skip to main content
10.1145/3635118.3635130acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicaipConference Proceedingsconference-collections
research-article

Advancements in Video-Based Insect Tracking: A Bibliometric Analysis to A Short Survey

Authors Info & Claims
Published:05 February 2024Publication History

ABSTRACT

Video-based insect tracking provides vital insights into insect behavior and ecology, enhancing our understanding of their movements and interactions. Therefore, examining trends in this field over the last few years is essential. This study aims to conduct a bibliometric analysis to unveil the growing interest in video-based insect tracking with a short review based on documents used for bibliometric analysis. To achieve this, 453 documents were extracted from Scopus on 12 June 2023. Only documents in English published between 2010 and 2023, resulting in a dataset of 318 documents, were analyzed. The findings illustrate a consistent growth in video-based insect research over the last years, with a significant peak in 2021, comprising 32 documents. The journal PLOS ONE stands out as the most productive source. The USA exhibited the most significant interest in video-based insect tracking over the last years. Keyword analysis reflects the multidisciplinary nature of insect tracking research. The review demonstrated that video-based insect tracking serves two primary objectives: pose estimation and trajectory information. However, the main challenge in video-based insect tracking is to preserve the identity of multiple individuals in situations involving occlusions or complex interactions.

References

  1. Andreas Aristidou and Joan Lasenby. 2011. FABRIK: A fast, iterative solver for the Inverse Kinematics problem. Graphical Models 73, 5 (2011), 243–260. https://doi.org/10.1016/j.gmod.2011.05.003Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Yufang Bao and Hamid Krim. 2018. Video Tracking of Insect Flight Path: Towards Behavioral Assessment. (2018), 1–6. https://doi.org/10.1109/IPTA.2018.8608167Google ScholarGoogle ScholarCross RefCross Ref
  3. Omri Ben-Dov and Tsevi Beatus. 2021. Pose estimation of free-flying fruit flies. bioRxiv (2021), 2021–01. https://doi.org/10.1101/2021.01.24.427941Google ScholarGoogle ScholarCross RefCross Ref
  4. Attila J. Bergou, Leif Ristroph, John Guckenheimer, Itai Cohen, and Z. Jane Wang. 2010. Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns. Phys. Rev. Lett. 104 (04 2010), 148101. Issue 14. https://doi.org/10.1103/PhysRevLett.104.148101Google ScholarGoogle ScholarCross RefCross Ref
  5. Bibliometrix. [n. d.]. Bibliometrix. Accessed: 12 June 2023.Google ScholarGoogle Scholar
  6. Kim Bjerge, Hjalte MR Mann, and Toke Thomas Høye. 2022. Real-time insect tracking and monitoring with computer vision and deep learning. Remote Sensing in Ecology and Conservation 8, 3 (2022), 315–327. https://doi.org/10.1002/rse2.245Google ScholarGoogle ScholarCross RefCross Ref
  7. Kim Bjerge, Jakob Bonde Nielsen, Martin Videbæk Sepstrup, Flemming Helsing-Nielsen, and Toke Thomas Høye. 2020. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. bioRxiv (2020). https://doi.org/10.1101/2020.03.18.996447Google ScholarGoogle ScholarCross RefCross Ref
  8. Kim Bjerge, Jakob Bonde Nielsen, Martin Videbæk Sepstrup, Flemming Helsing-Nielsen, and Toke Thomas Høye. 2021. An Automated Light Trap to Monitor Moths (Lepidoptera) Using Computer Vision-Based Tracking and Deep Learning. Sensors 21, 2 (2021). https://doi.org/10.3390/s21020343Google ScholarGoogle ScholarCross RefCross Ref
