skip to main content
10.1145/3634848.3634861acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicsieConference Proceedingsconference-collections
research-article

Exploring the relationship between music, medicine and physics. Why pluralism is necessary in music therapy?

Published:24 January 2024Publication History

ABSTRACT

A variety of fields, including music, psychology, neuroscience, and medicine, are naturally incorporated into music therapy. In this article, we will discuss the intersection of music therapy with physics and medicine, which are two of the realms that potentiate the effects of music interventions in supporting health.

The present research does not claim to be exhaustive but discusses the issues that underpin a significant body of research on pluralism and interdisciplinarity in music therapy. Thus, by discussing the connection between three domains (music, physics, and medicine), we propose a comprehensive perspective through which music therapy can become effective in the process of assessment, treatment and evaluation.

The goal of this study is to show how the effects of therapy can be quantified by explaining the way vibrational sound treatment, filtered music therapy, and the entrainment phenomena, and also the use of functional MRI scans, EEG recordings, diffusion tensor imaging, provide support in the process of music therapy.

References

  1. ] M. Trimble and D. Hesdorffer, “Music and the brain: the neuroscience of music and musical appreciation,” BJPsych Int, vol. 14, no. 2, pp. 28–31, May 2017, doi: 10.1192/S2056474000001720.Google ScholarGoogle ScholarCross RefCross Ref
  2. F. A. Constantin and S. Drăgulin, “Perspectives on the Relevance of Interdisciplinary Music Therapy,” 2019, pp. 130–138. doi: 10.1007/978-3-030-11935-5_13.Google ScholarGoogle ScholarCross RefCross Ref
  3. J. Fiore, K. Ridgway, and A. Buttermore, “A Seat at the Table for Music Therapy: Perceptions of Music Therapy Within the Hospice Interdisciplinary Team,” Music Ther Perspect, Jun. 2023, doi: 10.1093/mtp/miad011.Google ScholarGoogle ScholarCross RefCross Ref
  4. T. Särkämö, M. Tervaniemi, and M. Huotilainen, “Music perception and cognition: development, neural basis, and rehabilitative use of music,” Wiley Interdiscip Rev Cogn Sci, vol. 4, no. 4, pp. 441–451, Jul. 2013, doi: 10.1002/wcs.1237.Google ScholarGoogle ScholarCross RefCross Ref
  5. R. W. Wilkins, D. A. Hodges, P. J. Laurienti, M. Steen, and J. H. Burdette, “Network Science and the Effects of Music Preference on Functional Brain Connectivity: From Beethoven to Eminem,” Sci Rep, vol. 4, no. 1, p. 6130, Aug. 2014, doi: 10.1038/srep06130.Google ScholarGoogle ScholarCross RefCross Ref
  6. P. Janata, “The Neural Architecture of Music-Evoked Autobiographical Memories,” Cerebral Cortex, vol. 19, no. 11, pp. 2579–2594, Nov. 2009, doi: 10.1093/cercor/bhp008.Google ScholarGoogle ScholarCross RefCross Ref
  7. S. Koelsch, “Towards a neural basis of music-evoked emotions,” Trends Cogn Sci, vol. 14, no. 3, pp. 131–137, Mar. 2010, doi: 10.1016/j.tics.2010.01.002.Google ScholarGoogle ScholarCross RefCross Ref
