skip to main content
10.1145/3636480.3636486acmotherconferencesArticle/Chapter ViewAbstractPublication PageshpcasiaConference Proceedingsconference-collections
research-article

The Error-Energy Tradeoff in Molecular and Molecular-Continuum Fluid Simulations

Published:11 January 2024Publication History

ABSTRACT

Energy consumption plays a crucial role when designing simulation studies. In this work, we take a step towards modelling the relationship between statistical error and energy consumption for molecular and molecular-continuum flow simulations. After revisiting statistical error analysis and run time complexities for molecular dynamics (MD) simulations, we verify the respective relationships in stand-alone short-range MD simulations. We then extend the analysis to coupled molecular-continuum simulations, including the multi-instance (i.e., MD ensemble averaging) case, and additionally analyse the impact of noise filters. Our findings suggest that Gauss filters can reduce the statistical error to a similar degree as doubling the number of MD instances would. We further use regression to derive an analytical energy consumption model that predicts energy consumption on our HPC-cluster HSUper, to achieve simulation results at a prescribed statistical error (or gain in signal-to-noise ratio, respectively). All simulations were carried out using the MD software ls1 mardyn and the molecular-continuum coupling tool MaMiCo. However, the derived models are easily transferable to other pieces of software and other HPC platforms.

References

  1. Jean Luca Bez, Eliezer E. Bernart, Fernando F. dos Santos, Lucas Mello Schnorr, and Philippe Olivier Alexandre Navaux. 2016. Performance and energy efficiency analysis of HPC physics simulation applications in a cluster of ARM processors. Concurrency and Computation: Practice and Experience 29, 22 (Oct. 2016), e4014. https://doi.org/10.1002/cpe.4014Google ScholarGoogle ScholarCross RefCross Ref
  2. Matthew K. Borg, Duncan A. Lockerby, and Jason M. Reese. 2013. A hybrid molecular-continuum simulation method for incompressible flows in micro/nanofluidic networks. Microfluidics and Nanofluidics 15, 4 (March 2013), 541–557. https://doi.org/10.1007/s10404-013-1168-yGoogle ScholarGoogle ScholarCross RefCross Ref
  3. Matthew K. Borg, Duncan A. Lockerby, and Jason M. Reese. 2015. A hybrid molecular–continuum method for unsteady compressible multiscale flows. Journal of Fluid Mechanics 768 (March 2015), 388–414. https://doi.org/10.1017/jfm.2015.83Google ScholarGoogle ScholarCross RefCross Ref
  4. Lyndon Clarke, Ian Glendinning, and Rolf Hempel. 1994. The MPI Message Passing Interface Standard. In Programming Environments for Massively Parallel Distributed Systems. Birkhäuser Basel, Basel, Switzerland, 213–218. https://doi.org/10.1007/978-3-0348-8534-8_21Google ScholarGoogle ScholarCross RefCross Ref
  5. E.R. Davies. 2005. Basic Image Filtering Operations. In Machine Vision. Elsevier, Burlington, MA, USA, 47–101. https://doi.org/10.1016/b978-012206093-9/50006-xGoogle ScholarGoogle ScholarCross RefCross Ref
  6. R. Delgado-Buscalioni and P. V. Coveney. 2003. USHER: An algorithm for particle insertion in dense fluids. The Journal of Chemical Physics 119, 2 (June 2003), 978–987. https://doi.org/10.1063/1.1579475Google ScholarGoogle ScholarCross RefCross Ref
  7. Mark Endrei, Chao Jin, Minh Ngoc Dinh, David Abramson, Heidi Poxon, Luiz DeRose, and Bronis R. de Supinski. 2018. Energy Efficiency Modeling of Parallel Applications. In SC18: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, Dallas, TX, USA, 212–224. https://doi.org/10.1109/sc.2018.00020Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dmitry A. Fedosov and George Em Karniadakis. 2009. Triple-decker: Interfacing atomistic–mesoscopic–continuum flow regimes. J. Comput. Phys. 228, 4 (2009), 1157–1171. https://doi.org/10.1016/j.jcp.2008.10.024Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Yiannis Georgiou, Thomas Cadeau, David Glesser, Danny Auble, Morris Jette, and Matthieu Hautreux. 