduce personnel injuries.

References

[1]
Velásquez R. M. A., Lara J. V. M. 2020. Root cause analysis methodology for circuit breaker associated to GIS. Eng. Fail. Anal. 115, (September 2020), 104680. https://doi.org/10.1016/j.engfailanal.2020.104680
[2]
Zhang X., Tao L., Qiao H., Sun H., Wang P. 2023. Strong adsorption capacity for SF6-leaking gas with NiO-doped and Ag2O-doped SnSe monolayer. IEEE Sens. J. 23, (June 2023), 12672-12678. https://doi.org/10.1109/JSEN.2023.3274665
[3]
Wan X., Zhang Z., Wang A., Su J. Zhou W., Robertson J., Peng Y., Zheng Y., Guo Y. 2023. Deep-learning-assisted theoretical insights into the compatibility of environment friendly insulation medium with metal surface of power equipment. J. Colloid Interface Sci. 648, (October 2023), 317-326. https://doi.org/10.1016/j.jcis.2023.05.188
[4]
Tang M., Zhang D., Chen Q., Wang Z., Wang D., Yang Z., Xu W., Wang L., Zhu L., An F. 2023. Heterostructure construction of SnS2 Debye nanowires modified with ZnO nanorods for chemiresistive H2S detection in sulfur hexafluoride decomposition products. Sens. Actuators B Chem. 390, (September 2023), 133952. https://doi.org/ 10.1016/j.snb.2023.133952
[5]
Wu P., Li Y., Xiao S., Chen J., Tang J., Chen D., Zhang X. 2022. SnO2 nanoparticles based highly sensitive gas sensor for detection of C4F7N: A new eco-friendly gas insulating medium. J. Hazard. Mater. 422, (January 2022), 126882. https://doi.org/ 10.1016/j.jhazmat.2021.126882
[6]
Chen D., Zhang X., Tang J., Cui Z., Cui H. 2019. Pristine and Cu decorated hexagonal InN monolayer, a promising candidate to detect and scavenge SF6 decompositions based on first-principle study. J. Hazard. Mater. 363, (February 2019), 346-357. https://doi.org/ 10.1016/j.jhazmat.2018.10.006
[7]
Shi Z., Zhang Y., Zeng W., Zhou Q. 2023. A DFT study on adsorption of SF6 decomposition gases (H2S, SO2, SO2F2 and SOF2) on Sc-MoTe2 monolayer. Sens. Actuators A Phys. 360, (October 2023), 114548. https://doi.org/10.1016/j.susc.2023.122317
[8]
Sang T. Y., Li T., Yang Y., Song Y., Tian H., Song R., Wang C., Hu X., Yang Z., Lu Y., Chen W. 2022. Pd, Rh-decorated Se-vacancy MoSe2 monolayer: A promising candidate for sensing and detecting SO2F2, SOF2, H2S and SO2. Surf. Interfaces 33, (October 2022), 102269. https://doi.org/10.1016/j.surfin.2022.102269
[9]
Ma Y., Gong X., Xiao F., Liu Y., Ming X. 2023. First-principles study on the selective detection of toxic gases by 2D monolayer PdS2: insight into charge transfer dynamics and alignment of frontier molecular orbitals. ACS Appl. Nano Mater. 6, (July 2023), 12470-12478. https://doi.org/10.1021/acsanm.3c02177
[10]
Mikkonen T., Luoma D., Hakulinen H., Genty G., Vanninen P., Toivonen J. 2022. Detection of gaseous nerve agent simulants with broadband photoacoustic spectroscopy. J. Hazard. Mater. 440, (October 2022), 129851. https://doi.org/10.1016/j.jhazmat.2022.129851
[11]
Li B., Zhang X., Huo L., Gao S., Guo C., Zhang Y., Major Z., Zhang F., Cheng X., Xu Y. 2022. Controllable construction of ZnFe2O4-based micro-nano heterostructure for the rapid detection and degradation of VOCs. J. Hazard. Mater. 435, (August 2022), 129005. https://doi.org/10.1016/j.jhazmat.2022.129005
[12]
Zherka B., Tafa Z. 2023. A vehicle sensor network for real-time air pollution analysis. Journal of Advances in Information Technology, 14, (February 2023), 39-45. https://doi.org/10.12720/jait.14.1.39-45