  8. T. Särkämö , “Cognitive, Emotional, and Social Benefits of Regular Musical Activities in Early Dementia: Randomized Controlled Study,” Gerontologist, vol. 54, no. 4, pp. 634–650, Aug. 2014, doi: 10.1093/geront/gnt100.Google ScholarGoogle ScholarCross RefCross Ref
  9. Y. Lyu , “Gamma Band Oscillations Reflect Sensory and Affective Dimensions of Pain,” Front Neurol, vol. 12, Jan. 2022, doi: 10.3389/fneur.2021.695187.Google ScholarGoogle ScholarCross RefCross Ref
  10. X. Lu, W. F. Thompson, L. Zhang, and L. Hu, “Music Reduces Pain Unpleasantness: Evidence from an EEG Study,” J Pain Res, vol. Volume 12, pp. 3331–3342, Dec. 2019, doi: 10.2147/JPR.S212080.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. Mariotti, “The effects of chronic stress on health: new insights into the molecular mechanisms of brain–body communication,” Future Sci OA, vol. 1, no. 3, Nov. 2015, doi: 10.4155/fso.15.21.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. J. Sihvonen, T. Särkämö, V. Leo, M. Tervaniemi, E. Altenmüller, and S. Soinila, “Music-based interventions in neurological rehabilitation,” Lancet Neurol, vol. 16, no. 8, pp. 648–660, Aug. 2017, doi: 10.1016/S1474-4422(17)30168-0.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. Lyu , “The Effects of Music Therapy on Cognition, Psychiatric Symptoms, and Activities of Daily Living in Patients with Alzheimer's Disease,” Journal of Alzheimer's Disease, vol. 64, no. 4, pp. 1347–1358, Jul. 2018, doi: 10.3233/JAD-180183.Google ScholarGoogle ScholarCross RefCross Ref
  14. L. Bunt, Music Therapy: An art beyond words, Routledge. London, 1994.Google ScholarGoogle Scholar
  15. D. Calamassi and G. P. Pomponi, “Music Tuned to 440 Hz Versus 432 Hz and the Health Effects: A Double-blind Cross-over Pilot Study,” EXPLORE, vol. 15, no. 4, pp. 283–290, Jul. 2019, doi: 10.1016/j.explore.2019.04.001.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. Boyd-Brewer and R. McCaffrey, “Vibroacoustic Sound Therapy Improves Pain Management and More,” Holist Nurs Pract, vol. 18, no. 3, pp. 111–118, May 2004, doi: 10.1097/00004650-200405000-00002.Google ScholarGoogle ScholarCross RefCross Ref
  17. E. A. Campbell, J. Hynynen, B. Burger, and E. Ala-Ruona, “Exploring the use of Vibroacoustic treatment for managing chronic pain and comorbid mood disorders: A mixed methods study,” Nord J Music Ther, vol. 28, no. 4, pp. 291–314, Aug. 2019, doi: 10.1080/08098131.2019.1604565.Google ScholarGoogle ScholarCross RefCross Ref
  18. K. S. Chesky, I. J. Russell, Y. Lopez, and G. V. Kondraske, “Fibromyalgia Tender Point Pain: A Double-Blind, Placebo-Controlled Pilot Study of Music Vibration Using the Music Vibration Table TM,” J Musculoskelet Pain, vol. 5, no. 3, pp. 33–52, Jan. 1997, doi: 10.1300/J094v05n03_04.Google ScholarGoogle ScholarCross RefCross Ref
  19. Y. Dong, W. Wang, J. Zheng, S. Chen, J. Qiao, and X. Wang, “Whole Body Vibration Exercise for Chronic Musculoskeletal Pain: A Systematic Review and Meta-analysis of Randomized Controlled Trials,” Arch Phys Med Rehabil, vol. 100, no. 11, pp. 2167–2178, Nov. 2019, doi: 10.1016/j.apmr.2019.03.011.Google ScholarGoogle ScholarCross RefCross Ref