2014. Energy Accounting and Control with SLURM Resource and Job Management System. In Distributed Computing and Networking. Springer Berlin Heidelberg, Berlin, Heidelberg, 96–118. https://doi.org/10.1007/978-3-642-45249-9_7Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Nicolas G. Hadjiconstantinou, Alejandro L. Garcia, Martin Z. Bazant, and Gang He. 2003. Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187, 1 (2003), 274–297. https://doi.org/10.1016/S0021-9991(03)00099-8Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Sardar Mehboob Hussain, Abdul Wahid, Munam Ali Shah, Adnan Akhunzada, Faheem Khan, Noor ul Amin, Saba Arshad, and Ihsan Ali. 2019. Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers. Springer International Publishing, Cham, 93–105. https://doi.org/10.1007/978-3-319-99966-1_9Google ScholarGoogle ScholarCross RefCross Ref
  12. Vahid Jafari, Niklas Wittmer, and Philipp Neumann. 2022. Massively Parallel Molecular-Continuum Flow Simulation with Error Control and Dynamic Ensemble Handling. In International Conference on High Performance Computing in Asia-Pacific Region. ACM, Virtual Event, Japan, 52–60. https://doi.org/10.1145/3492805.3492812Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Wolfhard Janke. 2002. Statistical Analysis of Simulations:Data Correlations and Error Estimation. In Proceedings of the Euro Winter School Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, John von Neumann Institute for Computing (NIC), Vol. 10. NIC-Directors, Jülich, 423–445.Google ScholarGoogle Scholar
  14. Piet Jarmatz, Felix Maurer, Helene Wittenberg, and Philipp Neumann. 2022. MaMiCo: Non-local means and POD filtering with flexible data-flow for two-way coupled molecular-continuum HPC flow simulation. Journal of Computational Science 61 (May 2022), 101617. https://doi.org/10.1016/j.jocs.2022.101617Google ScholarGoogle ScholarCross RefCross Ref
  15. Piet Jarmatz and Philipp Neumann. 2019. MaMiCo: Parallel Noise Reduction for Multi-instance Molecular-Continuum Flow Simulation. In Lecture Notes in Computer Science. Springer International Publishing, Cham, 451–464. https://doi.org/10.1007/978-3-030-22747-0_34Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Piet Jarmatz, Helene Wittenberg, Vahid Jafari, Amartya Das Sharma, Felix Maurer, Niklas Wittmer, and Philipp Neumann. 2022. MaMiCo 2.0: An enhanced open-source framework for high-performance molecular-continuum flow simulation. SoftwareX 20 (Dec. 2022), 101251. https://doi.org/10.1016/j.softx.2022.101251Google ScholarGoogle ScholarCross RefCross Ref
  17. Vinicius Klôh, Daniel Yokoyama, Andre Yokoyama, Gabrieli Silva, Mariza Ferro, and Bruno Schulze. 2018. Performance and Energy Efficiency Evaluation for HPC Applications in Heterogeneous Architectures. In 2018 Symposium on High Performance Computing Systems (WSCAD). IEEE, São Paulo, 162–169. https://doi.org/10.1109/wscad.2018.00034Google ScholarGoogle ScholarCross RefCross Ref
  18. Maria Stella Mongiovì, David Jou, and Michele Sciacca. 2018. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium. Physics Reports 726 (Jan. 2018), 1–71. https://doi.org/10.1016/j.physrep.2017.10.004Google ScholarGoogle ScholarCross RefCross Ref
  19. Philipp Neumann and Xin Bian. 2017. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers. Computer Physics Communications 220 (Nov. 2017), 390–402. https://doi.org/10.1016/j.cpc.2017.06.026Google ScholarGoogle ScholarCross RefCross Ref
  20. Philipp Neumann, Hanno Flohr, Rahul Arora, Piet Jarmatz, Nikola Tchipev, and Hans-Joachim Bungartz. 2016. MaMiCo: Software design for parallel molecular-continuum flow simulations. Computer Physics Communications 200 (March 2016), 324–335. https://doi.org/10.1016/j.cpc.2015.10.029Google ScholarGoogle ScholarCross RefCross Ref
  21. Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz, Wolfgang Eckhardt, Alexander Heinecke, Stephan Werth, Hans-Joachim Bungartz, Colin W. Glass, Hans Hasse, Jadran Vrabec, and Martin Horsch. 2014. ls1 mardyn: The Massively Parallel Molecular Dynamics Code for Large Systems. Journal of Chemical Theory and Computation 10, 10 (Oct. 2014), 4455–4464. https://doi.org/10.1021/ct500169qGoogle ScholarGoogle ScholarCross RefCross Ref