[13]
Li W. J., Niu C. P., Chu J. F., Wang D. W., Lv P. L., Yuan H., Yang A. J., Wang X., Li Y., Rong M. Z. 2023. DFT plus U study of sulfur hexafluoride decomposition components adsorbed on ceria (110) surface. Sens. Actuators B Chem. 298, (October 2023), 111590. https://doi.org/10.1016/j.sna.2019.111590
[14]
Liu Z., Gui Y., Xu L., Chen X. 2022. Adsorption and sensing performances of transition metal (Ag, Pd, Pt, Rh, and Ru) modified WSe2 monolayer upon SF6 decomposition gases (SOF2 and SO2F2). Appl. Surf. Sci. 581, (April 2022), 152365. https://doi.org/10.1016/j.apsusc.2021.152365
[15]
Zhang S., Song P., Wang Q., Ding Y. 2022. Ultra-sensitive triethylamine gas sensor based on ZnO/MoO3 heterostructures with ppb level detection. Sens. Actuators B Chem. 379, (March 2022), 133239. https://doi.org/10.1016/j.snb.2022.133239
[16]
Wu K., Debliquy M., Zhang C. 2022. Room temperature gas sensors based on Ce doped TiO2 nanocrystals for highly sensitive NH3 detection. Chem. Eng. J. 444, (September 2022), 136449. https://doi.org/10.1016/j.cej.2022.136449
[17]
Wang Y., Gui Y., He S., Yang J. 2023. Hybrid nanogenerator driven self-powered SO2F2 sensing system based on TiO2/Ni/C composites at room temperature. Sens. Actuators B Chem. 377, (February 2023), 133053. https://doi.org/10.1016/j.snb.2022.133053
[18]
Baohui D., Ul H. M., Din S. U., Hussain S., Wenyi S., Jingmin W., Hanwen C., Ye Z. Z., Zhu L. P. 2022. Low-temperature monitoring of SF6 decomposition products based on CeO2@MWCNTs composite sensor. J. Alloys Compd. 913, (August 2022), 165192. https://doi.org/10.1016/j.jallcom.2022.165192
[19]
Haq M., Din S. U., Baohui D., Khan S., Zhu L. 2022. Low-temperature detection of sulfur-fexafluoride decomposition products using octahedral Co3O4-modified NiSnO3 nanofibers. ACS Appl. Mater. Interface 14, (February 2022), 9292-9306. https://doi.org/ 10.1021/acsami.1c22929
[20]
Zhang S., Guo K., Sun L., Ni Y., Liu L., Xu W., Yang L., Xu W. 2021. Selective release of different neurotransmitters emulated by a p-i-n junction synaptic transistor for environment-responsive action control. Adv. Mater. 33, (March 2021), 2007350. https://doi.org/ 10.1002/adma.202007350
[21]
Li H., Chen C., Yan Y., Yan T., Cheng C., Sun D., Zhang L. 2021. Utilizing the built-in tlectric field of p-n junctions to spatially propel the stepwise polysulfide conversion in lithium-sulfur batteries. Adv. Mater. 33, (December 2021), 2105067. https://doi.org/ 10.1002/adma.202105067
[22]
Kim K. H., Choi C. W., Choung S., Cho Y., Kim S., Oh C., Lee K., Lee C., Zhang K., Han J., Choi S., Park J. 2022. Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process. Adv. Energy Mater. 12, (February 2022), 2103495. https://doi.org/10.1002/aenm.202103495
[23]
Yang Z., Zou H., Zhang Y., Liu F., Wang J., Lv S., Jiang L., Wang C., Yan X., Sun P., Zhang L., Duan Y., Lu G. 2022. The introduction of defects in Ti3C2Tx and Ti3C2Tx-assisted reduction of graphene oxide for highly selective detection of ppb-level NO2. Adv. Funct. Mater. 32, (April 2022), 2108959. https://doi.org/10.1002/adfm.202108959
[24]
Lee J. H., Kim J. Y., Nam M. S., Mirzaei A., Kim H. W., Kim S. S. 2023. Synergistic effect between UV light and PANI/Co3O4 content on TiO2 composite nanoparticles for room-temperature acetone sensing. Sens. Actuators B Chem. 375, (January 2023), 132868. https://doi.org/10.1016/j.snb.2022.132868