  20. T. A. H. Eshuis, P. J. C. Stuijt, H. Timmerman, P. M. L. Nielsen, A. P. Wolff, and R. Soer, “Music and low-frequency vibrations for the treatment of chronic musculoskeletal pain in elderly: A pilot study,” PLoS One, vol. 16, no. 11, p. e0259394, Nov. 2021, doi: 10.1371/journal.pone.0259394.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. Kantor , “Exploring vibroacoustic therapy in adults experiencing pain: a scoping review,” BMJ Open, vol. 12, no. 4, p. e046591, Apr. 2022, doi: 10.1136/bmjopen-2020-046591.Google ScholarGoogle ScholarCross RefCross Ref
  22. P. L. Rosenbaum , “Prognosis for Gross Motor Function in Cerebral Palsy,” JAMA, vol. 288, no. 11, p. 1357, Sep. 2002, doi: 10.1001/jama.288.11.1357.Google ScholarGoogle ScholarCross RefCross Ref
  23. C. Boyd-Brewer, “Vibroacoustic Therapy: Sound Vibrations in Medicine,” Alternative and Complementary Therapies, vol. 9, no. 5, pp. 257–263, Oct. 2003, doi: 10.1089/107628003322490706.Google ScholarGoogle ScholarCross RefCross Ref
  24. T. Tupimai, P. Peungsuwan, J. Prasertnoo, and J. Yamauchi, “Effect of combining passive muscle stretching and whole body vibration on spasticity and physical performance of children and adolescents with cerebral palsy,” J Phys Ther Sci, vol. 28, no. 1, pp. 7–13, 2016, doi: 10.1589/jpts.28.7.Google ScholarGoogle ScholarCross RefCross Ref
  25. M. Huang, L.-R. Liao, and M. Y. Pang, “Effects of whole body vibration on muscle spasticity for people with central nervous system disorders: a systematic review,” Clin Rehabil, vol. 31, no. 1, pp. 23–33, Jan. 2017, doi: 10.1177/0269215515621117.Google ScholarGoogle ScholarCross RefCross Ref
  26. H. Okamoto, H. Stracke, W. Stoll, and C. Pantev, “Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity,” Proceedings of the National Academy of Sciences, vol. 107, no. 3, pp. 1207–1210, Jan. 2010, doi: 10.1073/pnas.0911268107.Google ScholarGoogle ScholarCross RefCross Ref
  27. M. Thaut, S. Schleiffers, and W. Davis, “Analysis of EMG Activity in Biceps and Triceps Muscle in an Upper Extremity Gross Motor Task under the Influence of Auditory Rhythm,” J Music Ther, vol. 28, no. 2, pp. 64–88, Jun. 1991, doi: 10.1093/jmt/28.2.64.Google ScholarGoogle ScholarCross RefCross Ref
  28. M. H. Thaut, G. C. McIntosh, S. G. Prassas, and R. R. Rice, “Effect of Rhythmic Auditory Cuing on Temporal Stride Parameters and EMG Patterns in Normal Gait,” Neurorehabil Neural Repair, vol. 6, no. 4, pp. 185–190, Jan. 1992, doi: 10.1177/136140969200600403.Google ScholarGoogle ScholarCross RefCross Ref
  29. M. H. Thaut, G. C. McIntosh, and R. R. Rice, “Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation,” J Neurol Sci, vol. 151, no. 2, pp. 207–212, Oct. 1997, doi: 10.1016/S0022-510X(97)00146-9.Google ScholarGoogle ScholarCross RefCross Ref
  30. J. J. Bharucha and M. Curtis, “Affective spectra, synchronization, and motion: Aspects of the emotional response to music,” Behavioral and Brain Sciences, vol. 31, no. 5, pp. 579–579, Oct. 2008, doi: 10.1017/S0140525X08005335.Google ScholarGoogle ScholarCross RefCross Ref
  31. J. L. Chen, V. B. Penhune, and R. J. Zatorre, “Moving on Time: Brain Network for Auditory-Motor Synchronization is Modulated by Rhythm Complexity and Musical Training,” J Cogn Neurosci, vol. 20, no. 2, pp. 226–239, Feb. 2008, doi: 10.1162/jocn.2008.20018.Google ScholarGoogle ScholarCross RefCross Ref