  22. John Price and Terry Goble. 1993. Signals and noise. In Telecommunications Engineer's Reference Book. Butterworth-Heinemann, Oxford, United Kingdom, 10–1–10–15. https://doi.org/10.1016/b978-0-7506-1162-6.50016-2Google ScholarGoogle ScholarCross RefCross Ref
  23. Apan Qasem and Samuel Teich. 2017. Evaluating the impact of data layout and placement on the energy efficiency of heterogeneous applications. In 2017 Eighth International Green and Sustainable Computing Conference (IGSC). IEEE, Orlando, FL, USA, 1–8. https://doi.org/10.1109/igcc.2017.8323574Google ScholarGoogle ScholarCross RefCross Ref
  24. Gopalakrishnan Sriraman and Shriram Raghunathan. 2023. Multiscale Modeling and Data-Driven Approaches for Energy Efficiency Prediction in Computing. In 2023 5th International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, Coimbatore, 674–678. https://doi.org/10.1109/icirca57980.2023.10220807Google ScholarGoogle ScholarCross RefCross Ref
  25. Nikola Tchipev, Steffen Seckler, Matthias Heinen, Jadran Vrabec, Fabio Gratl, Martin Horsch, Martin Bernreuther, Colin W Glass, Christoph Niethammer, Nicolay Hammer, Bernd Krischok, Michael Resch, Dieter Kranzlmüller, Hans Hasse, Hans-Joachim Bungartz, and Philipp Neumann. 2019. TweTriS: Twenty trillion-atom simulation. The International Journal of High Performance Computing Applications 33, 5 (2019), 838–854. https://doi.org/10.1177/1094342018819741 arXiv:https://doi.org/10.1177/1094342018819741Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Felix Weber, Maximilian Ries, Christof Bauer, Christian R. Wick, and Sebastian Pfaller. 2023. On equilibrating non-periodic molecular dynamics samples for coupled particle-continuum simulations of amorphous polymers. Forces in Mechanics 10 (Feb. 2023), 100159. https://doi.org/10.1016/j.finmec.2022.100159Google ScholarGoogle ScholarCross RefCross Ref
  27. Thomas Werder, Jens H. Walther, and Petros Koumoutsakos. 2005. Hybrid atomistic–continuum method for the simulation of dense fluid flows. J. Comput. Phys. 205, 1 (2005), 373–390. https://doi.org/10.1016/j.jcp.2004.11.019Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Helene Wittenberg and Philipp Neumann. 2021. Transient Two-Way Molecular-Continuum Coupling with OpenFOAM and MaMiCo: A Sensitivity Study. Computation 9, 12 (Nov. 2021), 128. https://doi.org/10.3390/computation9120128Google ScholarGoogle ScholarCross RefCross Ref
  29. Zhifan Ye, Jin Zhao, Bingjun Zhu, Zhao Jing, Xiangchun Sun, Christian Stemmer, Nikolaus A. Adams, and Dongsheng Wen. 2023. A hybrid CFD-RMD multiscale coupling framework for interfacial heat and mass simulation under hyperthermal ablative conditions. International Journal of Heat and Mass Transfer 213 (Oct. 2023), 124341. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124341Google ScholarGoogle ScholarCross RefCross Ref
  30. Shijie Yu, Hailong Yang, Rui Wang, Zhongzhi Luan, and Depei Qian. 2017. Evaluating architecture impact on system energy efficiency. PLOS ONE 12, 11 (Nov. 2017), e0188428. https://doi.org/10.1371/journal.pone.0188428Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. The Error-Energy Tradeoff in Molecular and Molecular-Continuum Fluid Simulations

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Other conferences
                HPCAsia '24 Workshops: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops
                January 2024
                134 pages
                ISBN:9798400716522
                DOI:10.1145/3636480

                Copyright © 2024 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 11 January 2024

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed limited

                Acceptance Rates

                Overall Acceptance Rate69of143submissions,48%
              • Article Metrics

                • Downloads (Last 12 months)58
                • Downloads (Last 6 weeks)11

                Other Metrics

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader

              HTML Format

              View this article in HTML Format .

              View HTML Format