  9. Andreas Brückner, Jacques Duparré, Robert Leitel, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann. 2010. Thin wafer-level camera lenses inspired by insect compound eyes. Opt. Express 18, 24 (11 2010), 24379–24394. https://doi.org/10.1364/OE.18.024379Google ScholarGoogle ScholarCross RefCross Ref
  10. Marjolein Bruijning, Marco D Visser, Caspar A Hallmann, and Eelke Jongejans. 2018. trackdem: Automated particle tracking to obtain population counts and size distributions from videos in r. Methods in Ecology and Evolution 9, 4 (2018), 965–973. https://doi.org/10.1111/2041-210X.12975Google ScholarGoogle ScholarCross RefCross Ref
  11. Xiaoyan Cao, Shihui Guo, Juncong Lin, Wenshu Zhang, and Minghong Liao. 2020. Online tracking of ants based on deep association metrics: method, dataset and evaluation. Pattern Recognition 103 (2020), 107233. https://doi.org/10.1016/j.patcog.2020.107233Google ScholarGoogle ScholarCross RefCross Ref
  12. Cheng Siong Chin, Aloysius Bo Hui Neo, and Simon See. 2022. Visual Marine Debris Detection using Yolov5s for Autonomous Underwater Vehicle. In 2022 IEEE/ACIS 22nd International Conference on Computer and Information Science (ICIS). 20–24. https://doi.org/10.1109/ICIS54925.2022.9882484Google ScholarGoogle ScholarCross RefCross Ref
  13. Mary Fletcher, Anna Dornhaus, and Min C. Shin. 2011. Multiple ant tracking with global foreground maximization and variable target proposal distribution. (2011), 570–576. https://doi.org/10.1109/WACV.2011.5711555Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016. Virtual Worlds as Proxy for Multi-Object Tracking Analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  15. Asaf Gal, Jonathan Saragosti, and Daniel JC Kronauer. 2020. anTraX, a software package for high-throughput video tracking of color-tagged insects. eLife 9 (11 2020), e58145. https://doi.org/10.7554/eLife.58145Google ScholarGoogle ScholarCross RefCross Ref
  16. James R. Hagler and Charles G. Jackson. 2001. Methods for Marking Insects: Current Techniques and Future Prospects. Annual Review of Entomology 46, 1 (2001), 511–543. https://doi.org/10.1146/annurev.ento.46.1.511Google ScholarGoogle ScholarCross RefCross Ref
  17. David W. Hagstrum, Paul W. Flinn, and Dennis Shuman. 1996. Automated Monitoring Using Acoustical Sensors for Insects in Farm-Stored Wheat. Journal of Economic Entomology 89, 1 (02 1996), 211–217. https://doi.org/10.1093/jee/89.1.211Google ScholarGoogle ScholarCross RefCross Ref
  18. Sangchul Hwang and Young Choi. 2015. Tracking the joints of arthropod legs using multiple images and inverse kinematics. International Journal of Precision Engineering and Manufacturing 16 (2015), 669–675. https://doi.org/10.1007/s12541-015-0089-yGoogle ScholarGoogle ScholarCross RefCross Ref
  19. Chanyoung Ju and Hyoung Il Son. 2022. Investigation of an Autonomous Tracking System for Localization of Radio-Tagged Flying Insects. IEEE Access 10 (2022), 4048–4062. https://doi.org/10.1109/ACCESS.2022.3140488Google ScholarGoogle ScholarCross RefCross Ref
  20. Pierre Karashchuk, Katie L Rupp, Evyn S Dickinson, Sarah Walling-Bell, Elischa Sanders, Eiman Azim, Bingni W Brunton, and John C Tuthill. 2021. Anipose: a toolkit for robust markerless 3D pose estimation. Cell reports 36, 13 (2021). https://doi.org/10.1016/j.celrep.2021.109730Google ScholarGoogle ScholarCross RefCross Ref
  21. Luis Javier Linares-Sánchez, José Luis Fernández-Alemán, Ginés García-Mateos, Angel Pérez-Ruzafa, and Francisco Javier Sánchez-Vázquez. 2015. Follow-me: A new start-and-stop method for visual animal tracking in biology research. (2015), 755–758. https://doi.org/10.1109/EMBC.2015.7318472Google ScholarGoogle ScholarCross RefCross Ref