  32. T. Fujioka, L. J. Trainor, and B. Ross, “Neuromagnetic beta-band oscillation for rhythmic processing induced by subjectively accented structure,” J Acoust Soc Am, vol. 134, no. 5_Supplement, pp. 4064–4064, Nov. 2013, doi: 10.1121/1.4830835.Google ScholarGoogle ScholarCross RefCross Ref
  33. W. J. Trost, C. Labbé, and D. Grandjean, “Rhythmic entrainment as a musical affect induction mechanism,” Neuropsychologia, vol. 96, pp. 96–110, Feb. 2017, doi: 10.1016/j.neuropsychologia.2017.01.004.Google ScholarGoogle ScholarCross RefCross Ref
  34. S. Brown, “Group dancing as the evolutionary origin of rhythmic entrainment in humans,” New Ideas Psychol, vol. 64, p. 100902, Jan. 2022, doi: 10.1016/j.newideapsych.2021.100902.Google ScholarGoogle ScholarCross RefCross Ref
  35. J. L. Chen, “Music-supported therapy for stroke motor recovery: theoretical and practical considerations,” Ann N Y Acad Sci, vol. 1423, no. 1, pp. 57–65, Jul. 2018, doi: 10.1111/nyas.13726.Google ScholarGoogle ScholarCross RefCross Ref
  36. M. H. Thaut, G. C. McIntosh, and V. Hoemberg, “Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system,” Front Psychol, vol. 5, Feb. 2015, doi: 10.3389/fpsyg.2014.01185.Google ScholarGoogle ScholarCross RefCross Ref
  37. E. Maróti , “Does moving to the music make you smarter? The relation of sensorimotor entrainment to cognitive, linguistic, musical, and social skills,” Psychol Music, vol. 47, no. 5, pp. 663–679, Sep. 2019, doi: 10.1177/0305735618778765.Google ScholarGoogle ScholarCross RefCross Ref
  38. L. Moumdjian, B. Moens, E. Vanzeir, B. Klerck, P. Feys, and M. Leman, “A model of different cognitive processes during spontaneous and intentional coupling to music in multiple sclerosis,” Ann N Y Acad Sci, vol. 1445, no. 1, pp. 27–38, Jun. 2019, doi: 10.1111/nyas.14023.Google ScholarGoogle ScholarCross RefCross Ref
  39. M. H. THAUT, “Temporal Entrainment of Cognitive Functions: Musical Mnemonics Induce Brain Plasticity and Oscillatory Synchrony in Neural Networks Underlying Memory,” Ann N Y Acad Sci, vol. 1060, no. 1, pp. 243–254, Dec. 2005, doi: 10.1196/annals.1360.017.Google ScholarGoogle ScholarCross RefCross Ref
  40. C. Labbé, W. Trost, and D. Grandjean, “Affective experiences to chords are modulated by mode, meter, tempo, and subjective entrainment,” Psychol Music, vol. 49, no. 4, pp. 915–930, Jul. 2021, doi: 10.1177/0305735620906887.Google ScholarGoogle ScholarCross RefCross Ref
  41. S. Schaerlaeken, D. Glowinski, and D. Grandjean, “Linking musical metaphors and emotions evoked by the sound of classical music,” Psychol Music, vol. 50, no. 1, pp. 245–264, Jan. 2022, doi: 10.1177/0305735621991235.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Vuilleumier and W. Trost, “Music and emotions: from enchantment to entrainment,” Ann N Y Acad Sci, vol. 1337, no. 1, pp. 212–222, Mar. 2015, doi: 10.1111/nyas.12676.Google ScholarGoogle ScholarCross RefCross Ref
  43. D. I. Bass , “Awake Mapping of the Auditory Cortex during Tumor Resection in an Aspiring Musical Performer: A Case Report,” Pediatr Neurosurg, vol. 55, no. 6, pp. 351–358, 2020, doi: 10.1159/000509328.Google ScholarGoogle ScholarCross RefCross Ref
