skip to main content
10.1145/3633637.3633692acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccprConference Proceedingsconference-collections
research-article

CardiacSegFormer: Transformer for Semantic Segmentation of Cardiac Images

Authors Info & Claims
Published:28 February 2024Publication History

ABSTRACT

Cardiac image segmentation is a sub task of medical image segmentation, which has very important clinical significance in the prevention and diagnosis of cardiac diseases. Recently, segmentation models based on the Transformer architecture have achieved remarkable performance due to their advantages in handling long-range dependencies and capturing global contextual information. However, the Transformer based segmentation model only uses simple unprocessed skip connections to compensate for information loss during the down-sampling process, resulting in its potential in cardiac image segmentation remains largely unexplored. In this work, we propose CardiacSegFormer, which consists of various improvements, such as the application of self-attention modules in skip connections to facilitate better information fusion. At the same time, low-entropy constraint is introduced, cosine annealing warm restart algorithms are used to help training a more effective model. Experiment on Automated Cardiac Diagnosis Challenge (ACDC) datasets demonstrate that the proposed method has a Dice Similarity Coefficient (DSC) of 91.84%, which is superior to the current the-state-of-art model. To conclusion, this work provides a high-performing baseline model for cardiac image segmentation tasks, showcasing its value in the improvement and enhancement of related models.

References

  1. Ramesh, K., Kumar, G. K., Swapna, K., Datta, D., Rajest, S. S. J. E. E. T. o. P. H. and Technology A review of medical image segmentation algorithms, 7, 27 (2021), e6-e6.Google ScholarGoogle Scholar
  2. Chen, C., Qin, C., Qiu, H., Tarroni, G., Duan, J., Bai, W. and Rueckert, D. J. F. i. C. M. Deep learning for cardiac image segmentation: a review, 7 (2020), 25.Google ScholarGoogle Scholar
  3. Long, J., Shelhamer, E. and Darrell, T. Fully convolutional networks for semantic segmentation. City, 2015.Google ScholarGoogle Scholar
  4. Ronneberger, O., Fischer, P. and Brox, T. U-net: Convolutional networks for biomedical image segmentation. Springer, City, 2015.Google ScholarGoogle Scholar
  5. Yu, L., Cheng, J.-Z., Dou, Q., Yang, X., Chen, H., Qin, J. and Heng, P.-A. Automatic 3D cardiovascular MR segmentation with densely-connected volumetric convnets. Springer, City, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W. and Heng, P.-A. J. I. t. o. m. i. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes, 37, 12 (2018), 2663-2674.Google ScholarGoogle Scholar
  7. Yu, Q., Xie, L., Wang, Y., Zhou, Y., Fishman, E. K. and Yuille, A. L. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation. City, 2018.Google ScholarGoogle Scholar
  8. Zhou, Y., Xie, L., Shen, W., Wang, Y., Fishman, E. K. and Yuille, A. L. A fixed-point model for pancreas segmentation in abdominal CT scans. Springer, City, 2017.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. and Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Springer, City, 2016.Google ScholarGoogle Scholar
  10. Xiao, X., Lian, S., Luo, Z. and Li, S. Weighted res-unet for high-quality retina vessel segmentation. IEEE, City, 2018.Google ScholarGoogle ScholarCross RefCross Ref
  11. Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N. and Liang, J. Unet++: A nested u-net architecture for medical image segmentation. Springer, City, 2018.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., Han, X., Chen, Y.-W. and Wu, J. Unet 3+: A full-scale connected unet for medical image segmentation. IEEE, City, 2020.Google ScholarGoogle ScholarCross RefCross Ref
  13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. and Polosukhin, I. J. A. i. n. i. p. s. Attention is all you need, 30 (2017).Google ScholarGoogle Scholar
  14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G. and Gelly, S. J. a. p. a. An image is worth 16x16 words: Transformers for image recognition at scale (2020).Google ScholarGoogle Scholar
  15. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. and Jégou, H. Training data-efficient image transformers & distillation through attention. PMLR, City, 2021.Google ScholarGoogle Scholar
  16. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. City, 2021.Google ScholarGoogle Scholar
  17. Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L. and Zhou, Y. J. a. p. a. Transunet: Transformers make strong encoders for medical image segmentation (2021).Google ScholarGoogle Scholar
  18. Cao, H., Wang, Y., Chen, J., Jiang, D., Zhang, X., Tian, Q. and Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. Springer, City, 2022.Google ScholarGoogle Scholar
  19. Vu, T.-H., Jain, H., Bucher, M., Cord, M. and Pérez, P. Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. City, 2019.Google ScholarGoogle Scholar
  20. Loshchilov, I. and Hutter, F. J. a. p. a. Sgdr: Stochastic gradient descent with warm restarts (2016).Google ScholarGoogle Scholar
  21. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E. and Willsky, A. J. I. t. o. m. i. A shape-based approach to the segmentation of medical imagery using level sets, 22, 2 (2003), 137-154.Google ScholarGoogle Scholar
  22. Lieman-Sifry, J., Le, M., Lau, F., Sall, S. and Golden, D. FastVentricle: cardiac segmentation with ENet. Springer, City, 2017.Google ScholarGoogle Scholar
  23. Tran, P. V. J. a. p. a. A fully convolutional neural network for cardiac segmentation in short-axis MRI (2016).Google ScholarGoogle Scholar
  24. Valanarasu, J. M. J. and Patel, V. M. Unext: Mlp-based rapid medical image segmentation network. Springer, City, 2022.Google ScholarGoogle Scholar
  25. Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. J. a. p. a. Bert: Pre-training of deep bidirectional transformers for language understanding (2018).Google ScholarGoogle Scholar
  26. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A. and Tran, D. Image transformer. PMLR, City, 2018.Google ScholarGoogle Scholar
  27. Yang, X. and Tian, X. Transnunet: Using attention mechanism for whole heart segmentation. IEEE, City, 2022.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G., Zhang, D. J. I. T. o. I. and Measurement Ds-transunet: Dual swin transformer u-net for medical image segmentation, 71 (2022), 1-15.Google ScholarGoogle Scholar
  29. Pan, S., Liu, X., Xie, N. and Chong, Y. J. B. b. EG-TransUNet: a transformer-based U-Net with enhanced and guided models for biomedical image segmentation, 24, 1 (2023), 85.Google ScholarGoogle Scholar
  30. He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image recognition. City, 2016.Google ScholarGoogle Scholar
  31. Shannon, C. E. J. T. B. s. t. j. A mathematical theory of communication, 27, 3 (1948), 379-423.Google ScholarGoogle Scholar
  32. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. Ieee, City, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  33. Loshchilov, I. and Hutter, F. J. a. p. a. Sgdr: Stochastic gradient descent with warm restarts (2016).Google ScholarGoogle Scholar
  34. Asgari Taghanaki, S., Abhishek, K., Cohen, J. P., Cohen-Adad, J. and Hamarneh, G. J. A. I. R. Deep semantic segmentation of natural and medical images: a review, 54 (2021), 137-178.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, R., Lei, T., Cui, R., Zhang, B., Meng, H. and Nandi, A. Medical image segmentation using deep learning: a survey. IET Image Process 16 (5): 1243‑1267. City, 2022.Google ScholarGoogle Scholar

Index Terms

  1. CardiacSegFormer: Transformer for Semantic Segmentation of Cardiac Images

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICCPR '23: Proceedings of the 2023 12th International Conference on Computing and Pattern Recognition
      October 2023
      589 pages
      ISBN:9798400707988
      DOI:10.1145/3633637

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 28 February 2024

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)6
      • Downloads (Last 6 weeks)4

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format