  22. Ahmed Nejmedine Machraoui, Mohamed Fethi Diouani, Jamila Ghrab, and Mounir Sayadi. 2014. Accurate detection and complete shape extraction of sand-flies using Gaussian mixture model. (2014), 1–6. https://doi.org/10.1109/IPAS.2014.7043277Google ScholarGoogle ScholarCross RefCross Ref
  23. Ahmed Nejmedine Machraoui, Mohamed Fethi Diouani, Jamila Ghrab, and Mounir Sayadi. 2016. Automated detection and tracking of phlebotominaes. (2016), 206–211. https://doi.org/10.1109/ATSIP.2016.7523069Google ScholarGoogle ScholarCross RefCross Ref
  24. Ahmed Nejmedine Machraoui, Mohamed Fethi Diouani, Aymen Mouelhi, Kaouther Jaouadi, Jamila Ghrab, Hafedh Abdelmelek, and Mounir Sayadi. 2019. Automatic identification and behavioral analysis of phlebotomine sand flies using trajectory features. The Visual Computer 35 (2019), 721–738. https://doi.org/10.1007/s00371-018-1506-xGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  25. Madah-Ul-Mustafa and Yu Zhu Liang. 2021. A Robust Object Tracking Method for Surveillance Applications to Handle Occlusion. 13, 1 (2021), 9–16. https://doi.org/10.7763/IJCTE.2021.V13.1283Google ScholarGoogle ScholarCross RefCross Ref
  26. Khan Malik M., Awan Tayyab W., Kim Intaek, and Soh Youngsung. 2014. Tracking Occluded Objects Using Kalman Filter and Color Information. 6, 5 (2014), 438–442. https://doi.org/10.7763/IJCTE.2014.V6.905Google ScholarGoogle ScholarCross RefCross Ref
  27. Julian Marstaller, Frederic Tausch, and Simon Stock. 2019. DeepBees - Building and Scaling Convolutional Neuronal Nets For Fast and Large-Scale Visual Monitoring of Bee Hives. (2019), 271–278. https://doi.org/10.1109/ICCVW.2019.00036Google ScholarGoogle ScholarCross RefCross Ref
  28. Bernardo Miranda, Joaquin Salas, and Pablo Vera. 2012. Bumblebees detection and tracking. In Workshop Vis. Observation Anal. Anim. Insect Behav. ICPR. 1–4.Google ScholarGoogle Scholar
  29. Ana Moreno-Delafuente, Elisa Garzo, Aranzazu Moreno, and Alberto Fereres. 2013. A Plant Virus Manipulates the Behavior of Its Whitefly Vector to Enhance Its Transmission Efficiency and Spread. PLOS ONE 8, 4 (04 2013), 1–10. https://doi.org/10.1371/journal.pone.0061543Google ScholarGoogle ScholarCross RefCross Ref
  30. Veronica Panadeiro, Alvaro Rodriguez, Jason Henry, Donald Wlodkowic, and Magnus Andersson. 2021. A review of 28 free animal-tracking software applications: current features and limitations. Lab animal 50, 9 (2021), 246–254. https://doi.org/10.1038/s41684-021-00811-1Google ScholarGoogle ScholarCross RefCross Ref
  31. Talmo D Pereira, Diego E Aldarondo, Lindsay Willmore, Mikhail Kislin, Samuel S-H Wang, Mala Murthy, and Joshua W Shaevitz. 2019. Fast animal pose estimation using deep neural networks. Nature methods 16, 1 (2019), 117–125. https://doi.org/10.1038/s41592-018-0234-5Google ScholarGoogle ScholarCross RefCross Ref
  32. Alfonso Pérez-Escudero, Julián Vicente-Page, Robert C Hinz, Sara Arganda, and Gonzalo G De Polavieja. 2014. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nature methods 11, 7 (2014), 743–748. https://doi.org/10.1038/nmeth.2994Google ScholarGoogle ScholarCross RefCross Ref
  33. Sabita Ranabhat, Kun Yan Zhu, Georgina V Bingham, and III Morrison, William R. 2022. Mobility of Phosphine-Susceptible and -Resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) After Exposure to Controlled Release Materials With Existing and Novel Active Ingredients. Journal of Economic Entomology 115, 3 (04 2022), 888–903. https://doi.org/10.1093/jee/toac033 arXiv:https://academic.oup.com/jee/article-pdf/115/3/888/43977610/toac033.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  34. Malika Nisal Ratnayake, Don Chathurika Amarathunga, Asaduz Zaman, Adrian G Dyer, and Alan Dorin. 