  44. D. Schön , “Similar cerebral networks in language, music and song perception,” Neuroimage, vol. 51, no. 1, pp. 450–461, May 2010, doi: 10.1016/j.neuroimage.2010.02.023.Google ScholarGoogle ScholarCross RefCross Ref
  45. S. Tanaka and E. Kirino, “The parietal opercular auditory-sensorimotor network in musicians: A resting-state fMRI study,” Brain Cogn, vol. 120, pp. 43–47, Feb. 2018, doi: 10.1016/j.bandc.2017.11.001.Google ScholarGoogle ScholarCross RefCross Ref
  46. E. Gasenzer, A. Kanat, and E. Neugebauer, “First Report of Awake Craniotomy of a Famous Musician: Suprasellar Tumor Surgery of Pianist Clara Haskil in 1942,” J Neurol Surg A Cent Eur Neurosurg, vol. 78, no. 03, pp. 260–268, Feb. 2017, doi: 10.1055/s-0036-1597895.Google ScholarGoogle ScholarCross RefCross Ref
  47. M. D. Hale, A. Zaman, M. C. H. J. Morrall, P. Chumas, and M. J. Maguire, “A Novel Functional Magnetic Resonance Imaging Paradigm for the Preoperative Assessment of Auditory Perception in a Musician Undergoing Temporal Lobe Surgery,” World Neurosurg, vol. 111, pp. 63–67, Mar. 2018, doi: 10.1016/j.wneu.2017.12.018.Google ScholarGoogle ScholarCross RefCross Ref
  48. K. A. Katlowitz, H. Oya, M. A. Howard, J. D. W. Greenlee, and M. A. Long, “Paradoxical vocal changes in a trained singer by focally cooling the right superior temporal gyrus,” Cortex, vol. 89, pp. 111–119, Apr. 2017, doi: 10.1016/j.cortex.2017.01.024.Google ScholarGoogle ScholarCross RefCross Ref
  49. V. Piai, S. H. Vos, R. Idelberger, P. Gans, J. Doorduin, and M. ter Laan, “Awake Surgery for a Violin Player: Monitoring Motor and Music Performance, A Case Report,” Archives of Clinical Neuropsychology, vol. 34, no. 1, pp. 132–137, Feb. 2019, doi: 10.1093/arclin/acy009.Google ScholarGoogle ScholarCross RefCross Ref
  50. X. Xiao, W. Chen, and X. Zhang, “The effect and mechanisms of music therapy on the autonomic nervous system and brain networks of patients of minimal conscious states: a randomized controlled trial,” Front Neurosci, vol. 17, May 2023, doi: 10.3389/fnins.2023.1182181.Google ScholarGoogle ScholarCross RefCross Ref
  51. B. C. Eapen, J. Georgekutty, B. Subbarao, S. Bavishi, and D. X. Cifu, “Disorders of Consciousness,” Phys Med Rehabil Clin N Am, vol. 28, no. 2, pp. 245–258, May 2017, doi: 10.1016/j.pmr.2016.12.003.Google ScholarGoogle ScholarCross RefCross Ref
  52. A. Rasmus, J. Góral-Półrola, E. Orłowska, M. Wiłkość-Dębczyńska, and C. Grzywniak, “Nonverbal communication of trauma patients in a state of minimal consciousness,” Annals of Agricultural and Environmental Medicine, vol. 26, no. 2, pp. 304–308, Jun. 2019, doi: 10.26444/aaem/91911.Google ScholarGoogle ScholarCross RefCross Ref
  53. M. L. Chanda and D. J. Levitin, “The neurochemistry of music,” Trends Cogn Sci, vol. 17, no. 4, pp. 179–193, Apr. 2013, doi: 10.1016/j.tics.2013.02.007.Google ScholarGoogle ScholarCross RefCross Ref
  54. A. M. Hunt , “Neuronal Effects of Listening to Entrainment Music Versus Preferred Music in Patients With Chronic Cancer Pain as Measured via EEG and LORETA Imaging,” Front Psychol, vol. 12, Feb. 2021, doi: 10.3389/fpsyg.2021.588788.Google ScholarGoogle ScholarCross RefCross Ref