[25]
Zhang D., Yu S., Wang X., Huang J., Pan W., Zhang J., Meteku BE., Zeng J. B. 2022. UV illumination-enhanced ultrasensitive ammonia gas sensor based on (001) TiO2/MXene heterostructure for food spoilage detection. J. Hazard. Mater. 423, (February 2022), 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
[26]
Wei W., Zhang H., Tao T., Xia X. H., Bao Y. W., Lourenco M., Homewood K., Huang Z. B., Gao Y. 2023. A CuO/TiO2 heterojunction based CO sensor with high response and selectivity. Sens. Actuators B Chem. 6, (May 2023), e12570. https://doi.org/10.1002/eem2.12570
[27]
Huang X. Y., Chi Z. T., Liu J., Li D. H., Sun X. J., Yan C., Wang Y. C., Li H., Wang X. D., Xie W. F. 2020. Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites. Sens. Actuators B Chem. 304, (February 2020), 127305. https://doi.org/10.1016/j.snb.2019.127305
[28]
Perfecto T. M., Zito C. A., Volanti D. P. 2021. Effect of NiS nanosheets on the butanone sensing performance of ZnO hollow spheres under humidity conditions. Sens. Actuators B Chem. 334, (May 2021), 129684. https://doi.org/10.1016/j.snb.2021.129684
[29]
Yang Y., Wu S., Cao Y., Li S., Xie T. F., Lin Y. H., Li Z. H. 2022. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light. Sens. Actuators B Chem. 920, (November 2022), 165850. https://doi.org/10.1016/j.jallcom.2022.165850
[30]
Bartoněk D., Opatřilová I. 2014. Design of Human-machine Interface for GNSS device. Journal of Advances in Information Technology. 5, (February, 2014), 15-20. https://doi.org/10.4304/jait.5.1.15-20

Index Terms

  1. Real-time Human-machine Interface for Ultrasensitive Detection of SO2F2 in SF6 Decomposition Product based on TiO2-NiS Heterojunction
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image ACM Other conferences
            ICCPR '23: Proceedings of the 2023 12th International Conference on Computing and Pattern Recognition
            October 2023
            589 pages
            ISBN:9798400707988
            DOI:10.1145/3633637
            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            Published: 28 February 2024

            Permissions

            Request permissions for this article.

            Check for updates

            Author Tags

            1. DFT simulation
            2. LabVIEW interface
            3. SF6 gas insulated device
            4. SO2F2 sensor
            5. TiO2-NiS heterojunction

            Qualifiers

            • Research-article
            • Research
            • Refereed limited

            Funding Sources

            Conference

            ICCPR 2023

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 24
              Total Downloads
            • Downloads (Last 12 months)24
            • Downloads (Last 6 weeks)3
            Reflects downloads up to 20 Feb 2025

            Other Metrics

            Citations

            View Options

            Login options

            View options

            PDF

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader

            HTML Format

            View this article in HTML Format.

            HTML Format

            Figures

            Tables

            Media

            Share

            Share

            Share this Publication link

            Share on social media