2023. Spatial monitoring and insect behavioural analysis using computer vision for precision pollination. International Journal of Computer Vision 131, 3 (2023), 591–606. https://doi.org/10.1007/s11263-022-01715-4Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Malika Nisal Ratnayake, Adrian G. Dyer, and Alan Dorin. 2021. Tracking individual honeybees among wildflower clusters with computer vision-facilitated pollinator monitoring. PLOS ONE 16, 2 (02 2021), 1–20. https://doi.org/10.1371/journal.pone.0239504Google ScholarGoogle ScholarCross RefCross Ref
  36. Alvaro Rodriguez, Hanqing Zhang, Jonatan Klaminder, Tomas Brodin, Patrik L Andersson, and Magnus Andersson. 2018. ToxTrac: a fast and robust software for tracking organisms. Methods in Ecology and Evolution 9, 3 (2018), 460–464. https://doi.org/10.1111/2041-210X.12874Google ScholarGoogle ScholarCross RefCross Ref
  37. Danish Shakeel, Gursimran Bakshi, and Dr Bhupinder Singh. 2020. Insect Detection and Flight Tracking in a Controlled Environment Using Machine Vision: Review of Existing Techniques and an Improved Approach. In Proceedings of the International Conference on Innovative Computing and Communications (ICICC) 2020. SSRN, 58–70.Google ScholarGoogle ScholarCross RefCross Ref
  38. Minmin Shen, Chen Li, Wei Huang, Paul Szyszka, Kimiaki Shirahama, Marcin Grzegorzek, Dorit Merhof, and Oliver Deussen. 2015. Interactive tracking of insect posture. Pattern Recognition 48, 11 (2015), 3560–3571. https://doi.org/10.1016/j.patcog.2015.05.011Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Minmin Shen, Paul Szyszka, C. Giovanni Galizia, and Dorit Merhof. 2013. Automatic framework for tracking honeybee’s antennae and mouthparts from low framerate video. (2013), 4112–4116. https://doi.org/10.1109/ICIP.2013.6738847Google ScholarGoogle ScholarCross RefCross Ref
  40. Pudith Sirigrivatanawong and Koichi Hashimoto. 2016. Multiple Drosophila tracking with heading direction in crossover and touching scenarios. (2016), 1954–1959. https://doi.org/10.1109/ROBIO.2016.7866615Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Michael Thomas Smith, Michael Livingstone, and Richard Comont. 2021. A method for low-cost, low-impact insect tracking using retroreflective tags. Methods in Ecology and Evolution 12, 11 (2021), 2184–2195. https://doi.org/10.1111/2041-210X.13699Google ScholarGoogle ScholarCross RefCross Ref
  42. R Studio. [n. d.]. RStudio Desktop. Accessed: 12 June 2023.Google ScholarGoogle Scholar
  43. Karolien van Nunen, Jie Li, Genserik Reniers, and Koen Ponnet. 2018. Bibliometric analysis of safety culture research. Safety Science 108 (2018), 248–258. https://doi.org/10.1016/j.ssci.2017.08.011Google ScholarGoogle ScholarCross RefCross Ref
  44. Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple online and realtime tracking with a deep association metric. (2017), 3645–3649. https://doi.org/10.1109/ICIP.2017.8296962Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Advancements in Video-Based Insect Tracking: A Bibliometric Analysis to A Short Survey

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Other conferences
      ICAIP '23: Proceedings of the 2023 7th International Conference on Advances in Image Processing
      November 2023
      90 pages
      ISBN:9798400708275
      DOI:10.1145/3635118

      Copyright © 2023 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 5 February 2024

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited
    • Article Metrics

      • Downloads (Last 12 months)13
      • Downloads (Last 6 weeks)5

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format