  55. T. Chabin , “Cortical Patterns of Pleasurable Musical Chills Revealed by High-Density EEG,” Front Neurosci, vol. 14, Nov. 2020, doi: 10.3389/fnins.2020.565815.Google ScholarGoogle ScholarCross RefCross Ref
  56. Z.-B. Liu , “Short-term efficacy of music therapy combined with α binaural beat therapy in disorders of consciousness,” Front Psychol, vol. 13, Sep. 2022, doi: 10.3389/fpsyg.2022.947861.Google ScholarGoogle ScholarCross RefCross Ref
  57. F. C. S. Frickmann, R. D. Urman, K. Siercks, G. Burgermeister, M. M. Luedi, and F. E. Lersch, “The Effect of Perioperative Auditory Stimulation with Music on Procedural Pain: A Narrative Review,” Curr Pain Headache Rep, vol. 27, no. 8, pp. 217–226, Aug. 2023, doi: 10.1007/s11916-023-01138-x.Google ScholarGoogle ScholarCross RefCross Ref
  58. M. Hauck, S. Metzner, F. Rohlffs, J. Lorenz, and A. K. Engel, “The influence of music and music therapy on pain-induced neuronal oscillations measured by magnetencephalography,” Pain, vol. 154, no. 4, pp. 539–547, Apr. 2013, doi: 10.1016/j.pain.2012.12.016.Google ScholarGoogle ScholarCross RefCross Ref
  59. Y. Cheng, M. Su, C. Liu, Y. Huang, and W. Huang, “Heart rate variability in patients with anxiety disorders: A systematic review and meta‐analysis,” Psychiatry Clin Neurosci, vol. 76, no. 7, pp. 292–302, Jul. 2022, doi: 10.1111/pcn.13356.Google ScholarGoogle ScholarCross RefCross Ref
  60. K. S. Lee, H. C. Jeong, J. E. Yim, and M. Y. Jeon, “Effects of Music Therapy on the Cardiovascular and Autonomic Nervous System in Stress-Induced University Students: A Randomized Controlled Trial,” The Journal of Alternative and Complementary Medicine, vol. 22, no. 1, pp. 59–65, Jan. 2016, doi: 10.1089/acm.2015.0079.Google ScholarGoogle ScholarCross RefCross Ref
  61. C. Rio-Alamos, R. Montefusco-Siegmund, T. Cañete, J. Sotomayor, and A. Fernandez-Teruel, “Acute Relaxation Response Induced by Tibetan Singing Bowl Sounds: A Randomized Controlled Trial,” Eur J Investig Health Psychol Educ, vol. 13, no. 2, pp. 317–330, Jan. 2023, doi: 10.3390/ejihpe13020024.Google ScholarGoogle ScholarCross RefCross Ref
  62. S. Glomb, I. Böckelmann, J. Frommer, and S. Metzner, “The impact of music-imaginative pain treatment (MIPT) on psychophysical affect regulation – A single case study,” Frontiers in Pain Research, vol. 3, Sep. 2022, doi: 10.3389/fpain.2022.943890.Google ScholarGoogle ScholarCross RefCross Ref
  63. L. Thau, J. Gandhi, and S. Sharma, Physiology, Cortisol. 2023.Google ScholarGoogle Scholar
  64. B. Miluk-Kolasa, Z. Obminski, R. Stupnicki, and L. Golec, “Effects of music treatment on salivary cortisol in patients exposed to pre-surgical stress,” Experimental and Clinical Endocrinology & Diabetes, vol. 102, no. 02, pp. 118–120, Jul. 2009, doi: 10.1055/s-0029-1211273.Google ScholarGoogle ScholarCross RefCross Ref
  65. P. Hepp , “Effects of music intervention during caesarean delivery on anxiety and stress of the mother a controlled, randomised study,” BMC Pregnancy Childbirth, vol. 18, no. 1, p. 435, Dec. 2018, doi: 10.1186/s12884-018-2069-6.Google ScholarGoogle ScholarCross RefCross Ref
  66. S. Koelsch , “Effects of Music Listening on Cortisol Levels and Propofol Consumption during Spinal Anesthesia,” Front Psychol, vol. 2, 2011, doi: 10.3389/fpsyg.2011.00058.Google ScholarGoogle ScholarCross RefCross Ref
  67. A. J. Blood and R. J. Zatorre, “Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion,” Proceedings of the National Academy of Sciences, vol. 98, no. 20, pp. 11818–11823, Sep. 2001, doi: 10.1073/pnas.191355898.Google ScholarGoogle ScholarCross RefCross Ref
  68. S. Brown, M. J. Martinez, and L. M. Parsons, “Passive music listening spontaneously engages limbic and paralimbic systems,” Neuroreport, vol. 15, no. 13, pp. 2033–2037, Sep. 2004, doi: 10.1097/00001756-200409150-00008.Google ScholarGoogle ScholarCross RefCross Ref
  69. I. Daly, D. Williams, F. Hwang, A. Kirke, E. R. Miranda, and S. J. Nasuto, “Electroencephalography reflects the activity of sub-cortical brain regions during approach-withdrawal behaviour while listening to music,” Sci Rep, vol. 9, no. 1, p. 9415, Jul. 2019, doi: 10.1038/s41598-019-45105-2.Google ScholarGoogle ScholarCross RefCross Ref
  70. V. Menon and D. J. Levitin, “The rewards of music listening: Response and physiological connectivity of the mesolimbic system,” Neuroimage, vol. 28, no. 1, pp. 175–184, Oct. 2005, doi: 10.1016/j.neuroimage.2005.05.053.Google ScholarGoogle ScholarCross RefCross Ref
  71. K. C. Berridge, T. E. Robinson, and J. W. Aldridge, “Dissecting components of reward: ‘liking’, ‘wanting’, and learning,” Curr Opin Pharmacol, vol. 9, no. 1, pp. 65–73, Feb. 2009, doi: 10.1016/j.coph.2008.12.014.Google ScholarGoogle ScholarCross RefCross Ref
  72. V. Salimpoor , “The Rewarding Aspects of Music Listening Involve the Dopaminergic Striatal Reward Systems of the Brain: An Investigation with [C11]Raclopride PET and fMRI,” Neuroimage, vol. 47, p. S160, Jul. 2009, doi: 10.1016/S1053-8119(09)71683-0.Google ScholarGoogle ScholarCross RefCross Ref
  73. S. J. Lunde, P. Vuust, E. A. Garza-Villarreal, I. Kirsch, A. Møller, and L. Vase, “Music-Induced Analgesia in Healthy Participants Is Associated With Expected Pain Levels but Not Opioid or Dopamine-Dependent Mechanisms,” Frontiers in Pain Research, vol. 3, Apr. 2022, doi: 10.3389/fpain.2022.734999.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Exploring the relationship between music, medicine and physics. Why pluralism is necessary in music therapy?
              Index terms have been assigned to the content through auto-classification.

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Other conferences
                ICSIE '23: Proceedings of the 2023 12th International Conference on Software and Information Engineering
                November 2023
                110 pages
                ISBN:9798400708107
                DOI:10.1145/3634848

                Copyright © 2023 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 24 January 2024

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed limited
              • Article Metrics

                • Downloads (Last 12 months)22
                • Downloads (Last 6 weeks)4

                Other Metrics

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              HTML Format

              View this article in HTML Format .

              View HTML Format